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Abstract: Plastic products play a significant role in fulfilling daily necessities, but the non-decomposable
nature of plastic leads to inescapable environmental damage. Recycling plastic material is the most
appropriate solution to avoid pollution and short product lifespan. The present study shows the
recycling effect on carbon nanofiber (CNF) reinforced polypropylene (PP) nanocomposite to attain the
purpose of reuse and sustainability. 30 wt% CNF melt-blended with polymer and PP-nanocomposites
were fabricated using the injection molding technique. PP-CNF nanocomposites were recycled,
and mechanical, thermal, and morphological properties were investigated. Three-point bending
and tensile testing showed a low decrement of ~1% and ~5% in bending and tensile strength after
recycling 30 wt% PP-CNF nanocomposites. Scanning electron microscopy (SEM) images show that
the alignment of CNF was disturbed after recycling due to the decrement in the aspect ratio of CNF.
Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) showed that the crystallinity
of PP increases with recycling. The lowering of interfacial interaction between CNF and PP after
recycling was studied by a stress-controlled rheometer. The decrement in mechanical properties of
PP-CNF nanocomposite is not significant due to CNF reinforcement; hence, it can be reused for the
same or other structural applications.

Keywords: recycling; carbon nanofiber (CNF); mechanical properties; thermal stability; rheology;
interfacial interaction

1. Introduction

Plastic materials are widely used in packaging, electronics, construction, daily house-
hold, automobiles, and aerospace industries due to their versatility, low cost, and high
strength-to-weight ratio. Most plastic materials are non-degradable, producing a very high
content of waste material and badly influencing the environment [1]. One study by Laurent
estimated that between 60–99 million metric tonnes (Mt) of mismanaged plastic waste
was produced globally in 2015. In a business-as-usual scenario, this figure could triple to
155–265 Mt y−1 by 2060 [2]. The third component of the modern waste management rule,
i.e., recycling, is a crucial solution for non-degradable plastic materials. One significant
benefit of the recycling process is substantial economic remunerations obtained by replac-
ing high-cost virgin materials with recycled materials. In typical industrial practice, virgin
thermoplastic material is mixed with recycled waste (approx. 20%) to fabricate the new
part; hence, recycling is key to reducing cost. Plastic waste is generally divided into two
categories: process waste generated in the form of defective, flash parts, etc., and aged
waste, which is obtained after serving the designated life of materials. In daily lifestyle
tools, polypropylene (PP), low-density polyethylene (LDPE), high-density polyethylene
(HDPE), polystyrene (PS), and polyvinyl chloride (PVC) are used as significant plastic
materials [3]. PP is an attractive thermoplastic material due to its outstanding qualities,
such as lightweight, non-toxicity, ease of processability, low production cost, and recyclable
nature [4–6]. In 2018, Lopez and his team reported that polyolefins account for more than
half of plastic production, and especially PP alone stands for 19% in various fields such as
packaging (39.9%), building materials (19.7%), and automobile industries (8.9%) [7].
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Various processes, such as extrusion, injection molding, and compression, can be used
to fabricate PP products. Recycling PP via reheating and remolding introduces weakness in
the product’s mechanical properties [8,9]. In recent years, considerable research has been
conducted to resolve the issue of plastic waste reduction by recycling. Polymer modification
via polymer blending (solution blending/melt blending) is a standard method to tailor the
properties of the recycled polymer. Polymers such as thermoplastic polyurethane (TPU) [10]
and acrylonitrile-butadiene-styrene (ABS), with or without compatibilizer used by different
research groups to improve the PP properties [11]. In a similar direction, Zaghloul studied
the role of different inorganic as well as a carbon filler in different polymeric materials and
showed the importance of nanofillers in improving the mechanical properties of polymeric
materials [12–15]. The most common problem of these polymer blends is the recovery
of interfacial properties after repeat recycling. It is a fact that after no. of recycling, the
mechanical and thermal properties of the polymer blend deteriorated significantly, and
consequently, blending is not a successful technique for multiple recycling.

Few studies have been reported on natural fiber-reinforced thermoplastic and its recy-
cling effect on the mechanical performance of natural fiber-reinforced nanocomposites. Few
researchers have reported the effect of bagasse fiber reinforcement on polyethylene [16],
polypropylene [17], and polyethylene terephthalate (PET) [18] and reported the improve-
ment in tensile properties. Bourmaud and Baley studied the role of hemp and sisal on
recycled polypropylene and showed that the tensile modulus could be conserved after
recycling [19]. One of the significant issues with natural fiber-reinforced thermoplastic
after recycling is the considerable variation in properties of the natural fiber after thermal
recycling, which results in a significant difference in mechanical properties, and it is not
ideal for structural application.

In this direction, carbon nanomaterials play a very vital role because of their high
thermal stability. Carbon nanofiber (CNF) is a high strength reinforcement that can be used
as a polymer modifier. The intrinsic properties of CNF are expected to be unaffected after
multiple recycling due to high thermal stability (more than 1000 ◦C) [20,21].

The feasibility of reprocessing CNF-reinforced PP composites has not been inves-
tigated appropriately yet. Therefore, composites made from recycled CNF and PP are
not being used in industries with their full potential. The present work aims to examine
the effect of recycling on the mechanical and thermal performance of CNF-reinforced
PP nanocomposites using the extrusion and injection molding process. The variation of
mechanical and thermal properties of recycled PP-CNF nanocomposite is explained based
on changes in the aspect ratio of CNF, crystallinity, and interfacial interaction behavior.
The effect of recycling on the tensile and flexural behavior of nanocomposites has been
studied. Interfacial and thermal properties of recycled PP-CNF nanocomposites are studied
by stress-controlled Rheometer, differential scanning calorimetry (DSC), and thermogravi-
metric analysis (TGA). The scanning electron microscope (SEM) and the optical microscope
have been used to study the fractured surface of nanocomposites. The crystallinity of the
nanocomposites has been studied by X-ray diffraction (XRD).

2. Materials and Methods
2.1. Materials

The high-strength PP (homopolymer with tensile strength and modulus 35 MPa and
1.65 GPa) was procured from ALMEDIO INC., Tokyo, Japan. Commercial produces high-
modulus crystallized CNF with an average diameter of 0.2–0.8 µm, grain size 1–15 µm
(D50) was procured from ALMEDIO INC., Tokyo, Japan.

2.2. Fabrication of PP-CNF Composite

The PP was separately mixed with CNF (30 wt% content) in the bi-axial kneading
extruder. The blending occurred at 200 ◦C with a screw diameter of 25 mm with 61 ratios of
length/diameter (L/D) in the melting section. 30 wt% CNF was mixed with PP, and CNF–
PP nanocomposites (PP-CNF-1) were fabricated using injection molding at 200 ◦C. During
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the CNF-PP nanocomposite fabrication, no sizing agent was used for CNF dispersion in
PP. In the second round, PP-CNF nanocomposite was recycled using a bi-axial kneading
extruder, and new PP-CNF palates were obtained. 1st recycled PP-CNF nanocomposites
(PP-CNF-2) were fabricated using injection molding under the same manufacturing condi-
tions as PP-CNF-1. Similarly, second recycled PP-CNF nanocomposites (PP-CNF-3) were
obtained following the same procedure as PP-CNF-2. In this study, five samples of each
composition are used to evaluate the mechanical and thermal properties of nanocomposites.
The list of the three types of fabricated samples is shown in Table 1. During the fabrication,
no manufacturing defect was detected, and for evidence, sample images and optical images
of their fractured surface are shown in Figure 1.

Table 1. List and description of the nanocomposite specimens.

Sample Designation Details CNF Content (wt%)

PP-CNF-1 Pure PP with CNF 30

PP-CNF-2 1st Recycled PP with CNF 30

PP-CNF-3 2nd Recycled PP with CNF 30
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on the sample of a length of 80 mm, a width of 10 mm, and a thickness of 4 mm by a three-
point bending test at a cross-head speed of 1 mm/min. The tensile strength of dog bone-
shaped PP-CNF nanocomposites was conducted according to the ASTM D638 standard. 
A dog bone type 1 sample with 4 mm thickness and 10 mm width was used for the testing. 

Figure 1. (a) Digital image of PP-CNF nanocomposite samples prepared for bending and tensile
testing shows no manufacturing defect, and optical images of fractured cross-section show the
defect-free surface of (b) PP-CNF-1, (c) PP-CNF-2, and (d) PP-CNF-3.

2.3. Characterization Methods

The mechanical properties of three different CNF–PP nanocomposites were measured
by Instron Universal Testing Machine (UTM) 5582. Three-point bending test was conducted
according to the ASTM D790-17 standard. The bending strength was measured on the
sample of a length of 80 mm, a width of 10 mm, and a thickness of 4 mm by a three-point
bending test at a cross-head speed of 1 mm/min. The tensile strength of dog bone-shaped
PP-CNF nanocomposites was conducted according to the ASTM D638 standard. A dog
bone type 1 sample with 4 mm thickness and 10 mm width was used for the testing. All
the tests were performed at 2 mm/min using an extensometer of a fixed length of 25 mm.
Shore D hardness test was conducted using a Tekcoplus Shore D durometer following
ASTM standard D2240. The test was conducted with a needle length of 2.5 mm using a
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measuring power of 44.5 N. Five specimens were tested for tensile, bending, and hardness
mechanical testing for each composition.

The melting and recrystallization temperature of PP-CNF palates were calculated
using DSC (Shimadzu, Tokyo, Japan) in the nitrogen atmosphere (flow rate 100 mL/min)
at the temperature range 25–250 ◦C with a temperature rate of 3 ◦C/min. The change in
crystallinity behavior after the recycling of PP was studied by XRD (D-8 Advanced Bruker
powder X-ray diffractometer) using CuKα radiation (λ = 1.5418 Å) at a scanning rate of
2◦/min with a voltage of 40 kV with a current of 40 mA within range of 2θ = 5–60◦. The
thermal stability of PP-CNF nanocomposites was analyzed by TGA (DTA-60, Shimadzu,
Japan) in the nitrogen atmosphere with a 50 mL/min flow rate and 10 ◦C/min tempera-
ture rate. Maximum thermal degradation temperature (Td) was recorded by differential
thermal analysis (DTA). The surface morphology of fractured PP-CNF nanocomposites
and the average aspect ratio of CNF were recorded by desktop SEM Hitachi miniscope
(TM4000 plus).

The viscoelastic properties of recycled PP nanocomposite were examined by a stress-
controlled Rheometer (Rheoplus MCR52 SN81442416, Delhi, India) at a fixed temperature
of 200 ◦C equipped with 25 mm parallel plate geometry. In the linear viscoelastic regime,
small amplitude oscillatory shear (SAOS) frequency sweep tests were performed in the
range of 0.1–100 rad/s. The intermolecular interaction between CNF and PP was measured
by Fourier transform infrared (FT-IR) in ATR mode.

3. Results and Discussion
3.1. Mechanical Properties Analysis

The mechanical properties of CNF-reinforced PP nanocomposite samples are initially
investigated by a 3-point bending test and displayed in Figure 2. It is observed that
the mechanical performance of PP polymer is highly dependent on the type and ratio
of reinforcement used [4]. In the case of PP-CNF-1, the maximum flexural strength of
95.5 MPa is registered, while in the case of PP-CNF-2, slightly lower flexural strength
(95.4 MPa) is observed due to the first recycling. In the case of PP-CNF-3, the flexural
strength of 94.2 MPa is registered, which is the lowest (Figure 2a).
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Figure 2. Three-point bending testing results of PP-CNF nanocomposite according to ASTM D790
standard and showed the plot of (a) Flexural strength and (b) Flexural modulus variation of PP-CNF
nanocomposite.

A similar trend of curve behavior is observed for the flexural modulus of PP-CNF
nanocomposites (Figure 2b). It is observed that with no. of recycling of nanocomposite, the
flexural modulus decreases. The calculated flexural modulus of PP-CNF-1, PP-CNF-2, and
PP-CNF-3 is 10.6, 10.1, and 9.3 GPa, respectively. This result shows that recycling affects the
mechanical performance of polymer nanocomposites [22]. With an increment in recycling,
a decrement in the bending strength and modulus of the nanocomposite is observed. The
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bending properties decrease insignificantly because CNF reinforcement helps bind the
polymer together even after recycling.

The fracture behavior and extension in nanocomposite before break can be seen in
the Stress-Strain curve, shown in Figure 3. All the nanocomposites show brittle fracture
behavior, and the stiffness of nanocomposites decreases with an increment in the recycling
of PP nanocomposites (Figure 3a–c). It is because of polymer chain break during the
recycling, which lowers the extent of cross-linking in PP. Hence, the maximum strain is
observed for second recycled PP nanocomposites (PP-CNF-3). The effect of recycling is
also detected in the maximum load-bearing capacity curve, and the maximum load is
sustained by PP-CNF-1 (Figure 3d). Even after recycling, low decrement in the mechanical
performance of PP-CNF nanocomposites is due to strong interfacial adhesion because of
CNF alignment and its surface roughness [4].
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The tensile strength variation of the PP nanocomposite is shown in Figure 4. The
tensile setup used for testing is shown in Figure 4a. It is observed that the tensile strength
of PP-CNF nanocomposite decreases as we increase the no. of recycling. For PP-CNF-1
nanocomposite, a tensile strength of 53.9 MPa is registered, while the tensile strength value
decreased to 52.3 and 51.0 MPa for PP-CNF-2 and PP-CNF-3, respectively (Figure 4b).

The tensile modulus is calculated by the stress-strain curve and displayed in Figure 4c.
The same trend is observed in the tensile modulus, where the maximum modulus is
reported for PP-CNF-1 (Figure 4c). As we can see, the contribution of CNF to the im-
provement of mechanical properties is very significant, and the difference in modulus
after recycling is not very high. For PP-CNF-1, 11.9 GPa of modulus is registered, while
in the case of PP-CNF-2 and PP-CNF-3, it decreased to 10.9 and 10.2 GPa, respectively.
The lowering of mechanical properties is due to the weakening of interfacial interaction
between PP nanocomposite after recycling, which can be reflected in the stress-strain curve
and displayed in Figure 5.
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In Figure 5a–c, the effect of recycling on the stiffness of the material can be clearly
seen. With recycling, nanocomposite possesses an increase in strain, which indicates a
weakening in the bonding of PP after recycling. Consequently, the tensile load-bearing
tendency decreases with the increment of recycling (Figure 5d). The low difference in
load-bearing capacity of CNF-reinforced PP nanocomposites after recycling is because of
CNF intrinsic properties and strong interfacial interaction [23,24]. With all the above data,
we can predict that the CNF can be used as efficient nanofillers for recycled polymer.

In CNF-reinforced nanocomposite, the mechanical properties are explained by its
structure and alignment, which is similar to truncated conical stacks of graphene and
affects the load transfer capacity due to inhibition of lateral sliding of graphene sheets in
polymer nanocomposites [25].

3.2. Morphological Study by SEM

SEM observation of the fractured surface of PP nanocomposites filled with CNF is
shown in Figure 6. In Figure 6a,c,e, the fractured surface of the nanocomposite is displayed.
In Figure 6b,d,f, the morphology of CNF is shown after separating them from polymer
to study the average aspect ratio of CNF after recycling. The mechanical properties of
PP-CNF nanocomposites mainly depend on the dispersion and alignment of CNF in PP.
In Figure 6a,b, SEM images of fractured PP-CNF-1 surfaces at different magnifications
are displayed. It is observed that the CNF is very well dispersed and oriented in all the
nanocomposites, and very slight disorientation of fiber can be seen due to the different sizes
of CNF present in the PP nanocomposite [4]. In Figure 6c,d, fractured surface of PP-CNF-2
is shown, and the orientation is CNF is also the same as PP-CNF-1. Hence, a low difference
in mechanical properties is observed after the recycling of PP-CNF nanocomposites. A
similar observation is seen in the SEM of PP-CNF-3 fractured surface (Figure 6e,f), and no
significant changes on the fracture surface are observed. One major reason for the change in
mechanical properties of PP-CNF nanocomposite after recycling is the change in the aspect
ratio of CNF. It is reported that the aspect ratio of CNF is affected after recycling, and as a
result, the dispersion variation can be seen in the nanocomposites. In the present case, the
average aspect ratio was calculated by taking the average of 100 fibers dimensions using
SEM and 11.6, 9.6, and 6.5 of the average aspect ratios of CNF in PP-CNF1-, PP-CNF-3, and
PP-CNF-3 is reported, respectively. It can be inferred that the low aspect ratio of CNF in
PP-CNF-3 is the reason for poor dispersion (in the form of agglomeration) and results in
minimum mechanical properties [17,26].

The decrement in aspect ratio CNF significantly affects its interaction with polymer.
This results in a lowering of the hardness of nanocomposites after recycling. Shore D
hardness of nanocomposites is evaluated using a Durometer, and shore D hardness of
77.5 ± 0.35, 75.5 ± 2.02, and 74.2 ± 3.32 HD for PP-CNF-1, PP-CNF-2, and PP-CNF-3
is observed. The lowering of hardness signifies the importance of the aspect ratio of
nanomaterials, which plays an essential role in determining mechanical properties.

3.3. Thermal Analysis of PP Nanocomposite

DSC of PP nanocomposites is used to see the effect of recycling on the melting and
crystallization temperature of PP and is shown in Figure 7a. Two types of peaks in the
heating and cooling DSC curve are observed: the endothermic peak (designated as melting
temperature) and the exothermic peak (defined as crystallization temperature). It is ob-
served that the melting temperature (Tm) is unaffected by the recycling process, and hence
the material still possesses its original properties even after the second recycling. However,
some minor changes in chemical interaction happened due to the recycling process. For all
the specimens, ~167 ◦C melting temperature is observed. Moreover, the recycling process
does not significantly affect the crystallization temperature (Tc). All the value of Tm and Tc
is shown in Table 2. In the recycling process, the crystallinity of the polymer significantly
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changed, and using the DSC melting curve, the crystallinity of the polymer was evaluated.
The degree of crystallinity (Xc) is calculated by using Equation (1) [27,28].

Xc =
∆H f × 100

∆H100
(1)

where ∆Hf is the enthalpy of fusion of specimen, and ∆H100 is the enthalpy of fusion for
100% crystalline specimen (209 J/g for PP).
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∆Hf is calculated by calculating the area under of melting peak of PP (Figure 7b). It
is observed that the crystallinity of PP increases after recycling. Higher crystallinity of
the polymer results in its higher mechanical performance [22]. The Xc of 60.3, 61.1, and
61.3% for PP in PP-CNF-1, PP-CNF-2, and PP-CNF-3 are reported (Figure 7d). The change
in the % crystallinity in polymer arises from the breaking and rearrangement of the long
polymer chain after recycling [17,29]. The improvement in % crystallinity of PP is not
significant hence it can be concluded that the recycling of PP is not significantly affecting
PP properties. Hence the change in CNF properties is the significant reason behind the
variation of mechanical properties.
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Table 2. Thermal properties of PP-CNF nanocomposites.

Sample Designation Tm (◦C) Tc (◦C)

PP-CNF-1 167.7 138.0

PP-CNF-2 167.5 138.4

PP-CNF-3 167.3 138.6

The improvement in %crystallinity of PP after recycling is confirmed by XRD analysis
(Figure 7c). The Ruland-Wonk method is used to find out the crystallinity of PP after
recycling using Equation (2) [17].

% crystallinity =
Crystalline area× 100

Total area o f curve
(2)

In Figure 7c, five crystalline peaks of PP are observed around 14.2, 16.9, 18.6, 21.8,
and 26.1◦, designated to 110, 040, 130, 131, and 060 crystalline planes of PP. From the
curve (Figure 7c), a change in the intensity of crystalline PP after recycling is seen. The
calculated % crystallinity of PP in PP-CNF-1, PP-CNF-2, and PP-CNF-3 are 67.2, 69.7, and
71.1%, shown in Figure 7d.

The recycling effect on PP-CNF nanocomposite interfacial properties is studied by a
stress-controlled Rheometer. In the stress-controlled rheological analysis, the maximum
applied strain is fixed, and a change in viscoelastic behavior is recorded [30]. Figure 8
shows the effect of recycling on the storage modulus (G′) and loss modulus (G′′) of PP-CNF
nanocomposite with strain. With the increment of recycling on PP-CNF nanocomposite, G′

and G′′ decreases (Figure 8a,b). It is also observed that the value of G′ and G′′ decreased
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with strain increment, and the decrement in modulus due to strain increment can be seen.
It is because of the change in structural properties of nanocomposites [30].
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Variation in G′, G′′, and complex viscosity (η*) of recycled PP-CNF nanocomposite
with respect to angular frequency is displayed in Figure 9. At lower frequencies, the G′ and
G′′ value of PP-CNF-1 is higher, and the value of G′ and G′′ decreases with recycling of
PP-CNF nanocomposites (Figure 9a,b). It is observed that the rate of increment of G′ and G′′

with frequency rate is almost similar (no overlapping of the curve). It signifies the similar
nature of interfacial behavior in PP-CNF nanocomposite after recycling. The value of G′ is
more than twice of G′′, which indicates the non-terminal behavior of nanocomposite [30,31].
The non-terminal behavior of PP-CNF nanocomposites at a lower frequency is due to the
interconnected network between CNF and PP (interfacial interaction), and the formed
interconnected network tendency decreased after recycling nanocomposites. As the rein-
forcement content in PP nanocomposite is very high and the same in all the specimens,
CNF-CNF interaction begins to dominate, leading to an interconnected network structure.
As the sample contains the same CNF, G′′ shows a similar trend as G′ for all three types
of nanocomposites, even after recycling. It is also observed that the interconnected net-
work weakens after the recycling, and as a result, G′ and G′′ value decrease after every
recycling. All the PP-CNF nanocomposites showed viscous behavior, which is indicated by
the increment in modulus value with an increment in angular frequency [32,33].

The effect of recycling on the interfacial network of PP-CNF nanocomposite can be
studied by complex viscosity (η*), which is a measure of the total resistance to flow as a
function of angular frequency (Figure 9c). With the increase in recycling, η* decreases. At
lower frequencies, the effect of CNF is noticeable and the effect of CNF at higher frequencies
diminished due to shear thinning behavior (non-Newtonian nature of polymer composite).
The shear-thinning behavior in PP-CNF-2 is maximum due to weak interfacial interaction
between CNF and PP due to second recycling. At lower frequencies, complex viscosity
is maximum for PP-CNF-1, indicating that the restrain in polymer chain relaxation due
to the presence of CNF gets lower after recycling PP-CNF nanocomposite. Hence, it can
be assumed that the CNF-CNF interaction is maximum in PP-CNF-1 and its interaction
with PP is maximum, restraining the long-range motion of polymer chains. While, with
an increment in recycling, the CNF-CNF interaction with PP decreases, and hence, lower
mechanical and thermal properties, are reported [31,32].
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TGA and DTA are used to find the nanocomposite’s degradation and the CNF content
(Figure 10). By comparing the wt% loss as a function of increasing temperature, the effect
of recycling on the thermal stability of PP nanocomposite has been analyzed. In all the
specimens, the approximate weight left is around 30% CNF in the nanocomposite. Hence,
TGA verifies the CNF content, which is the same in all the specimens. It also inferred that
CNF is thermally stable at higher temperatures, and no weight loss in CNF is observed in
every sample [4]. DTA calculates thermal degradation temperature, showing two significant
peaks; one is associated with the removal of volatile content from the sample, and the other
is the degradation of PP polymer in the nanocomposite. The degradation temperature is
not primarily affected by polymer recycling, and the degradation temperature of 479.1,
475.6, and 480.3 ◦C is reported for PP-CNF-1, PP-CNF-2, and PP-CNF-3, respectively
(Figure 10a–c) [4,34].
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3.4. FTIR Analysis of PP-CNF Nanocomposite

The chemical interaction between PP and CNF and the recycling effect on function-
alities of PP are studied by FTIR (Figure 11). All the specimens are characterized in air
and CNF background to see the interaction between CNF and PP. FTIR of CNF is done
by extracting CNF from nanocomposites (by removing all the polymer), as shown in
Figure 11a.
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Figure 11b shows the FTIR spectra of recycled PP nanocomposite in air background
deduction. Figure 11a shows that there are no significant N and O functionalization peaks
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on the CNF and peaks observed in Figure 11a designated to sp2 C and sp3 C in the form
of C-C, C=C, and C-H of CNF. In Figure 11b, the symmetric bending vibration mode of
–CH3 group of PP can be seen at 1375 cm−1, while the peaks at 1455, 2838, and 2917 cm−1

are attributed to –CH2– symmetric bending, –CH2– symmetric stretching, and –CH2–
asymmetric stretching of PP polymer, respectively [35,36]. It is observed that there is no
significant difference in the peak intensity of the PP functional group registered due to the
recycling of CNF (Figure 11b). It indicates no chemical change in the linkage between PP
and CNF. Hence, the lowering of mechanical properties after every recycling result from
intrinsic chemical behavior changes in PP and the aspect ratio of CNF, which affects the
interfacial interaction behavior of nanocomposites.

4. Conclusions

Recycling plastic material is a very crucial step for sustainable material development.
Recycling plastic material caused significant property changes in the material. In this
study, CNF showed an essential role in maintaining the mechanical and thermal properties
of recycled PP nanocomposite. Using extruder and injection molding techniques, PP-
CNF nanocomposite has been recycled twice, and change in mechanical properties have
been studied. It is found that with the recycling of nanocomposite, 12 and 14% lowering
of bending and tensile modulus of PP-CNF is reported. The decrement in mechanical
properties is due to the recycling that weakens the interfacial bond between CNF and
PP. The lowering of interfacial interaction has been studied using SEM, stress-controlled
Rheometer, DSC, and XRD technique that showed the lowering of the aspect ratio of CNF
and increments in crystallinity of PP after recycling, which resulted in changes in interfacial
bonding. In addition, the thermal degradation temperature and melting temperature of
PP-CNF nanocomposites do not significantly affect after recycling. In the present study, it
should be pointed out that recycled PP-CNF nanocomposite can be applied as automotive
parts because of low change in mechanical and thermal properties, and it can be utilized as
a sustainable material for other structural applications.
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