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Abstract: There is an increasing demand for food packaging materials that are safe for the environ-
ment and human health. Pure polyvinyl alcohol (PVA) film is non-toxic and transparent but has poor
UV-light shielding, thermal and moisture resistance, and antibacterial activity. Our previous work
prepared and characterized a biofilm derived from PVA and edible Uncaria gambir extract (UG). The
film has antibacterial properties and is anti-UV and flexible. However, UG is hydrophilic, making
this film have low moisture absorption. To improve these properties, we trialed adding boric acid
(BA) and UG into the PVA. This present study aims to characterize pure PVA film and blend films
resulting from mixing PVA (10%), BA (0.5%), and UG (1%). It was found that the PVA/UG/BA
film presented the best performance in terms of UV light absorption, tensile properties, thermal and
moisture resistance, and antibacterial activity. This blend sample absorbs about 98% of the UV light
at 400 nm wavelength without significantly sacrificing transparency. These findings indicate that UG
and BA could be advantageous in the preparation of moisture and thermal-resistant UV shielding
films with low toxicity and high antibacterial properties based on PVA. They were also found to be
strong enough for food packaging applications.

Keywords: phenolic compound; UV rays; moisture absorption; PVA-based film; tensile properties

1. Introduction

Nowadays, biomaterials play a crucial role in modern technology regarding sustain-
ability [1]. It has been utilized in various applications, and one of many examples is
biofilm [2,3]. In studying biofilm, discovering low-priced, non-toxic, biodegradable, and
environmentally friendly food packaging materials is essential [4,5]. PVA has been used as
a substitute for petroleum-based non-degradable materials to minimize the environmental
impact of synthetic plastic waste [6]. This synthetic biopolymer material possesses high
transparency, good biodegradability, low toxicity, and biocompatibility [7–11]. However,
pure water-soluble sPVA film is transparent to UV light, has low tensile strength and low
resistance to heat and moisture, and does not have antibacterial activity [12–14]. These
drawbacks consequently limit the usefulness of PVA for food packaging. Many efforts have
been carried out to minimize the weaknesses of PVA by mixing it with other materials.
For example, disintegrated bacterial cellulose [15] and malleated chitin nanofibers [16,17]
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improve fiSlms’ mechanical and thermal properties. The introduction of ginger nanofibers
has been proven to improve the antimicrobial activity, tensile strength, and heat resistance
of PVA films [18].

High moisture resistance in food packaging materials is vital to retaining foodstuffs’
taste, freshness, and shelf life [19]. However, due to its hydrophilic nature, PVA is sensitive
to moisture [20]. Previous studies introduced boric acid into PVA to improve the moisture
resistance of the blend film [20,21]. Boric acid can form strong hydrogen bonds with PVA
molecules, reducing the hydroxyl groups’ hydrophilicity [21,22]. However, it does not
provide UV protection and antibacterial activities in the polymer film.

Some PVA-based films with high UV shielding and antimicrobial activity have been
prepared using eco-friendly fillers, including sepia eumelanin [23], ZnO [24], and
lignin [25,26]. Interestingly, Yingxiang Zhai et al. [27] introduced polyphenols in larch
bark tannins as UV absorbers in PVA composite films to protect vitamin E from UV dam-
age. Despite these developments, the challenge to obtain PVA films that are low-cost,
eco-friendly, low-toxic, and transparent with good UV-shielding, water resistance, tensile,
thermal properties, and antibacterial ability remains. We proposed a PVA with edible
Uncaria gambir extract (UG) in our previous work. Specifically, this UG offers excellent UV
light protection without sacrificing transparency [28]. It is inexpensive and non-toxic, and
the tannin compound of UG provides strong antibacterial activity [29].

Moreover, it prevents metal from corrosion, which is also suitable for various appli-
cations [30]. However, UG is hydrophilic and has a low moisture absorption level in the
film. We proposed a novel strategy to overcome this deficiency by introducing boric acid
into PVA and UG to prepare anti-UV, antibacterial, strong, high thermal resistant, and
high moisture resistant films. These characterizations of the blended film have not been
explored until now. Therefore, this present work characterizes PVA-based films blended
with UG, BA, and UG/BA. The morphology of pure PVA film and PVA-based blends
was observed using field emission scanning electron microscopy (FESEM). Transparency,
moisture absorption, tensile properties, thermal resistance, and antibacterial activity were
measured, and X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR)
were performed on the films.

2. Materials and Methods
2.1. Materials

Uncaria gambir extract powder containing about 90% catechins was purchased from the
Sumatran Biota Laboratory, Universitas Andalas. Distilled water was supplied by a Local
Chemical Store in Padang, Indonesia. Polyvinyl alcohol (Mw 89,000–98,000 g/mol, 99%
hydrolyzed) was obtained from Sigma-Aldrich Pte. Ltd., Singapore. Reagent-grade boric
acid (H3BO3) with >99.5% purity was acquired from Pudak Scientific (Jakarta, Indonesia).

2.2. Sample Preparation

UG gambir suspension purification: 1% UG was incorporated into distilled water
(100 mL). The suspension was stirred by a magnetic stirrer (MS-H280-Pro, Scilogex, Berlin,
CT, USA) at 500 rpm for 30 min for homogenization. The solution was centrifuged by a
centrifuge apparatus at 2000 rpm for 30 min to separate immiscible liquids or sediment-
suspended solids.

PVA film: Distilled water (100 mL) and PVA (10 g) were mixed. Using the magnetic
stirrer (MS-H280-Pro, Scilogex, USA), the mixture was heated at 70 ◦C and 500 rpm for 2 h
until gelatinized. An ultrasonic homogenizer sonicated the resulting gel at 600 W for 5 min.
The treated gel cast in a Petri dish was dried for 20 h in a 50 ◦C vacuum drying oven at
0.6 MPa.

PVA/BA blend film: BA (0.5 wt% total solutions of PVA and distilled water) and PVA
(10 g) were incorporated into distilled water (100 mL). The blend was heated with the
magnetic stirrer at 70 ◦C and 500 rpm for 2 h until gelatinization.
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The resulting gel was treated for 5 min using 600 W in an ultrasonic homogenizer. The
sonicated gel was cast in a Petri dish and dried for 20 h in a 50 ◦C vacuum-drying oven at
0.6 MPa.

PVA/UG blend film: The suspension of pure UG (1 wt%), PVA (10 g), and distilled
water (100 mL) was heated with the magnetic stirrer at 70 ◦C and 500 rpm for 2 h until
gelatinization. The resulting gel was treated with a 600 W ultrasonic homogenizer for 5 min.
The sonicated gel was cast in a Petri dish and dried for 20 h in a 50 ◦C vacuum drying oven
at 0.6 MPa.

PVA/UG/BA blend film: The suspension (10 g PVA, 1 wt% UG, 0.5 wt% BA, and
100 mL distilled water) was heated by the magnetic stirrer at 70 ◦C and 500 rpm for 2 h
until gelatinization. The resulting gel was sonicated at 600 W for 5 min. The sonicated gel
was cast in a Petri dish and dried for 20 h in a 50 ◦C vacuum drying oven at 0.6 MPa.

2.3. FESEM Morphology

A field emission scanning electron microscope (FESEM Quattro S, Thermo Fisher
Scientific, Waltham, MA, USA) was used to observe the morphological fracture surfaces of
the films. The sample was placed on the carbon tube. The FESEM image of the film was
recorded with different (250, 500, and 2000) magnifications under a high vacuum at 3.0 kV
accelerating voltage.

2.4. Film Transparency

The standard method ASTM D638-type V was used for tensile testing (ASTM D638-V
2012). The tensile strength (TS), tensile modulus (TM), and elongation at break (EB) of the
sample were measured using a Com-Ten testing machine 95T. All samples before testing
were stored in a closed desiccator (50% RH, 25 ◦C) for 48 h. The tensile tests were repeated
five times for each film. d A Shimadzu UV 1800 spectrophotometer was used to measure
the transparency of films according to ASTM D 1003-00 [31]. An equal-weight rectangular
sample (10 mm × 25 mm) was placed in the spectrophotometer by a transmittance spectrum
of 200 to 800 nm. The transparency of the film is based on the area under the transmittance
curve.

2.5. Tensile Properties

The tensile test used the ASTM D638-type V standard [32]. The width and thickness of
the sample were measured via an optical microscope (Olympus Stereo Microscope SZX10,
Evident, Japan) to get the sample dimensions accurately. The tensile curve, including
tensile strength, elastic modulus, and elongation break of the film, was obtained using the
Universal Testing Machine (UTM) (AGS-X series 5 kN, Shimadzu, Japan). A 30 mm/min
tensile test speed was used. Tensile tests were repeated five times for each sample.

2.6. FTIR

FTIR spectra were performed using an Attenuated Total Reflectance-Fourier Transform
Infra-Red (ATR)-FTIR spectroscopic instrument equipped with a UATR unit cell from
PerkinElmer (Spectrum two) (PerkinElmer Corporation, Waltham, MA, USA). The sample
was placed on the diamond crystal. Next, the dried film was scanned from 4000–400 cm−1

at a resolution of 4 cm−1 with 32 scans. The spectrum at a wavelength was taken by
pressing the torque knob with the same pressure.

2.7. X-ray Diffraction

A thermal resistance instrument (DTG-60, Shimadzu, Japan) was used to measure
the sample’s TGA and DTG. A nitrogen flow rate of 50 mL/min and a heating rate of
10 ◦C/min were performed while testing the sample. X-ray diffraction pattern of samples
was obtained using an instrument from Shimadzu XRD-700 Maxima X series (Shimadzu
Corp., Kyoto, Japan). The testing was carried out at 24 ◦C, 40 kV, and 30 mA using Cu
Kα radiation (λ = 0.15406 nm). The sample was scanned from 2θ = 10◦ to 50◦ every 2◦ per
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min. A Gaussian function was used to calculate the area of the crystalline and amorphous
regions. The crystallinity index (CI) of the sample was calculated by Equation (1) [33]:

CI (%) = (Ac/Aa + Ac) × 100% (1)

where Ac is the integrated area for the crystalline region under the curve at 2θ = 20◦–23◦.
Aa is the area of the amorphous section at 2θ = 15◦–16◦.

2.8. Thermogravimetry Analysis (TGA) and Derivative (DTG)

A thermal analysis instrument (TGA 4000, PerkinElmer, Hopkinton, MA, USA) was
used to measure the TGA and DTG of samples. The sample (about 10 mg) was positioned
on a microbalance inside the furnace. A nitrogen flow rate and the heating rate were set
up at 20 mL/min and 10 ◦C/min, respectively. The test was carried out from 30 ◦C up to
600 ◦C. Pyris software (Version 11, Pyris, Washington, MA, USA) was used to examine
weight loss, weight loss rate, and residue percentages.

2.9. Moisture Absorption

The measurement of moisture absorption (MA) was carried out using a previously
described method [19]. All film samples were dried until a constant weight was reached in
a drying oven (Memmert Germany, Model 55 UN) at 50 ◦C. The dried films were stored in
a closed chamber (75% RH at 25 ◦C). The samples were weighed by a precision balance
(Kenko, a 0.1 mg accuracy) every 30 min for 7 h. MA was determined using Equation (2):

MA = (wh − wo)/wo (2)

where wh and wo are the sample’s final weight and initial weight. MA testing was repeated
five times per film.

2.10. Antimicrobial Activity

As carried out in a previous study, the antimicrobial resistance of pure PVA and blend
films was determined using the agar diffusion method [34]. The human pathogenic bacteria
and fungi used were Staphylococcus aureus (SA), Escherichia coli (EC), Pseudomonas aeruginosa
(PA), and the fungus Candida albicans (CA). An inoculant of a 100 µL suspension of bacteria
or fungi was spread evenly on the surface of Nutrient Agar (NA) media for bacterial culture
or Sabouraud Dextrose Agar (SDA) media for fungal cultures.

Subsequently, a disk of each film (6 mm diameter) was placed on top of the inoculated
media, and the inoculant was allowed to grow for 24 h at 30 ◦C. Chloramphenicol and
nystatin were positive controls for bacteria and fungi, respectively. The experiment was
repeated three times for each film. The clear area formed around the film disk was not
overgrown with the test microbe. This was measured and recorded.

2.11. Statistical Analysis

The tensile property and moisture resistance data were analyzed using an ANOVA.
Duncan’s multiple range test was applied for further analysis. Differences between samples
were found to be significant at p ≤ 0.05.

3. Results and Discussions
3.1. UV and Visible Light Transparency

Figure 1 shows the appearance of the film surface for each sample. Films without UG
(Figure 1a,b) are highly transparent. After introducing the UG, the transparency of the
movie became lower (Figure 1c,d). The UG-mixed blend films were still clear enough to be
seen easily. An Andalas University emblem is clearly observable under the PVA/UG/BA
film, as shown in Figure 1e.
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Figure 1. Photographs of the film for pure PVA (a); PVA/BA (b); PVA/UG (c); PVA/UG/BA (d). The 
light transmittance curves (e). 

3.2. Cross-Section FESEM Images 

Figure 1. Photographs of the film for pure PVA (a); PVA/BA (b); PVA/UG (c); PVA/UG/BA (d). The
light transmittance curves (e).

The UV spectrum can be categorized into three regions, i.e., UV-C (220–280 nm), UV-B
(280–320 nm), and UV-A (320–400 nm) [23]. Figure 1e shows the transparency curve from
the 200–800 nm wavelength range. Pure PVA/BA is the most transparent film in this
wavelength range due to the lowest light scattering. Samples without UG transmitted UV
light (below 400 nm wavelength). For example, the transmittance values of the PVA film
and PVA/BA blend at 400 nm wavelength were 70.4% and 72.6%, respectively (Table 1).
After adding UG into the PVA film, the blend film absorbs UV light effectively. The
PVA/UG shows the best UV absorption performance. This film protected about 99% of UV
rays at 400 nm. In detail, UV-C and UV-B light were 100% blocked and UV-A 99%. The
high UV light absorption is attributable to the high catechin content of the UG [35,36]. This
phenolic compounds and other chromophores in the catechin are responsible for absorbing
UV rays and dissipating the absorbed energy [25,37]. This result agrees with previous
work that demonstrated high UV light absorption of a composite film mixed with tannins
containing polyphenols [27]. Remarkably, after adding BA to the PVA/UG suspension,
the visible light transparency performance of the PVA/UG/BA film increased without
a significant decrease in UV light absorption capacity. The transmitted light of this film
at 650 nm was 72.7%, 6% higher than PVA/UG (68.7%), corresponding to a lower light
scattering in the PVA/UG/BA film.

3.2. Cross-Section FESEM Images

Figure 2 shows the FESEM fractured surface in a cross-section of tensile samples for
pure PVA (a,b), PVA/BA (c), PVA/UG (d), and PVA/UG/BA (e). Pure PVA shows a
pulled-out segment (orange arrow film in Figure 2a) and smooth surfaces (orange dash line
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box). This sample also presents fibrous surface fracture (white arrow in Figure 2b). These
surface appearances correspond to high plastic deformation due to low crosslinking density
between polymer chains. After introducing the UG and BA to PVA, no fibrous or pulled-out
segments were visible in blend films. This finding was due to reduced PVA chain mobility
from increased interlinking bonds. The fracture surface of PVA/BA is shinier and rougher
(Figure 2c) than pure PVA (Figure 2a). This shiny appearance is due to more reflected light
by the surface of the rigid sample. The coarser texture was due to the longer tortuous
crack tip growth passing through the weakest part of the chain structure [28]. The rough
display corresponds to the inhibition of crack growth resulting from the strong crosslinking
interactions between PVA, UG, and BA molecules. The crosslink density increased with
the higher blend concentration in PVA, thus increasing surface roughness (Figure 2d,e).
Microscopic beach marks (red arrow in Figure 2e) are due to tortuous cracks resulting
from the disruption of crack progress [38]. This is because of the low tensile strength of
the PVA/UG/BA sample, which is consistent with tensilte test properties. The strong
crosslinker interaction from UG and BA binds the free hydroxyl group of the polymer,
causing the molecules to be harder to move.
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3.3. FTIR Spectrum

Figure 3 displays FTIR curves of samples prepared with different treatments. The
prominent peaks at about 3271, 2915, and 1655 cm−1 correspond to O–H stretching, C–H
stretching, and O–H of absorbed water, respectively [39]. All the samples show similar
patterns confirming the treatments did not alter the nature of the functional groups of
the PVA. However, introducing BA or/and UG to PVA changed the wavenumber and
the peak intensity in the FTIR curves. For example, the addition of UG to PVA shifted
the wavenumber of O–H stretching of the blends from 3271 cm−1 (PVA) to 3264 cm−1

(the PVA/UG). The shifting is attributable to increasing hydrogen bond density resulting
from more contact of the free –OH groups present in PVA, BA, and UG assisted by high
temperature during sample preparation. This higher crosslinking ratio reduced the number
of free hydroxyl groups, thus weakening the peak intensity of hydroxyl functional groups.
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The PVA film shows the lowest T-value of O–H stretching vibration (63%) due to the
largest free hydroxyl fraction. After adding BA and UG into the PVA suspension, the O–H
stretching intensity in the films shifted. The T-value for O–H groups for the PVA/BA film
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is 76%, and the PVA/UG is 79%. The weakest peak intensity of these O–H groups was
measured on the PVA/UG/BA film (T = 84%), confirming the lowest number of free O–H
groups. The reduced number of free O–H groups corresponds to the increased crosslinking
ratio and hydrogen bonds of the blends with PVA molecules [40].

3.4. X-ray Diffraction

Figure 4 displays the X-ray diffraction curve of the PVA-based films with and without
UG and BA loading. A major diffraction peak at 2θ = 20◦, attributed to (101) crystal plane
diffraction, characterizes PVA [26]. Table 1 shows the value of each sample in light trans-
mittance (at 400 nm) from Figure 1b, CI from Figure 4, d-lattice plane spacing from XRD,
and Tmax from Figure 5b. The highest peak shifting was measured on the PVA/UG/BA,
probably resulting from the largest shift in the d-spacing [Å] of (101) planes [29]. The area
under the XRD curve in the range of 10–30◦ corresponds to the degree of crystallinity index
(CI). The clearer the area, the lower the CI value [41]. The CI of pure PVA film was 27.7%,
higher than PVA/BA (25.9%) and PVA/UG (24.5%). The decrease in CI resulted from BA
and/or UG acting as a crosslinker for PVA chains in the amorphous region, consequently
inhibiting the crystalline alignment of polymer chains [41]. Hence, adding UG and BA
to PVA resulted in the lowest CI value (23.9%) of PVA/UG/BA film. This result is in
agreement with previous work [41].
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Table 1. Light transmittance from Figure 1b, CI from Figure 4, d-lattice plane spacing from X-ray
diffraction data, and Tmax from Figure 5b.

Film Samples Transmittance (%)
at 400 nm 2 Theta (Degree) Crystallinity (%)

of (101) Plane
d-Spacing [Å] of

(101) Plane
Tmax (◦C) at Second

Weight Loss

PVA 70.4 20.17 27.7 4.398 312
PVA/BA 72.6 20.05 25.9 4.425 355
PVA/UG 1.3 20.14 24.5 4.406 358

PVA/UG/BA 2.0 20.06 23.9 4.423 368
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3.5. Thermal Resistance

The thermal stabilities of films were characterized using TGA and DTG. Figure 5
presents the thermal characteristic of pure PVA and the blend films. Each TGA curve
(Figure 5a) shows a three-step thermal degradation with temperature increases. At first,
the slight weight loss from 60 ◦C to 150 ◦C corresponds to the evaporation of absorbed
water [15,42]. In the second stage, the rapid drop of sample weight (270–450 ◦C) was due
to the PVA, BA, and UG decomposition [26]. Figure 5b and Table 1 display values for
temperatures of the maximum decomposition rate (Tmax) of films during the second weight-
loss period. After mixing the UG or/and the BA with the PVA, the Tmax increased. The
Tmax value of the PVA/BA and PVA/UG films were 361.24 ◦C and 369.49 ◦C, respectively,
around 14% and 15% higher than that of pure PVA (324.28 ◦C). This result is probably due
to the increasing crosslinking polymer chain ratio, resulting in higher activation energy
needed to decompose the blend films [43,44]. Hydroxyl groups of PVA, BA, and UG interact
strongly via interfacial hydrogen bonding [45]. This phenomenon is consistent with the
PVA/UG/BA film showing the highest thermal resistance (Tmax = 369.49 ◦C). For further
heating over 470 ◦C, a third weight loss displays a final decomposition to ash [7].
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3.6. Tensile Properties

Figure 6 presents the tensile properties of samples. The stress-strain characteristic
curve of pure PVA and the blend films (Figure 6a) show that all films experienced elastic
and plastic deformation. PVA had low performance in tensile strength (TS), modulus
of elasticity (ME), and high elongation at break (EB) and area under the curve (sample
toughness (TN)). After blending the PVA with UG and BA, the characteristic curve of
the blends changed. TS and ME increased, and EB and TN decreased. Besides, a knee-
shaped change in slope between elastic and plastic deformation, a red arrow in Figure 6a,
became sharper as fillers were added to the PVA. After introducing UG or/and BA to
PVA, the position of this change in slope in the curve also increased, corresponding to
increasing yield strength. The increased sharpness of the knee-shaped change in slope
and higher yield strength value could be due to a reduction in the slippage between the
extended PVA chains. The highest yield point was present in the PVA/UG/BA due to
the most interconnected PVA polymer fraction. This result is consistent with the XRD
pattern (Figure 4), displaying the decreasing CI value as the crosslinks in the PVA increased.
With subsequent elongation, this strength dropped dramatically, probably due to more
breaking fractions of interconnected chains in the amorphous region [46]. With even further
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extension, the film strength increased, corresponding to strain-hardening that results from
breaking and extending polymer chains in the crystal fraction. As shown in Figure 6b,
PVA had low average values of TS (43.9 MPa) and ME (0.25 GPa) but remarkably high EB
(212.3%) and TN (43.1 MJ/m3). This high toughness is attributable to the high degree of
polymer chain fraction unconnected via intermolecular hydrogen bonds. Thus, the energy
required for PVA chain slippage resulting in extension was lower than what is required for
crack propagation. This finding is consistent with the fibrous and pulled-out PVA section
in Figure 2a,b.
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After adding BA, UG, or UG/BA to PVA, TS increased from 43.9 to 44.9, 47.9, and
57.7 MPa, respectively. These higher TS values are attributable to an increase in interlinking
bonds, thus, reducing the PVA chain mobility. This result agrees with the fracture surface
of these blends having no visible fibrous and pulled-out polymer section (Figure 2c–e).
Although the TS of PVA/UG is higher than that of PVA/BA, the elongation at break of the
PVA/UG film (170.5%) was twice as high as that of the PVA/BA film (75.8%), as shown in
Figure 6c. Besides, the ME of PVA/BA was 2.1 GPa, higher than that of PVA/UG (0.7 GPa).
This finding confirmed that PVA mixed with 0.5% BA became more brittle than when
mixed with 1% UG.

Furthermore, combining crosslinkers (UG and BA) to PVA resulted in the highest
ME of 3.7 GPa, but the lowest EB of 48.2% and TN of 20.2 MJ/m3. This result shows that
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the PVA/UG/BA had the most rigid chain structure resisting slippage because it had the
highest intermolecular crosslinking. This phenomenon is consistent with the FTIR curve
(Figure 3), displaying the weaker intensity of peak transmittance and a shift of -OH bands
with increased filler loading.

3.7. Moisture Absorption

Figure 7 displays the moisture absorption (MA) for the PVA film and blend films.
Introducing the blends to PVA decreased the average MA value. The MA of PVA in an RH
75% humid chamber for 480 min was about 5.0%. The PVA/UG/BA blend film had the
highest moisture resistance, with only 0.7% absorbed after eight hours. This improvement
in MA resistance of this blend film was significant (p ≤ 0.05) due to the addition of the
crosslinking (BA and UG), forming hydrogen bonding between PVA chains, thus decreasing
the number of free hydroxyl groups [18]. As a result, the ability of water molecules to
diffuse into the blend film via Fickian diffusion decreased. This result is consistent with the
FTIR curve for PVA/UG/BA film (Figure 4), showing the weakest peak intensity of the
hydroxyl functional groups.
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3.8. Antimicrobial Properties

The antibacterial characteristics of samples are shown in Figure 8. The antimicrobial
resistance of the film against pathogenic microbes is shown in Table 2, where the diameter
of the inhibition zone (mm) reflects the sensitivity of the microorganisms used in the films.
The antibacterial activity of the mixed film was higher than that of pure PVA. These films
inhibited the growth of the test bacteria with an inhibition zone ranging from 6.0 ± 0.3
to 10.6 ± 0.1 mm. Similar to the results of previous studies, the mixed UG film could not
inhibit the growth of the yeast Candida albicans due to the relatively small concentration of
UG [28,47]. The presence of antibacterial polyphenol compounds (catechins) is the source
of the antibacterial activity in mixed films [48,49]. The active components in catechin can
destroy the plasma cell membrane resulting in the loss of intracellular components, thus
the death of bacteria [44].
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Table 2. Antimicrobial resistance of samples.

Samples
Diameter of Inhibition Zone Antimicrobial Activity (mm)

SA & PA & EC & CA &

PVA 6.0 ± 0.3 7.0 ± 0.7 6.5 ± 0.2 -
PVA/BA 9.2 ± 0.3 9.4 ± 0.6 10.2 ± 1.3 -
PVA/UG 10.5 ± 0.1 9.5 ± 0.2 9.9 ± 0.9 -
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& Staphylococcus aureus (SA), Pseudomonas aeruginosa (PA), Escherichia coli (EC), and Candida albicans (CA).

4. Conclusions

Some properties of PVA-based film were enhanced when blended with boric acid
and/or edible and inexpensive Uncaria gambir. Introducing the BA and the UG in the PVA
matrix improved UV light protection, moisture resistance, antibacterial activity, and tensile
and thermal properties. In this present study, the PVA/UG/BA blend film shows the best
performance in the case of the above properties. This film inhibited 98% of UV light and
had a TS of 57.7 MPa (31.81% higher than pure PVA film), a TN of 20.2 MJ/m3 (53.82%
lower than PVA), and Tmax of 369.49 ◦C (14% higher than pure PVA). This blend film had
antibacterial resistance but no antifungal activity against Candida albicans (CA). These results
suggest that the PVA/UG/BA blend film could be used as an alternative, environmentally
friendly, low-cost, and non-toxic substance for food packaging applications.
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