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Abstract: The effect of adhesive layers bonding to the core of functionally graded (FG) surface
layers is investigated using the free vibration of a five-layer sandwich composite plate resting on a
Winkler elastic foundation in a thermal environment. It is assumed that all layers are experiencing a
steady-state temperature ∆T. The layer-wise theory is used to derive the governing equations with
the help of Hamilton’s principle. The Navier solution is employed to obtain the closed-form solutions.
The numerical results obtained using the present theory are compared with three-dimensional finite
elements implemented by ABAQUS software. The results show that the proposed theory is not
only accurate but also efficient in predicting the natural frequencies of sandwich plates resting on
Winkler foundations.

Keywords: FG sandwich plate; layer-wise theory; free vibration; elastic foundations; Winkler elastic
foundation; first-order shear deformation theory

1. Introduction

Functionally graded materials (FGMs) are special composites made of two or more
materials with properties that vary spatially. Due to their superior characteristics, FGMs
are used for specific applications in space planes, space structures, civil structures, nu-
clear reactors, turbine rotors, flywheels, gears, and thermal barrier systems. Due to the
high demand for these advanced materials, research on understanding their mechanical
behavior has become most popular in recent years [1]. It is well known that functionally
graded materials are capable of resisting high-temperature environments or extremely
large temperature gradients and therefore are more suitable for use in aerospace structures
and nuclear plants [2].

For plated structures using FG materials and resting on elastic foundations, scientists
have proposed various kinds of models [3]. The simplest model for the elastic foundation is
the Winkler model. In this model, the foundation is modeled as a series of separated springs
without coupling effects [4]. To better understand the behavior of such structures, several
studies were performed to analyze the behavior of these materials used in sandwich plates.
Benferhat et al. [4] developed an analytical solution to study the free vibration behavior of a
simply supported functionally graded plate resting on an elastic foundation by taking into
account the effect of transverse shear deformations. Cetkovic and Vuksanovic [5] studied
bending, free vibrations and buckling of laminated composites and sandwich plates using
a layer-wise displacement model. Hafizah et al. [6] used higher-order shear deformation
plate theory (HSDT) to study the free vibration of antisymmetric angle-ply laminated plates
with variable thickness. Zenkour and Radwan [7] presented a four-variable refined plate
theory to study the free vibration of laminated composites and soft-core sandwich plates
resting on Winkler–Pasternak foundations. Moita et al. [8] developed a finite element
model for vibration analysis of pure functionally graded material structures, as well as for
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passive damped sandwich structures, with a soft viscoelastic core between the FGM layers.
The FGM layers were modeled using the classical plate theory while Reddy’s third-order
shear deformation theory was used to model the core.

Liu et al. [9] studied the free vibration analysis of functionally graded sandwich
plates by using a refined higher-order sandwich panel theory. Vel and Batra [10] presented
a three-dimensional exact solution for free and forced vibrations of simply supported
functionally graded rectangular plates. Suitable displacement functions that identically
satisfied the boundary conditions were used to reduce the governing equations to a set of
coupled ordinary differential equations, which were solved using the power series method.
Mantari et al. [11] presented a free vibration analysis of functionally graded plates (FGPs)
resting on a Pasternak elastic foundation. The displacement field was based on a novel
non-polynomial higher-order shear deformation theory (HSDT). Dozio [12] dealt with the
formulation of advanced two-dimensional Ritz-based models for the accurate prediction
of natural frequencies of thin and thick sandwich plates with cores made of functionally
graded material (FGM). Singh and Harsha [13] studied the free and forced nonlinear
vibration characteristics of a functionally graded material (FGM) sandwich plate resting on
a Pasternak elastic foundation. The formulation was based on non-polynomial higher-order
shear deformation theory with inverse hyperbolic shape function. A new modified sigmoid
law was presented to compute the effective material properties of sandwich FGM plates.
Sobhy [14] studied the vibration and buckling behavior of exponentially graded material
(EGM) sandwich plates resting on Pasternak elastic foundations under various boundary
conditions. The EGM sandwich plate was assumed to be made of a fully ceramic core
sandwiched between metal/ceramic EGM coats.

Zhai et al. [15] analyzed the free vibration of two kinds of five-layered composite sand-
wich plates with two-layered viscoelastic cores based on the first-order shear deformation
theory. Raisi et al. [16] studied stress distribution in a five-layer sandwich plate with FG
face sheets subjected to a uniform transverse load using the layer-wise method and FSDT.
Kulkarni and Kapuria [17] developed a new improved discrete Kirchhoff quadrilateral
element based on the third-order zigzag theory for the static analysis and free vibration
response of composite and sandwich plates. The free vibration of functionally graded
material (FGM) rectangular sandwich plates resting on simply supported and clamped
edges was studied by Li et al. [18] using the Ritz method.

The static deformations and free vibration of shear flexible isotropic and laminated
composite plates were studied by Ferreira et al. [19]. They used the layer-wise method in
their analysis. Reddy and Cheng [20] obtained a three-dimensional solution of a smart
functionally graded plate consisting of a plate made of functionally graded material and
actuators made of active material.

Tinh Quoc Bui et al. [21] studied the high frequency of plates based on the Reissner–
Mindlin plate theory. High frequencies of plates are numerically explored through numeri-
cal examples for both thick and thin plates with different boundary conditions. A novel
nonlocal shear deformation theory is established by Le Kha Hoa et al. [22] to investigate
functionally graded nanoplates. The numerical solutions of simply supported rectangular
functionally graded material nanoplates are carried out by applying the Navier procedure.
Wenbin Zhou et al. [23] studied thermomechanical analysis in threads of porous metal–
ceramic functionally graded composite joints by ABAQUS codes. Adelina Miteva et al. [24]
reviewed some aerospace applications of functionally graded materials and their paper is
motivated by the huge interest in the rapidly developing field of material science, namely,
functionally graded (or functionally gradient) materials (FGMs). The extensive survey
of the literature reveals that the performed analyses so far have neglected the presence
of an adhesive layer in their formulation. Hence, the aim of this work is to extend the
static analysis performed by Raisi et al. [16] on a five-layer sandwich composite plate
and determine the free vibrational behavior of this structure resting on a Winkler elastic
foundation when exposed to a thermal environment.
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2. Problem Formulation

Figure 1 illustrates a sandwich plate resting on a Winkler elastic foundation. The
face sheets shown in this figure have functional properties with exterior surfaces made of
pure ceramic. The variations in mechanical properties of the face sheets in the z-direction
(thickness direction) for the top and bottom layers (z(k) , k = 1.5) are defined based on the
origin of the global coordinate system located at the center of the core (along one of the
left edges of the sandwich plate, as shown in Figure 1). Moreover, the effective material
properties for each layer, namely Young’s modulus E, coefficient of thermal expansion α,
and density ρ are expressed according to Equation (1).

P(z) = (Pc − Pm)Vc + Pm (1)

where Pc and Pm refer to the material properties of the ceramic and metal constituents.
Vc denotes the volume fraction of the ceramic phase within the face sheet. The volume
fractions of the FGMs are assumed to obey a power-law function in the thickness direction,
as in Equation (2).

Vc =


(

1
2 −

z(1)
h1

)n
k = 1 − h1/2 ≤ z(1) ≤ h1/2(

1
2 + z(5)

h5

)n
k = 5 − h5/2 ≤ z(5) ≤ h5/2

(2)

where “n” is the power-law index. Note that when n = 0, one obtains a fully homogeneous
ceramic face sheet.
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Figure 1. The five-layer simply supported sandwich plate with functional face sheets resting on
elastic foundation. (a) Structural constituents of the sandwiched composite plate. (b) Coordinate
System for each layer. (c) Structural dimensions of the sandwiched composite plate.

The layer-wise theory (LT) adopted in this study uses the first-order shear deformation
theory (FSDT) in each layer and the imposition of displacement continuity at the layers’
interfaces. According to the first-order shear deformation theory, the planar displacement
components along the thickness of each layer change according to the first-order polyno-
mials [25]. These polynomials are written in terms of the z-coordinate described locally
for each layer along the plate thickness. Assuming a continuous displacement across the
layers, the displacement fields in each layer are deduced and presented in Appendix A.
Here, it was assumed that u and v are the x and y components of the total displacement
measured at the core mid-plane (z = 0) where, u(k), v(k), and w(k) indicate the displacement



J. Compos. Sci. 2022, 6, 325 5 of 26

components associated with the kth layer. The layers are numbered in consecutive order
from bottom-up. Furthermore, it was assumed that the out-of-plane displacement w(k)

is only a function of x, y and t (but not z) and there is a perfect bond between any two
neighboring layers. Based on the linear elasticity, deformations for the kth layer are given
by Equation (3) [25].

ε
(k)
xx = ∂u

∂x
(k)

, ε
(k)
yy = ∂v

∂y
(k)

, ε
(k)
zz = 0

γ
(k)
yz = ∂v

∂z
(k)

+ ∂w
∂y

(k)
= ∂v

∂z
(k)

+ dw
dy

γ
(k)
xz = ∂u

∂z
(k)

+ ∂w
∂x

(k)
= ∂u

∂z
(k)

+ dw
dx

γ
(k)
xy = ∂u

∂y
(k)

+ ∂v
∂x

(k)

(3)

Substituting for displacement components (from Appendix A) in Equation (3), the
strain vectors in each layer of the five-layer composite sandwich plate can be written as: ε

p(k)
xx

ε
p(k)
yy

γ
p(k)
xy

 =

 ε
0(k)
xx

ε
0(k)
yy

γ
0(k)
xy

+ z(k)

 ε
1(k)
xx

ε
1(k)
yy

γ
1(k)
xy

−
α(z)k∆T

α(z)k∆T
0

 (4a)

[
γ
(k)
yz

γ
(k)
xz

]
=

[
γ

0(k)
yz

γ
0(k)
xz

]
(4b)

In Equation (4a,b), the superscript “p” and “0” correspond to total strains and mid-
plane strains for the elastic and isotropic FGMs, respectively. The constitutive relations can
be written as in Equation (5) where (σ(k)

xx , σ
(k)
yy , τ

(k)
yz , τ

(k)
xz , τ

(k)
xy ) and (ε(k)xx , ε

(k)
yy , γ

(k)
yz , γ

(k)
xz , γ

(k)
xy )

are the stress and strain components, respectively. Using the material properties defined in
Equation (1), the stiffness coefficients (Q(k)

ij ) can be expressed as in Equation (6).


σ
(k)
xx

σ
(k)
yy

τ
(k)
yz

τ
(k)
xz

τ
(k)
xy

 =
[

Q(k)
ij

]



ε
(k)
xx

ε
(k)
yy

γ
(k)
yz

γ
(k)
xz

γ
(k)
xy

−


1
1
0
0
0

α(z)(k)∆T

 (5)

[
Q(k)

ij

]
=


Q(k)

11 Q(k)
12 0 0 0

Q(k)
12 Q(k)

22 0 0 0
0 0 Q(k)

44 0 0
0 0 0 Q(k)

55 0
0 0 0 0 Q(k)

66

 (6)

where:

Q(k)
11 = Q(k)

22 =
E(k)(z)

1−
(
v(k)

)2 , Q(k)
12 = v(k)Q(k)

11 , Q(k)
44 = Q(k)

55 = Q(k)
66 = G(k)(z) (7)

In Equation (5), ∆T is the temperature change. Note that the effective properties of
the plate vary along the thickness direction according to Equation (1) and thus the elastic
coefficients Q(k)

ij are a function of z. Hamilton’s principle is used herein to derive the
equations of motion to determine the displacement field and the constitutive equations.
This principle is stated in analytical form as:

δ
∫ t2

t1

(
U + V − T + U f

)
dt = 0 (8)
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where U is the strain energy; T is the kinetic energy of the FG sandwich plate; U f is the
strain energy of the foundation; and V is the work of external forces (for the free vibration,
V = 0). It can be shown that the virtual strain energy δU is given by:

δU = 1
2

∫
Ω

5
∑

k=1

∫ hk
2

− hk
2

(σ
(k)
xx δε

p(k)
xx + σ

(k)
yy δε

p(k)
yy + τ

(k)
xy δγ

p(k)
xy + τ

(k)
xz δγ

p(k)
xz

+τ
(k)
yz δγ

p(k)
yz ) dx dy dzk , k = 1, 2, 3 , 4, 5

(9)

where Ω is the material volume. For the Winkler foundation model, the virtual strain
energy δU f is given by:

δU f =
∫

Ω
feδwdΩ (10a)

where fe is the density of the reaction force of the foundation.
For the Winkler foundation model

fe = kww (10b)

where kw is the parameter of the Winkler foundation.
The variation in the kinetic energy is:

∫ t2
t1

δTdt =
∫ t2

t1

{∫ a
0

∫ b
0

∫ h1
2

− h1
2

ρ1(z)
( .
u1δ

.
u1 +

.
v1δ

.
v1 +

.
w1δ

.
w1
)
dxdydz

+
∫ a

0

∫ b
0

∫ h2
2

− h2
2

ρ2
( .
u2δ

.
u2 +

.
v2δ

.
v2 +

.
w2δ

.
w2
)
dxdydz

+
∫ a

0

∫ b
0

∫ h3
2

− h3
2

ρ3
( .
u3δ

.
u3 +

.
v3δ

.
v3 +

.
w3δ

.
w3
)
dxdydz

+
∫ a

0

∫ b
0

∫ h4
2

− h4
2

ρ4
( .
u4δ

.
u4 +

.
v4δ

.
v4 +

.
w4δ

.
w4
)
dxdydz

+
∫ a

0

∫ b
0

∫ h5
2

− h5
2

ρ5(z)
( .
u5δ

.
u5 +

.
v5δ

.
v5 +

.
w5δ

.
w5
)
dxdydz

}
dt

(11)

where I(k)n (k = 1, 2, 3, 4, 5) are the inertia constants defined by:

I(k)n =
∫ hi

2

− hi
2

ρzzn
k dzk (12)

The stress resultants are defined as:
N(k)

xx

N(k)
yy

N(k)
xy

 =
∫ hk

2

− hk
2


σ
(k)
xx

σ
(k)
yy

τ
(k)
xy

 dz(k)


M(k)

xx

M(k)
yy

M(k)
xy

 =
∫ hk

2

− hk
2


σ
(k)
xx

σ
(k)
yy

τ
(k)
xy

z(k) dz(k){
Q(k)

xx

Q(k)
yy

}
=
∫ hk

2

− hk
2

K

{
τ
(k)
xz

τ
(k)
yz

}
dz(k)

(13)

and
NT(k)

xx = NT(k)
yy , k = 1, 2, 3, 4, 5

MT(k)
xx = MT(k)

yy , k = 1, 2, 3, 4, 5

NT(k)
xx =

∫ hk
2

− hk
2

E(z)
1−v α(z)(k)∆T dz(k) k = 1, 2, 3, 4, 5

MT(k)
xx =

∫ hk
2

− hk
2

E(z)
1−v α(z)(k)∆T z(k) dz(k) k = 1, 2, 3, 4, 5

(14)
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where κ is the shear correction factor. In this study, a shear correction factor of 0.616 was
used [26]. The stress resultants defined in Equation (13) can be related to the strains defined
in Equation (4) by the following equations:

Np(k)
xx

Np(k)
yy

Np(k)
xy

Mp(k)
xx

Mp(k)
yy

Mp(k)
xy


=

[
[A](k) [B](k)

[B](k) [D](k)

]


ε
0(k)
xx

ε
0(k)
yy

γ
0(k)
xy

ε
1(k)
xx

ε
1(k)
yy

γ
1(k)
xy


−



NT(k)
xx

NT(k)
yy
0

MT(k)
xx

MT(k)
yy
0


(15)

Here, the elements of matrices A(k)
ij , B(k)

ij , and D(k)
ij (k = 1, . . . ,5), can be written as:

(A(k)
ij , B(k)

ij , D(k)
ij ) =

∫ hk
2

− hk
2

Q(k)
ij

(
1, z(k), z(k)

2
)

dz(k) i, j = 1, 2, 6 (16)

Using the generalized displacement–strain relations (Equations (3) and (4)), stress–
strain relations (Equations (5) and (13)), and integrating by parts as well as the fundamental
lemma of variational calculus and collecting the coefficients of δu, δv, δw, δ∅(k)

x and δ∅(k)
y

in Equation (8), the equations of motion are obtained as:

δu :
5
∑

k=1

(
∂N(k)

x
∂x +

∂N(k)
xy

∂y −
∂NT(k)

x
∂x

)
=

(
J1

..
u + J2

..
∅

(1)
x + J3

..
∅

(2)
x + J4

..
∅

(3)
x + J5

..
∅

(4)
x + J6

..
∅

(5)
x

)
δv :

5
∑

k=1

(
∂N(k)

y
∂y +

∂N(k)
xy

∂x −
∂NT(k)

y
∂y

)
=

(
J1

..
v + J2

..
∅

(1)
y + J3

..
∅

(2)
y + J4

..
∅

(3)
y + J5

..
∅

(4)
y + J6

..
∅

(5)
y

)
δw :

5
∑

k=1

(
− ∂Q(k)

x
∂x −

∂Q(k)
y

∂y

)
+ kww = J1

..
w

δ∅(1)
x : h1

2
∂N(1)

x
∂x + h1

2
∂N(1)

xy
∂y −

∂M(1)
x

∂x −
∂M(1)

xy
∂y + Q(1)

x −
(

h1
2

∂NT(1)
x

∂x − h1
2

∂MT(1)
x

∂x

)
=

(
J2

..
u + J7

..
∅

(1)
x + J8

..
∅

(2)
x + J9

..
∅

(3)
x

)
δ∅(1)

y : h1
2

∂N(1)
y

∂y + h1
2

∂N(1)
xy

∂x −
∂M(1)

y
∂y −

∂M(1)
xy

∂x + Q(1)
y −

(
h1
2

∂NT(1)
y

∂y − h1
2

∂MT(1)
y

∂y

)
=

(
J2

..
v + J7x

..
∅

(1)
y + J8

..
∅

(2)
y + J9

..
∅

(3)
y

)
δ∅(2)

x : h2
∂N(1)

x
∂x + h2

∂N(1)
xy

∂y + h2
2

∂N(2)
x

∂x + h2
2

∂N(2)
xy

∂y −
∂M(2)

x
∂x −

∂M(2)
xy

∂y + Q(2)
x

−
(

h2
∂NT(1)

x
∂x + h2

2
∂NT(2)

x
∂x − ∂MT(2)

x
∂x

)
=

(
J3

..
u + J8

..
∅

(1)
x + J10

..
∅

(2)
x + J11

..
∅

(3)
x

)
δ∅(2)

y : h3
2

∂N(1)
x

∂x + h3
2

∂N(1)
xy

∂y + h3
2

∂N(2)
x

∂x + h3
2

∂N(2)
xy

∂y −
∂M(3)

x
∂x −

∂M(3)
xy

∂y + Q(3)
x

− h3
2

∂N(4)
x

∂x −
h3
2 ∂N(4)

xy ∂y− h3
2

∂N(5)
x

∂x −
h3
2

∂N(5)
xy

∂y

−
(

h3
2

∂NT(1)
x

∂x + h3
2

∂NT(2)
x

∂x − h3
2

∂NT(4)
x

∂x − h3
2

∂NT(5)
x

∂x − ∂MT(3)
x

∂x

)
=

(
J3

..
v + J8

..
∅

(1)
y + J10

..
∅

(2)
y + J11

..
∅

(3)
y

)
δ∅(2)

y : h2
∂N(1)

y
∂y + h2

∂N(1)
xy

∂x + h2
2

∂N(2)
y

∂y + h2
2

∂N(2)
xy

∂x −
∂M(2)

y
∂y −

∂M(2)
xy

∂x + Q(2)
y = f T(2)

y

δ∅(3)
x

h3
2

∂N(1)
x

∂x + h3
2

∂N(1)
xy

∂y + h3
2

∂N(2)
x

∂x + h3
2

∂N(2)
xy

∂y −
∂M(3)

x
∂x −

∂M(3)
xy

∂y + Q(3)
x − h3

2
∂N(4)

x
∂x

− h3
2

∂N(4)
xy

∂y −
h3
2

∂N(5)
x

∂x −
h3
2

∂N(5)
xy

∂y

−
(

h3
2

∂NT(1)
x

∂x + h3
2

∂NT(2)
x

∂x − h3
2

∂NT(4)
x

∂x − h3
2

∂NT(5)
x

∂x − ∂MT(3)
x

∂x

)
=

(
J4

..
u + J9

..
∅

(1)
x + J11

..
∅

(2)
x + J12

..
∅

(3)
x + J13

..
∅

(4)
x + J14

..
∅

(5)
x

)

(17)
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δ∅(3)
y : h3

2
∂N(1)

y
∂y + h3

2
∂N(1)

xy
∂x + h3

2
∂N(2)

y
∂y + h3

2
∂N(2)

xy
∂x −

∂M(3)
y

∂y −
∂M(3)

xy
∂x + Q(3)

y − h3
2

∂N(4)
y

∂y

− h3
2

∂N(4)
xy

∂x −
h3
2

∂N(5)
y

∂y −
h3
2

∂N(5)
xy

∂x

−
(

h3
2

∂NT(1)
y

∂y + h3
2

∂NT(2)
y

∂y − h3
2

∂NT(4)
y

∂y − h3
2

∂NT(5)
y

∂y − ∂MT(3)
y

∂x

)
=

(
J4

..
v + J9

..
∅

(1)
y + J11

..
∅

(2)
y + J12

..
∅

(3)
y + J13

..
∅

(4)
y + J14

..
∅

(5)
y

)
δ∅(4)

x : − h2
2

∂N(4)
x

∂x −
h2
2

∂N(5)
xy

∂y − h2
∂N(5)

x
∂x − h2

∂N(2)
xy

∂y −
∂M(4)

x
∂x −

∂M(4)
xy

∂y + Q(4)
x

−
(
− h2

2
∂NT(4)

x
∂x − h2

∂NT(5)
x

∂x − ∂MT(4)
x

∂x

)
=

(
J5

..
u + J13

..
∅

(3)
x + J15

..
∅

(4)
x + J16

..
∅

(5)
x

)
δ∅(4)

y : − h2
2

∂N(4)
y

∂y −
h2
2

∂N(4)
xy

∂x − h2
∂N(5)

y
∂y − h2

∂N(5)
xy

∂x −
∂M(4)

y
∂y −

∂M(4)
xy

∂x + Q(4)
y

−
(
− h2

2
∂NT(4)

y
∂y − h2

∂NT(5)
y

∂y − ∂MT(4)
y

∂y

)
=

(
J5

..
v + J13

..
∅

(3)
y + J15

..
∅

(4)
y + J16

..
∅

(5)
y

)
δ∅(5)

x : − h1
2

∂N(5)
x

∂x −
h1
2

∂N(5)
xy

∂y −
∂M(5)

x
∂x −

∂M(5)
xy

∂y + Q(5)
x −

(
h1
2

∂NT(5)
x

∂x − h1
2

∂MT(5)
x

∂x

)
=

(
J6

..
u + J14

..
∅

(3)
x + J16

..
∅

(4)
x + J17

..
∅

(5)
x

)
δ∅(5)

y : − h1
2

∂N(5)
y

∂y −
h1
2

∂N(5)
xy

∂x −
∂M(5)

y
∂y −

∂M(5)
xy

∂x + Q(5)
y

−
(

h1
2

∂NT(5)
y

∂y − h1
2

∂MT(5)
y

∂y

)
=

(
J6

..
v + J14

..
∅

(3)
y + J16

..
∅

(4)
y + J17

..
∅

(5)
y

)
where

f T(k)
xx1 =

5
∑

k=1

(
∂NT(k)

x
∂x

)
f T(k)
yy1 =

5
∑

k=1

(
∂NT(k)

y
∂x

)
f T(1)
x =

(
h1
2

∂NT(1)
x

∂x − h1
2

∂MT(1)
x

∂x

)
f T(1)
y =

(
h1
2

∂NT(1)
y

∂y − h1
2

∂MT(1)
y

∂y

)
f T(2)
x =

(
h2

∂NT(1)
x

∂x + h2
2

∂NT(2)
x

∂x − ∂MT(2)
x

∂x

)
f T(2)
y =

(
h2

∂NT(1)
y

∂y + h2
2

∂NT(2)
y

∂y − ∂MT(2)
y

∂y

)
f T(3)
x =

(
h3
2

∂NT(1)
x

∂x + h3
2

∂NT(2)
x

∂x − h3
2

∂NT(4)
x

∂x − h3
2

∂NT(5)
x

∂x − ∂MT(3)
x

∂x

)
f T(3)
y =

(
h3
2

∂NT(1)
y

∂y + h3
2

∂NT(2)
y

∂y − h3
2

∂NT(4)
y

∂y − h3
2

∂NT(5)
y

∂y − ∂MT(3)
y

∂x

)
f T(4)
x =

(
− h2

2
∂NT(4)

x
∂x − h2

∂NT(5)
x

∂x − ∂MT(4)
x

∂x

)
f T(4)
y =

(
− h2

2
∂NT(4)

y
∂y − h2

∂NT(5)
y

∂y − ∂MT(4)
y

∂y

)
f T(5)
x =

(
h1
2

∂NT(5)
x

∂x − h1
2

∂MT(5)
x

∂x

)
f T(5)
y =

(
h1
2

∂NT(5)
y

∂y − h1
2

∂MT(5)
y

∂y

)

(18)
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Expressions for J1 to J17 are given in Appendix B. For simply supported edges, the
boundary conditions are given as follows:

u(k)(x, 0, t) = 0, u(k)(x, b, t) = 0, v(k)(0, y, t) = 0, v(k)(a, y, t) = 0
w(k)(x, 0, t) = 0, w(k)(x, b, t) = 0, w(k)(0, y, t) = 0, w(k)(a, y, t) = 0
∅(k)

x (x, 0, t) = 0, ∅(k)
x (x, b, t) = 0, ∅(k)

y (0, y, t) = 0, ∅(k)
y (a, y, t) = 0

(19)

To obtain the analytical solution of the partial differential Equations (17), the Navier
method, based on the double Fourier series is used under the specified boundary conditions
given in Equation (19). The solution to displacement components satisfying the above
boundary conditions can be expressed in the following Fourier series as:

u =
∞
∑

m=1

∞
∑

n=1
umncos(αx)sin(βy)eiωt

v =
∞
∑

m=1

∞
∑

n=1
vmnsin(αx)cos(βy)eiωt

w =
∞
∑

m=1

∞
∑

n=1
wmnsin(αx)sin(βy)eiωt

∅(k)
x =

∞
∑

m=1

∞
∑

n=1
∅(k)

x mncos(αx)sin(βy)eiωt

∅(k)
y =

∞
∑

m=1

∞
∑

n=1
∅(k)

y mnsin(αx)cos(βy)eiωt

(20)

where α = mπ
a (m = 1, 2, . . . ) and β = nπ

b (n = 1, 2, . . . ), where m and n are the wave
numbers along the x- and y-directions, respectively, and ω is the natural frequency of
vibration.

To obtain a solution, the thermal loads and moments must be also expanded in double
sine series. For this purpose, expressing ∆T(x, y, z, t) as a double sine series we have [25]:

∆T(x, y, z, t) =
∞
∑

m=1

∞
∑

n=1
Tmnsin(αx)sin(βy)eiωt

where; Tmn =

{ 16T
mnπ2 odd m, n

0 even m or n

(21)

The load components can be written as:

N(k)T
xx =

∞
∑

m=1

∞
∑

n=1
N(k)

xxmnsin(αx)sin(βy)eiωt

N(k)
xxmn =

∫ hk
2

− hk
2

E(z)(k)

1−v(z)(k)
α(z)(k) Tmneiωtdz(k)

M(k)T
xx =

∞
∑

m=1

∞
∑

n=1
M(k)

xxmnsin(αx)sin(βy)eiωt

M(k)
xxmn =

∫ hk
2

− hk
2

E(z)(k)

1−v(z)(k)
α(z)(k) Tmn eiωtz(k) dz(k)

(22)

Substituting displacement functions (20) into Equation (17), the following equations
are obtained in a matrix form as:(

[K]− [M]ω2
)
{∆} = {0} (23)

where [K] and [M] are the stiffness and mass matrices, respectively. {∆} is the column
vector of coefficients (u, v, w,∅(k)

x ,∅(k)
y ). The natural frequencies are obtained from the

nontrivial solution of Equation (23).
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3. Numerical Results and Discussions

Due to the extensive coupling between the terms in the differential Equation (17), a
numerical scheme was adopted to seek a solution using a MATLAB software program.
Furthermore, to investigate the validity of the results obtained, a finite element model (see
Figure 2a) was prepared and solved using ABAQUS finite element software.J. Compos. Sci. 2022, 6, x FOR PEER REVIEW 11 of 28 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Finite element model of the sandwiched plate. (a) The finite element model of the sand-
wiched plate resting on simply supported edges. (b) Meshed model of the sandwiched plate showing
the subdivisions in the FGM cover plates. (c) Simply supported boundary conditions are imposed on
four edges.
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To input the variable properties of the FGM cover sheets, the thickness of each sheet
was divided into 30 divisions, as shown in Figure 2b. Similar models were prepared with
three layers in the absence of the adhesive layer to compare the results based on the solution
method adopted in this work with the published results in the literature and the versatility
of the layer-wise (LW) model for the solution of such problems.

As the first step, to investigate the validity of the numerical results on the natural fre-
quencies, the natural frequencies of a three-layer composite plate were determined and com-
pared with those in [27] obtained based on the exact solution. The three-layer model was
composed of a core encapsulated by two cover sheets with a [0/90/0] stacking sequence.

3.1. Sandwich Plate with Three-Layer Composite Plate (0/90/0) Cover Sheets

To validate the solution procedure, a three-layer square shape sandwich plate with a
core and two laminated [0/90/0] composite cover sheets was selected to rest on simply
supported (SS) edge supports. Plate dimensions were taken as side a and thickness h where
the side-to-thickness ratio a/h was assumed to be equal to 10. The thickness of each ply was
considered to be h/3 with the material properties given in [19] and shown below.

E1 = 173 MPa , E2 = 33.1 MPa , E3 = 5.17 MPa G13 = 8.27 MPa
G23 = 3.24 MPa, G12 = 9.38 MPa, v12 = 0.036, v23 = 0.171 , v13 = 0.25

(24)

Additionally, the dimensionless frequency parameter was defined as:

ω =
ωa2

h

√
ρ

E2
(25)

where ω is the circular frequency. Table 1 shows a comparison of results obtained on ω
based on the present formulation (solution) and those given by Ferreira [19], the exact
solution by Srinivas et al. [27], the higher-order formulation theory (HSDT) by Nosier
et al. [28] and the layer-wise B-spline finite strip method by Wang and Zhang [29]. Close
agreements between the results indicate the validity of the present formulation.

Table 1. Natural frequencies of an SS square plate (0/90/0) ( a
h = 10), ω = ωh

√
ρ
E2

.

Reference
¯
ω

Mode 1 Mode 2 Mode 3 Mode 4

Ferreira [19] 0.0659 0.1322 0.1762 0.2150

Exact (Srinivas et al. [27]) 0.06715 0.12811 0.17217 0.20798

HSDT (Nosier et al. [28]) 0.06716 0.12816 0.17225 0.20808

Layer-wise (Wang and Zhang [29]) 0.06716 0.12819 0.17230 0.20811

Present layer-wise formulation (Navier solution) 0.0662 0.1268 0.1661 0.2051

3.2. Sandwich Plate with Two-Layer Cover Sheets (0/90/core/0/90)

As a second check, we now introduce a sandwich plate with an internal core encap-
sulated by two cover sheets with the layer arrangement of [0/90] to construct the whole
structure. The resulting (0/90/core/0/90) composite plate with dimensions a× b× h was
analyzed using the layer-wise method followed by the application of a MATLAB software
program to obtain a solution. The material properties of the layers and the internal core are
given below.

Face sheets [30]:

E1 = 131 GPa , E2 = E3 = 10.34 GPa G12 = G23 = 6.895 GPa
G13 = 6.205 GPa v12 = v13 = 0.22, v23 = 0.49 , ρ = 1627 kg/m3 (26)
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Isotropic core [30]:

E1 = E2 = E3 = 6.89 MPa G12 = G23 = G13 = 3.45 MPa
v12 = v13 = v23 = 0, ρc = 97 kg

m3
(27)

Results from the present study are compared with the published data in [30] for
various values of a

h , a
b and h3

h1
ratios in Tables 2–4, respectively. Natural frequencies were

normalized using the relation ω = ωa2

h

√
ρ

E2
. According to the results in Table 2, for a

h � 4
(approaching a thin plate) the layer-wise model predicts similar values for ω as those
predicted by Rao et al. in [30].

Table 2. Comparison of non-dimensional fundamental frequencies ω of (0◦/90◦/core/0◦/90◦)
sandwich plate with h3

h1
= 10 and a

b = 1.

a
h

Present Formulation Rao Rao
(LW) (Refine) (LW)

2 0.9024 0.7141 0.7132

4 1.0972 0.9363 0.936

10 1.9376 1.848 1.848

20 3.5283 3.4791 3.4793

30 5.0706 5.0371 5.0375

30 6.487 6.4634 6.4637

50 7.7509 7.7355 7.7358

60 8.8571 8.8118 8.8495

70 9.8124 9.8112 9.8121

80 10.6304 10.6368 10.6371

90 11.3276 11.3408 11.3409

100 11.92 11.94 11.9401

Table 3. Comparison of non-dimensional fundamental frequencies ω of (0◦/90◦/core/0◦/90◦)
sandwich plate with a

h = 10 and h3
h1

= 10.

a
b

Present Formulation Rao Rao
(LW) (Refine) (LW)

0.5 5.9769 5.7326 5.7328

1 1.9376 1.8464 1.848

1.5 1.1788 1.09 1.0884

2 0.9072 0.8048 0.8049

2.5 0.7786 0.6627 0.6626

3 0.7069 0.5804 0.5792

5 0.5954 0.4494 0.4493
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Table 4. Comparison of non-dimensional fundamental frequencies ω of (0◦/90◦/core/0◦/90◦)
sandwich plate with a

b = 1 and h3
h1

= 10.

h3
h1

Present Formulation Rao Rao
(LW) (Refine) (LW)

4 2.2691 1.9084 1.9081

10 1.9376 1.848 1.848

20 2.153 2.1307 2.1311

30 2.3426 2.3321 2.3322

40 2.4756 2.469 2.469

50 2.5707 2.5658 2.5662

100 2.7899 2.7875 2.7874

The results in [30] were obtained based on an exact solution using the propagator
matrix method in conjunction with the layer-wise model. According to Table 3, as the
aspect ratio a/b increases (the composite plate approaches a long plate) the differences in
results based on the present formulation and those in [30] become larger.

Table 4 shows the effect of core thickness to cover sheet thickness h3/h1. According to
these results, the frequency ratio ω is more susceptible to the aspect ratio a/b in comparison
with h3/h1.

3.3. Five-Layer FGM Sandwich Plate

Now, we consider a five-layer square FGM sandwich plate resting on the Winkler
foundation, as illustrated in Figure 1. The simply supported plate is assumed to be sym-
metric with respect to its mid-layer and all layers are experiencing a steady temperature ∆T.
Each face sheet is made of functional materials while two vinyl ester (VE) based structural
adhesive layers are used to bond the face sheets to an elastomeric core (Ellastollan R3000).

The advantages of vinyl ester resins include high stiffness and tensile strength, good
chemical resistance, low cost, process versatility, and fast curing [31]. They possess good
characteristics similar to epoxy resins, as well as unsaturated polyester resins. The shape of
the stress–strain curves for a vinyl ester is strongly strain-rate dependent. Similar to strain
rate effects, the shape of the stress–strain curve changes dramatically with any change in
temperature. In this study, the deformation behavior of a vinyl ester polymer at strain rates
0.001/s and a wide range of temperatures (from room temperature (RT) to 100 ◦C) was
investigated. As an illustration, the effect of temperature on the stress–strain behavior of a
vinyl ester polymer at a strain rate of 0.001/s is shown in Figure 3 for different temperatures.
At temperatures close to Tg (glass transition temperature) and high strains, viscoplasticity
can be more pronounced and therefore, its effect on deformational behavior becomes more
pronounced. However, viscoplastic deformation is not considered in the standard linear
solid model of the material. Table 5 shows the modules of elasticity of vinyl ester at a wide
range of temperatures (from room temperature (RT) to 100 ◦C) [31].
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Figure 3. Tensile stress–strain curves for vinyl ester obtained from experiment and standard linear
solid model, at a strain rate of 0.001/s and different temperatures. Reprinted with permission from
Ref. [31], [Deformation response and constitutive modeling of vinyl ester polymer including strain
rate and temperature effects]; published by [J. Mater. Sci], year [2008].

Table 5. Modules of vinyl ester at a wide range of temperatures. Data are extracted from Figure 3.

Elastic Modulus of Vinyl Ester (GPa) Temperature (◦C)

3.4 RT

3.13 50

2.8 75

2.5 100

Table 5 shows the elastic modulus of vinyl ester at different temperatures. Additionally,
Table 6 represents the modulus of elasticity of the Elastollan R3000 core at four different tempera-
tures (from room temperature (RT) to 100 ◦C) [32]. Other mechanical properties of the layers used
in this analysis are given in Table 7. The dimension of the total thickness for the sandwich plate
is 12 mm and h1

h = 0.1, h2
h = 0.02, h3

h = 0.76, h5 = 1.2 mm (−0.6 mm≤ z1, z5 ≤ 0.6 mm),
h2, h4 = 0.24 mm (−0.12 mm≤ z2, z4 ≤ 0.12 mm), h3 = 9.12 mm.

Table 6. Modules of Elastollan R3000 at wide range of temperatures are extracted from Figure 5
in Ref. [32].

Elastic Modulus of Elastollan R3000 (GPa)
Ecore≡E3

Temperature (◦C)
T

2.8 RT

1.94 50

1.75 75

1.52 100
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Table 7. The mechanical properties of the five-layer sandwich plate.

Contituent Mechanical Properties

(Elastollan R3000) core [32] v = 0.45 , α = 20× 10−6 1
°C , ρ = 1380 kg

m3

Face sheet (AL−AL2O3 ) [1]
Em = 70 GPa, EC = 380 GPa, vC = vm = 0.3
αm = 23.6 × 10−6 1

°C , αc = 6.6 × 10−6 1
°C

ρm = 2702 kg
m3 ; ρc = 3960 kg

m3

Vinyl ester [33] v = 0.375 , α = 50.8× 10−6 1
°C , ρ = 1106 kg

m3

To perform the finite element analysis, the whole plate was modeled using ABAQUS
software. Three-dimensional solid element C3D20R was used for meshing. The simply
supported boundary conditions were imposed on all four edges. Furthermore, to properly
model the face sheets and invoke the properties of the FG material, the thickness of each
cover sheet was divided into 30 thin layers with different properties defined according to
Equation (1). The whole plate was subjected to thermal loading (all layers are under the
same steady-state temperature T) and the sandwich plate was assumed to be resting on a
Winkler elastic foundation. Finite element results on the vibrational modes are presented
in Tables 8–15 and graphically shown in Figures 4–9 followed by subsequent discussions.

Table 8. Comparison of frequencies (HZ) based on LT and those FE findings for various (a/h).
n = 1 , a

b = 1, h1
h = 0.1 h2

h = 0.02 , h3
h = 0.76, kw = 0, To = 23 °C, K = 0.616.

a
h Natural Frequencies (HZ)

Mode No. 1 2 3 4 5

10

FE 3251.2 5866.9 5866.9 7703 8583.3

LW 3127.4 8378.2 5378.2 7003.4 7926.5

% Difference 3.8 8.3 8.3 9.1 7.7

20

FE 1190.7 2520.6 2520.6 3473.3 4000.2

LW 1195.4 2311.2 2311.2 3127.4 3586

% Difference 0.4 8.3 8.3 9.9 10.4

30

FE 607.7 1387.5 1387.5 1996.5 2416.3

LW 613.8 1296.2 1296.2 1829.6 2135.4

% Difference 1 6.5 6.5 8.4 11.6

Table 9. Comparison of frequencies (HZ) based on LT and the FE findings for different n.
a
h = 20, a

b = 1 , h1
h = 0.1, h2

h = 0.02 , h3
h = 0.76, h = 12 mm, Kw = 0, K = 0.616, To = 23°C.

n

Mode No. 1 2 3 4 5

0.5

FE 1244.4 2580.5 2580.5 3525.7 4031.6

LW 1236.7 2339.8 2339.8 3139.2 3588.2

% Difference 0.6 9.3 9.3 10.9 11

1

FE 1190.7 2520.6 2520.6 3473.3 4000.2

LW 1195.4 2311.2 2311.2 3127.4 3586

% Difference 0.4 8.3 8.3 9.9 10.4

2

FE 1115 2419.5 2419.5 3372.9 3923.5

LW 1130.6 2248.1 2248.1 3079.2 3547.8

% Difference 1.4 7.1 7.1 8.7 9.6
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Table 10. Comparison of plate frequencies (HZ) based on the LT and those FE findings for different elastic foundations. n = 1, a
h = 20, a

b = 1, h1
h = 0.1, h2

h = 0.02,
h3
h = 0.76, h = 12 mm, To = 23°C, K = 0.616.

kw=0 N/m2 kw=108 N/m2 kw=109 N/m2 kw=1010N/m2

Mode No FE LW % Difference FE LW % Difference FE LW %Difference FE LW % Difference

1 1190.7 1195.4 0.4 1239.9 1244.7 0.4 1615.9 1621 0.3 3649.1 3662 0.4

2 2520.6 2311.2 8.3 2544.1 2337.6 8.1 2746.8 2557.9 6.9 4270 4162.8 2.5

3 2520.6 2311.2 8.3 2544.1 2337.6 8.1 2746.8 2557.9 6.9 4270 4162.8 2.5

4 3473.3 3127.4 9.9 3490.4 3147.4 9.8 3640.7 3314.3 9 4892.5 4666.3 4.6

5 4000.2 3586 10.4 4015 3603.6 10.2 4146.5 3750.4 9.6 5280.5 4985.6 5.6

Table 11. Comparison of frequencies (HZ) based on LT and those FE findings for different elastic foundations. n = 1, a
h = 20, a

b = 1 , h1
h = 0.1 h2

h = 0.02,
h3
h = 0.76, h = 12 mm, K = 0.616, To = 100 °C.

kw=0 N/m2 kw=108 N/m2 kw=109 N/m2 kw=1010 N/m2

Mode No FE LW % Difference FE LW % Difference FE LW % Difference FE LW % Difference

1 1047.4 1021.4 2.5 1103 1078.5 2.2 1513.9 1497.4 1.1 3603.7 3610.1 0.2

2 2083.5 1860.3 10.7 2112 1892.3 10.4 2352.8 2158.7 8.2 4028.5 3931.2 2.4

3 2083.5 1860.3 10.7 2112 1892.3 10.4 2352.8 2158.7 8.2 4028.5 3931.2 2.4

4 2803.8 2461.6 12.2 2825 2485.9 12 3009.4 2694.3 9.1 4444.1 4249 4.4

5 3162.8 2799.5 11.5 3181.6 2820.9 11.3 3346.5 3006.2 10.2 4679.3 4453.4 4.8

Table 12. Comparison of frequencies (HZ) based on LT and those FE findings. n = 1, a
h = 20 , a

b = 1, h1
h = 0.1 h2

h = 0.02 , h3
h = 0.76, h = 12 mm, kw = 0, K = 0.616.

To=23 °C To=50 °C To=75 °C To=100 °C

Mode No FE LW % Difference FE LW % Difference FE LW % Difference FE LW % Difference

1 1190.7 1195.4 0.4 1107.7 1094.2 1.2 1082.4 1063.7 1.8 1047.4 1021.4 2.5

2 2520.6 2311.2 8.3 2260.4 2039.1 9.8 2185.1 1962.2 10.2 2083.5 1860.3 10.7

3 2520.6 2311.2 8.3 2260.4 2039.1 9.8 2185.1 1962.2 10.2 2083.5 1860.3 10.7

4 3473.3 3127.4 9.9 3069.1 2719.9 11.4 2955.4 2608 11.8 2803.8 2461.6 12.2

5 4000.2 3586 10.4 3488.5 3102 11 3348 2970.5 11.3 3162.8 2799.5 11.5
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Table 13. Comparison of frequencies (HZ) based on LT and FE findings (increasing the adhesive
thickness). n = 1, a

h = 20 , a
b = 1, h1

h = 0.1 , h3
h = 0.76, h = 12 mm, kw = 0, To = 23 °C, K = 0.616.

Mode No.
h2
h 1 2 3

0

FE 1164.1 2475.7 2475.7

LW 1168.8 2270.8 2270.8

% Difference 0.4 8.3 8.3

0.01

FE 1177.6 2498.5 2498.5

LW 1182.4 2291.6 2291.6

% Difference 0.4 8.3 0.3

0.02

FE 1190.7 2520.6 2520.6

LW 1195.6 2311.2 2311.2

% Difference 0.4 8.3 8.3

0.04

FE 1216.2 2562.8 2562.8

LW 1221.2 2350.7 2350.7

% Difference 0.4 8.3 8.3

0.06

FE 1240.4 2602.5 2602.5

LW 1245.7 2387.7 2387.7

% Difference 0.4 8.3 8.3

0.08

FE 1269.1 2637.4 2637.4

LW 1269.3 2422.9 2422.9

% Difference 0.016 8.1 8.1

Table 14. The effect of any deviation in core elastic modulus from that of Elastollan® R 3000. n = 1 ,
h1
h = 0.1, h2

h = 0.02 , h3
h = 0.76, h = 12 m, kw = 0, To = 23 °C, K = 0.616.

E3
Ee

Method Mode No.

1 2 3 4 5

0.5

FE 1004.8 1989 1989 2672.9 3016.1

LW 999.3 1808.3 1808.3 2387.7 2713.6

% Difference 0.5 9.1 9.1 10.7 10

1

FE 1190.7 2520.6 2520.6 3473.3 4000.2

LW 1195.4 2311.2 2311.2 3127.4 3586

% Difference 0.4 8.3 8.3 9.9 10.4

2

FE 1296.2 2929 2929 4178.3 4961.6

LW 1355.1 2810.2 2810.2 3928.7 4565.6

% Difference 4.5 4.1 4.1 6 8

4

FE 1404.3 3311.3 3311.3 4874.7 5930.8

LW 1474.3 3243.1 3243.1 4689.6 5535

% Difference 5 2.1 2.1 4 6.7
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Table 15. The effect of any deviation in the adhesive elastic modulus from that of vinyl ester.
n = 1 , h1

h = 0.1 h2
h = 0.02 , h3

h = 0.76, h = 12 mm, kw = 0, To = 23 °C, K = 0.616.

E2
Evin

Method Mode No.

1 2 3 4 5

0.5

FE 1183.4 2496 2496 3434.2 3935.1

LW 1185.1 2282.4 2282.4 3083.2 3532.9

% Difference 1.4 8.6 8.6 10.2 10.2

1

FE 1190.7 2520.6 2520.6 3473.3 4000.2

LW 1195.4 2311.2 2311.2 3127.4 3586

% Difference 0.4 8.3 8.3 9.9 10.4

2

FE 1195.1 2533.8 2533.8 3494 4024.8

LW 1201.4 2327.2 2327.2 3151.7 3615.1

% Difference 0.5 8.2 8.2 9.8 10.4

4

FE 1198.4 2541.8 2541.8 3505.6 4038

LW 1205.1 2335.6 2335.6 3163.9 3629.5

% Difference 0.6 8.1 8.1 9.7 10.1

6

FE 1200.5 2545.5 2545.5 3510.5 4043.1

LW 1207.1 2338.9 2338.9 3168.2 2634.5

% Difference 0.5 8.1 8.1 9.8 10.1
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m2 , To = 50 °C, and K = 0.616.
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h = 0.1
h2
h = 0.02, h3
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m2 , To = 23 °C, K = 0.616.

Table 8 shows a comparison in results for the first five natural frequencies of the square
FGM sandwich plate using the present theory (LW) and finite element analysis (FE) for
various side-to-thickness ratios (a/h). According to these results, any increase in (a/h) ratio
decreases the natural frequencies. As can be observed from this table, not only for thin
plates but also for thick plates, the fundamental frequencies are predicted as accurately by
the present method with those obtained in FE.

In Figures 4 and 5, the first four mode shapes of the square sandwich plate (a/h = 20)
are presented.

The effect of the variation in the power-law index on ω for modes one to five are
presented in Table 9. The presented results that are based on the FE solution, as well as
the semi-analytical solution, are obtained based on values of Young’s modulus (E), mass
density (ρ) and the coefficient of thermal expansion (α) obeying the power-law index
distribution given in Equation (2). According to these results, for values of n > 1 (metallic
phase dominating the ceramic), the sandwich plate experiences lower frequency values,
while for n < 1 (a sandwich plate with more ceramic in the core), the opposite behavior is
observed due to the higher stiffness of the ceramic phase.

The natural frequencies of the five-layered square sandwich plate resting on elastic
foundations are presented in Tables 10 and 11. It is also observed for plates resting on
elastic foundations that the natural frequencies are increased as the foundation stiffness
increases. The results from the semi-analytical solution that are also supported by the finite
element analysis show that the increasing trend in ω is much higher for the higher values
of kw. According to the results in Table 12, the effects of a rise in temperature from 23 ◦C to
100 ◦C appear to have an adverse effect on the frequency ratio ω associated with the first
mode of vibration, while for the other modes, the opposite behavior is observed.

The results in Table 13 show the effect of any increase in the adhesive thickness on the
natural frequencies of the FGM sandwich plate in the absence of the elastic foundation at
room temperature. Although the elastic modulus of the adhesive layer is much smaller
than that of the face sheets and the core, any minute increase in the thickness of this layer
from h2

h = 0.01 (h2 = 0.12 mm) to h2
h = 0.08 (h2 = 0.96 mm) introduces a 9% increase in the

natural frequencies of the sandwich plate, the magnitude of which cannot be neglected.
The effect of core thickness on the natural frequencies of the sandwich plate is shown

in Figures 6 and 7 for the two cases with and without elastic foundation. The results in
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Figure 6 indicate that in the absence of an elastic foundation (kw = 0) for values of a × b
ranging from 0.24 × 0.24 m2 to 3.0 × 3.0 m2, the increase in the core thickness up to a value
of ≈70 mm shows its direct effect on raising the natural frequencies of the plate, while
beyond this value, this effect can be neglected.

However, for plates resting on an elastic foundation with a value of kw = 108 N/m2,
this behavior is observed to exist only for values of a× b ≺ 1.0× 1.0 m2. For larger plates
(values of a × b ≥ 1.0× 1.0 m2), the presence of an elastic foundation with a value of
kw = 108 N/m2 reduces the plate frequency as the composite plate gets thicker in the core.

Tables 14 and 15 show the effects of E3
Ee

and E2
Evin

on natural frequencies of the sandwich
plate at room temperature and the absence of an elastic foundation. In Table 14, Ef corre-
sponds to the elastic modulus of the vinyl ester core while E3 represents any deviations
in this modulus that presents a new core material with the same density. Additionally, in
Table 15, E2 corresponds to the elastic modulus of the adhesive material (which may be
different from that of vinyl ester), and Ee is the elastic modulus of the Elastollan® R 3000
selected as the core material. According to the results in Table 14, increasing the elastic
modulus ratio of the core from 0.5 to 4.0 increases the mode I natural frequency by 46.7%.
This increase can be interpreted as the rise in the elastic modulus of the core with respect to
the Elastollan® R 3000, which makes the sandwich plate stiffer with the assumption that the
core density does not change. This increase is more pronounced at higher modes of natural
frequencies. Moreover, according to Table 15, as the elastic modulus of the adhesive layer
advances that of the Elastollan® R 3000, a similar effect is observed in natural frequencies.
Therefore, to have better control of the vibrational frequencies of a sandwich plate, it is
essential to select the right elastic moduli for the core and adhesive layer.

Figure 8 shows the variation in the fundamental natural frequency versus the elastic
modulus of the core in a sandwich plate with different dimensions resting on an elastic
foundation with kw = 108 N

m2 . The results show that in sandwich plates with small aspect
ratios (i.e., a × b = 0.3 × 0.3 m2, a thicker plate compared with other shown dimensions),
the elastic modulus of the core considerably increases the fundamental natural frequency.
This is partly due to higher plate stiffness attributed to the higher elastic modulus of the
core. For larger plate aspect ratios (thinner plates), the presence of an elastic foundation
with the given value for kw seems to be ineffective on the natural frequencies.

However, according to Figure 9, the variations in the first three modes of natural
frequencies of the sandwich plate, in the presence of a Winkler elastic foundation, seem to
highly depend on small values of aspect ratio a/b. However, for values of a/b � 4, this
effect is negligible.

As shown in the previous investigations by other authors [34,35], the use of the layer-
wise method in conjunction with the first-order deformation theory produces good results
on a few stress components, while on others, modified theories must be implemented to
improve the accuracy of other stress components. However, this makes the problem more
complicated. For example, the study performed by Raissi et al. [35] showed that modifying
the shear deformation theory can improve some of the inaccuracies in previous findings
obtained on a few stress components that resulted from the application of lower-order
shear deformation theories. Consequently, the consideration of higher deformation theories
in conjunction with the layer-wise theory is being considered by current authors in their
future investigations for possible improvement of the present results.

The difference between a semi-analytical solution and for those finite element solutions
is larger for higher modes because the element shape functions provide a better basis
(approximation) of the shape of low modes and a relatively poorer basis for higher modes.

4. Conclusions

In this work, the effects of an adhesive layer bonding the core of functionally graded
(FG) cover sheets were investigated using the free vibration of a five-layer sandwich
composite plate resting on a Winkler elastic foundation. The whole plate was assumed
to experience a steady-state temperature. On application of Hamilton’s principle, the
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equilibrium equations were derived using the layer-wise model and numerically solved
using a MATLAB software program. A finite element model was also prepared and solved
to support the results of the semi-analytical solution. The results showed that in free
vibration, the first-order shear deformation theory provides good accuracy in predicting
the lower modes of the fundamental frequencies of the sandwich plate. However, at higher
frequencies, the semi-analytical results were slightly reduced in accuracy in comparison
with the finite element findings. The results indicate the presence of a higher temperature
aggravates the adverse effect of the plate frequencies, especially at higher modes. In
addition, the presence of an adhesive layer with a thickness of h2 = 0.96 mm introduces a
9% increase in the natural frequencies of the sandwich plate at mode I compared with a
three-layer (an inside core encapsulated by two cover sheets) sandwich plate. The accuracy
of this theory in analyzing the frequencies of an FGM sandwich plate increases with the
presence of an elastic foundation. In addition, the results indicate that the presence of
adhesive layers does not have a significant effect on the frequencies. Furthermore, by
decreasing the aspect ratio, the natural frequencies of the sandwich plate are increased
where the square sandwich plate has the most natural frequencies.
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Nomenclature

a Width of the plate

A(k)
ij , B(k)

ij , D(k)
ij Elements of matrices for the kth layer

b Length of the plate
E1, E2, E3, Ef, Evin Young’s Moduli of the layers
fe Density of foundation reaction force
G Shear Modulus
h Total thickens of the plate
h1 Cover sheet thickness
h2 Adhesive thickness
h3 Core thickness
i Imaginary unit

I(k)n Inertia constants for the kth layer

J(k)n Second Inertia constants for the kth layer
[K] Stiffness matrix
k Layer number
kw Elastic foundation stiffness
[M] Mass matrix
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M(k)
ij

Moment resultants for the kth layer

N(k)
ij

Force resultants for the kth layer

n Power-law index
Pc Material properties of the ceramic phase
Pm Material properties of the metal phase

Q(k)
ij

Elements of the stiffness matrix

Q(k)
xx ·Q

(k)
yy Transverse shear stress resultants for the kth layer

t Time
T Temperature
∆T Temperature difference
T Kinetic energy
U Strain energy
u Displacement component in x-direction
Uf Strain energy of the foundation
δU Virtual strain energy
V Work of external forces
v Displacement component in y-direction
Vc Volume fraction of the ceramic phase within the face sheet
w Displacement component in z-direction
z Thickness direction
α Thermal coefficient of expansion

ε
(k)
ij

Strain components in the kth layer

κ Shear correction factor
v Poisson ratio
ρ Density

σ
(k)
ij

Stress components in the kth layer

τ
(k)
ij

Shear Stress components in the kth layer

Ω material volume
ω Natural vibrational frequency
ω Dimensionless frequency parameter

∅(k)
x Rotations of the normal lines to the mid-plane about y-axis

∅(k)
y rotations of the normal lines to the mid-plane about x-axis.

Appendix A. Displacement Components

Layer 1:

u(1)(x, y, z, t) = u(x, y, t)− h3
2 ∅

(3)
x (x, y, t)− h2∅

(2)
x (x, y, t)− h1

2 ∅
(1)
x (x, y, t) + z(1)∅(1)

x (x, y, t)
v(1)(x, y, z, t) = v(x, y, t)− h3

2 ∅
(3)
y (x, y, t)− h2∅

(2)
y (x, y, t)− h1

2 ∅
(1)
y (x, y, t) + z(1)∅(1)

y (x, y, t)
w(1)(x, y, z, t) = w(x, y, t)

(A1)

Layer 2:

u(2)(x, y, z, t) = u(x, y, t)− h3
2 ∅

(3)
x (x, y, t)− h2

2 ∅
(2)
x (x, y, t) + z(2)∅(2)

x (x, y, t)
v(2)(x, y, z, t) = v(x, y, t)− h3

2 ∅
(3)
y (x, y, t)− h2

2 ∅
(2)
y (x, y, t) + z(2)∅(2)

y (x, y, t)
w(2)(x, y, z, t) = w(x, y, t)

(A2)

Layer 3:

u(3)(x, y, z, t) = u(x, y, t) + z(3)∅(3)
x (x, y, t)

v(3)(x, y, z, t) = v(x, y, t) + z(3)∅(3)
y (x, y, t)

w(3)(x, y, z, t) = w(x, y, t)

(A3)
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Layer 4:

u(4)(x, y, z, t) = u(x, y, t) + h3
2 ∅

(3)
x (x, y, t) + h2

2 ∅
(4)
x (x, y, t) + z(4)∅(4)

x (x, y, t)
v(4)(x, y, z, t) = v(x, y, t) + h3

2 ∅
(3)
y (x, y, t) + h2

2 ∅
(4)
y (x, y, t) + z(4)∅(4)

y (x, y, t)
w(4)(x, y, z, t) = w(x, y, t)

(A4)

Layer 5:

u(5)(x, y, z, t) = u(x, y, t) + h3
2 ∅

(3)
x (x, y, t) + h2∅

(4)
x (x, y, t) + h1

2 ∅
(5)
x (x, y, t) + z(5)∅(5)

x (x, y, t)
v(5)(x, y, z, t) = v(x, y, t) + h3

2 ∅
(3)
y (x, y, t) + h2∅

(4)
y (x, y, t) + h1

2 ∅
(5)
y (x, y, t) + z(5)∅(5)

y (x, y, t)
w(5)(x, y, z, t) = w(x, y, t)

(A5)

Appendix B. Constants for Equation (17)

J1 = I(1)0 + I(2)0 + I(3)0 + I(4)0 + I(5)0

J2 = − h1
2 I(1)0 + I(1)1

J3 = −h2 I(1)0 − h2
2 I(2)0 + I(2)1

J4 = − h3
2 I(1)0 − h3

2 I(2)0 + I(3)1 + h3
2 I(4)0 + h3

2 I(5)0

J5 = h2
2 I(4)0 + I(4)1 + h2 I(5)0

J6 = h1
2 I(5)0 + I(5)1

J7 =
h2

1
4 I(1)0 − h1 I(1)1 + I(1)2

J8 = h1h2
2 I(1)0 − h2 I(1)1

J9 = h1h3
4 I(1)0 − h3

2 I(1)1

J10 =
h2

2
4 I(2)0 + h2

2 I(1)0 + I(2)2 − h2 I(2)1

J11 = h2h3
2 I(1)0 + h2h3

4 I(2)0 − h3
2 I(2)1

J12 =
h2

3
4 I(1)0 +

h2
3

4 I(2)0 + I(3)2 +
h2

3
4 I(4)0 +

h2
3

4 I(5)0

J13 = h2h3
4 I(4)0 + h3

2 I(4)1 + h2h3
2 I(5)0

J14 = h1h3
4 I(5)0 + h3

2 I(5)1

J15 =
h2

2
4 I(4)0 + h2

2 I(4)1 + h2
2 I(4)1 + I(4)2 + h2

2 I(5)0

J16 = h1h2
2 I(5)0 + h2 I(5)1

J17 =
h2

1
4 I(5)0 + h1 I(5)1 + I(5)2

References
1. Kahya, V.; Turan, M. Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element.

Compos. Part B Eng. 2018, 146, 198–212. [CrossRef]
2. Nguyen-Xuan, H.; Tran, L.V.; Nguyen-Thoi, T.; Vu-Do, H.C. Analysis of functionally graded plates using an edge-based smoothed

finite element method. Compos. Struct. 2011, 93, 3019–3039. [CrossRef]
3. Kerr, A.D. Elastic and Viscoelastic Foundation Models. J. Appl. Mech. 1964, 31, 491. [CrossRef]
4. Benferhat, R.; Daouadji, T.H.; Mansour, M.S. Free vibration analysis of FG plates resting on an elastic foundation and based on

the neutral surface concept using higher-order shear deformation theory. Comptes Rendus. Mec. 2016, 344, 631–641. [CrossRef]
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