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Abstract: The scope of this work was to develop novel polymer composites via melt extrusion and
3D printing, incorporating High-Density Polyethylene filled with zinc oxide particles in various wt.
percentages. For each case scenario, a filament of approximately 1.75 mm in diameter was fabricated.
Samples for tensile and flexural testing were fabricated with 3D printing. They were then evaluated
for their mechanical response according to ASTM standards. According to the documented testing
data, the filler increases the mechanical strength of pure HDPE at specific filler concentrations. The
highest values reported were a 54.6% increase in the flexural strength with HDPE/ZnO 0.5 wt.% and
a 53.8% increase in the tensile strength with 10 wt.% ZnO loading in the composite. Scanning Electron
Microscopy (SEM), Raman, and thermal characterization techniques were used. The experimental
findings were evaluated in other research areas where they were applicable.

Keywords: high-density polyethylene (HDPE); 3D printing; tensile strength; zinc oxide (ZnO);
material extrusion; fused filament fabrication (FFF); composites; flexural strength

1. Introduction

In the past decade, a lot of research has been applied to Additive Manufacturing (AM)
and more, especially in the material extrusion (MEX) 3D printing process. MEX 3D printing
is a cost-efficient method of the AM family [1]. It enables the industry the manufacturing
of cost-efficient polymeric, and not only, products in a short time. Parts manufactured with
this process are lightweight and, in parallel, durable [1–4]. 3D printing nowadays benefits
the aerospace industry [4], the biomedical research sector [5,6], and many more industries,
such as automotive, by aiding fast prototyping and testing of new products and parts while
reducing the time of the research and development stages [4].

Materials for MEX 3D printing is also a research sector that is constantly gaining
momentum [7]. The main reason behind this demand is the need for advanced materi-
als with higher specifications regarding mechanical, electrical, and physical properties.
Currently, research on 3D printing materials focuses mostly on Acrylonitrile-Butadiene-
Styrene (ABS) and Polylactic Acid, as these materials are the most used in 3D printing [8,9].
Moreover, other thermoplastics (Polypropylene (PP) [10], Polyamides [11], Polyethylene
(PE) [12], and others) are now effectively used in 3D printing as well. Many studies were
conducted to investigate how the mechanical properties of these materials are affected by
the 3D printing parameters applied [12–19].

The above advancements have led to increasing research interest in composite and
nanocomposite development for 3D printing applications, with the promise of more robust
or application-tailored materials. Studies have shown that the introduction of micro or even
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nanofillers into polymeric matrices can increase the mechanical properties of the unfilled
matrix up to a certain percentage [20–31].

High-Density Polyethylene (HDPE) of the Polyethylene (PE) polymeric family is a
polymeric material amongst others that is not yet fully utilized in 3D printing [8]. HDPE is
a widely used thermoplastic substance. It is a polymer that is present in many common
home objects and is used to manufacture a wide range of items and parts. Because of
its properties, the polyethylene category of polymers includes some of the most widely
used polymers today. Some of the most commonly used thermoplastics in the industry are
Polypropylene (PP), HDPE, and Low-Density Polyethylene (LDPE). They are applied in
fields, such as cases, hoses, children’s toys, and handbags (LDPE), gas lines (HDPE) [32],
packaging, house appliances and membranes [32,33], and automotive parts and electri-
cal components (PP) [34]. Due to its high level of recycling and affordability, HDPE
can be characterized as a cost-effective, eco-friendly thermoplastic [35,36]. Therefore, as
expected, it has been used and investigated for AM applications in 3D printing and else-
where. The most recent advance for HDPE is researching the mechanical, electrical, and
physical properties of the material when fillers are introduced in the unfilled matrix. Lit-
erature reports results with HDPE as the matrix material in composites having various
fillers, such as carbon nanotubes [36,37], carbon [38], glass micro balloons [39–41], fly ash
cenospheres [42–44], calcium carbonate [45] and graphite nanofibers [46]. Furthermore, the
literature indicates that when HDPE is utilized in 3D printing as a matrix material, the
incorporation of nanofillers at concentrations lower than 5% weight percent [47,48] can
improve its mechanical response.

The literature reports results of the HDPE polymer doped with zinc oxide (ZnO) [49],
titanium dioxide (TiO2) [50–52], tin oxide (SnO2) [48–53], PbO [54], silica [53,55], and
alumina [56]. Apart from one work, in which research was conducted on MEX 3D-printed
samples [51], the aforementioned research was performed on bulk materials samples made
by injection molding or material removal processes. There has not been much research on
HDPE composites for rapid tooling applications, and there is not much specific information
on the mechanical properties of 3D-printed specimens either [57].

Concerning HDPE with easy-to-find fillers such as zinc oxide (ZnO), research is
focusing on the thermomechanical properties of the composite [58], the improvement of
the interaction between the filler and the matrix [59], the application of the composite in
UV shielding [60], and for antibacterial application [61]. Still, literature reporting results
on the effect of the ZnO filler on the performance of 3D-printed HDPE/ZnO composites
is limited. The current work seeks to create and investigate innovative and more resilient
HDPE composites manufactured by melt extrusion, which are composed of an HDPE
matrix with ZnO microparticle weight-to-weight proportions. Another objective of the
research was to create composites with improved mechanical characteristics using common
materials used in industrial applications.

In this work, melt extrusion was used to create novel and more durable composite
filaments. With a 10-weight percent filler loading, HDPE’s tensile strength is reported
to have increased by 53.8%, and with a 2.5 by weight percentage filler concentration, its
flexural strength has increased by 400%. The addition of ZnO microparticles increased the
tensile strength and flexural strength of 3D-printed specimens. The morphology of the
materials was further examined using SEM and Raman spectroscopy, and their thermal
characteristics were assessed using Thermogravimetric analysis (TGA) and Differential
Scanning Calorimetry (DSC). Another objective of this study is to increase the printability
of HDPE composites using locally available 3D printers and extruders. The aforementioned
industries can immediately profit from the aforesaid results by replacing their present
materials with more mechanically improved polymer composites.



J. Compos. Sci. 2022, 6, 315 3 of 17

2. Materials and Methods
2.1. Materials

The Kritilen High-Density Polyethylene powder polymer matrix was employed in this
work (melt Mass-Flow Rate (MFR), 190 ◦C/2.16kg, 7.5 g/10 min, density 0.960 g/cm3, Vicat
Softening Temperature 127 ◦C). Regarding the filler introduced in this work, Sigma Aldrich
Zinc Oxide (ZnO micro, 96479) was selected and procured, which has typical particles that
are less than 5 microns in size and an assay of >99% as the micro filler. No other additives
or plasticizers were utilized for the preparation of the composites in the work.

2.2. Microcomposites Fabrication

Figure 1 presents the overall work steps followed to complete the research work.
Section A of Figure 1 presents the defined workflow steps while the B section of Figure 1
depicts the experimental procedures, i.e., (1) the mechanical mixing, (2) the oven drying,
(3) material filament extrusion, (4) filament evaluation, (5) specimen fabrication, and
(6) mechanical properties investigation. As a first step, the filler concentrations were
selected for this study. These percentages were derived by studying the available literature,
considering results reported from the labs’ previous projects and, of course, the materials’
capacity for filler loading. The ZnO additive weight-to-weight concentrations were 0 wt.%,
0.5 wt.%, 2.5 wt.%, 5 wt.%, 10 wt.%, and 20 wt.%.
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The fillers were scaled and mechanically mixed with the matrix. The materials were
mixed with the help of a laboratory mechanical stirrer of 1 kW for at least 20 min while in
some cases, magnetic stirrers were used. The powder mixtures were then oven-dried at
70 ◦C for 48 h before extrusion.

Material filament fabrication was performed on a Noztek Pro (Shoreham-by-Sea, UK)
desktop extruder with a single screw, preheated at 200 ◦C. The preheating sequence was
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used to remove any residual humidity left in the machine prior to extruding the filament
that could cause material defects. Experiment results show that the extrusion operating
temperature is about 255 ◦C. The TGA investigation confirmed that this temperature does
not induce material deterioration. This working temperature is calculated empirically
by attempting to estimate the HDPE’s melting/softening point while maintaining the
necessary working pressure and flow to extrude the proper diameter filament.

Working with a material such as HDPE entails many processability issues and diffi-
culties because of the high viscosity of the material and the low heating dissipation factor,
which leads the material to stick with ease to every surface it touches. An extruder fan was
used and run at full speed to get over the aforementioned challenges and contribute to
achieving as accurate diameter, for the produced filament, as possible. To cool the injected
filament down in a regulated manner, additional cooling was required, which was achieved
by setting 20 cm apart from the nozzle of the extruder two additional fans, operating at full
speed as well.

The process of extruding the composite filament had difficulties at filler concentra-
tions above 10 wt.% due to nozzle clogging, reduced material flow, and visible material
agglomerates. The filament strands, prior to 3D printing, were meticulously examined for
faults, bubbles, diameter consistency, and agglomerates. This procedure was performed
to ensure the smooth 3D printing of the test specimens and to serve as the 2nd stage for
material quality control.

2.3. Specimens’ Fabrication

To ensure that no moisture was present in the produced filaments, they were further
dried in a laboratory-scale oven at 70 ◦C for at least 24 h before being used for the 3D
printing samples. Such moisture could produce bubbles during the extrusion of the material
in the 3D printing process, and therefore defective parts would be built. An Intamsys
Funmat HT (Shanghai, China) 3D printer operating with the material extrusion (MEX)
3D printing process was then used for the fabrication of the samples. No 3D printing
aids were used. The heat-bed of the 3D printer was preheated at 100 ◦C. The deposition
temperature was set and maintained at 250 ◦C. The 3D printing temperature was also
determined experimentally before the fabrication of the samples for this work.

The 3D printing settings remained consistent for all the specimens fabricated in this
work. The FFF parameters were experimentally identified before the fabrication of the
specimens for this work and can be found in Table 1 below.

Table 1. Settings used for the manufacture of the specimens with the 3D printing process in this study.

Parameter: Value

3D Printing Speed: 50–100 mm/s

3D Printing Orientation: XZ plane

Raster Angle: 45 degrees

Infill type: Rectilinear

Infill percentage: 100% Solid

The number of wall lines: 2

Heat bed Temperature: 100 ◦C (No printing aids used)

Printing Temperature: 250 ◦C

Printing/Layer Resolution: 0.2 mm

Tensile experiments required the fabrication of seven specimens, five of which were
mechanically tested and randomly selected. The ASTM D638-14 standard was followed in
the fabrication of each specimen. A type V specimen was selected for this work. More than
five specimens were manufactured to discard possible specimens with defects and select
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the best five for tensile testing. For the flexural tests (3-point bending, with a 52 mm span),
the ASTM D790-02 standard was followed. Therefore, seven specimens were 3D printed,
five of which were selected randomly to be tested.

2.4. Characterization of the 3D-Printed Samples in the Mechanical Tests Conducted

An IMADA MX2 (Northbrook, IL, USA) apparatus with a corresponding setup for
each case was used to carry out the mechanical characterization in both the tensile and the
flexural cases. Following the requirements of the ASTM standards, the machine’s chuck
speed was maintained at 10 mm/min.

The micro-hardness Vickers experiments were performed in accordance with the
ASTM E384-17 standard, with the following parameters: Surfaces were polished before
the measurements. The applied force on the surface of the samples was 0.1 kg (0.981 N).
The indentation time was 10 s, and the tip used was for Vickers measurements, featuring a
diamond pyramid with an apex angle of 136 degrees. For the Vickers measurements, the
area of the imprint is calculated automatically by the device by measuring the diagonals
of the imprint after the diamond pyramid is retracted. Measurements were carried out
employing an Innova Test 400-Vickers (Innovatest Europe BV, Maastricht, The Netherlands)
Vickers microhardness measurement device.

2.5. Thermal Properties Investigations on the Prepared Composites

A Thermogravimetric Analysis (TGA) was performed to determine the temperature
at which the materials start to degrade. This information was used to specify the ideal
extrusion and 3D printing temperatures. A Perkin Elmer apparatus, model Diamond
TG/TDA (Waltham, MA, USA), was employed for the TGA measurements, which were
taken following a heating cycle of 32 ◦C to 550 ◦C and a 10 ◦C/min heating step. All the
different samples were examined. Nitrogen was the purging gas in the measurements.

The influence of filler content on the melting point (Tm) of the composites was deter-
mined with Differential Scanning Calorimetry (DSC), which also revealed the degree of
crystallinity changes in the samples. DSC was performed on a Perkin Elmer device, model
Diamond DSC (Waltham, MA, USA), applying the following pattern: 50 ◦C to 300 ◦C,
10 ◦C/min heating step, and then down to 50 ◦C. Nitrogen was utilized as the purging gas
for the cooling down.

2.6. Investigation of the Morphological and Structural Characteristics of the Prepared Composites

A JEOL model JSM 6362LV (Jeol Ltd., Tokyo, Japan) was employed to acquire the
Scanning Electron Microscope (SEM) images from the samples. Images were taken in
high-vacuum mode at 20 kV acceleration voltage. To ascertain the fracture mechanism
and layer fusion quality, the specimens were inspected. On non-sputtered specimens, an
Energy Dispersive X-Ray Analysis (EDX) was carried out to confirm the composition of
the composites.

Raman measurements were performed using a modified LabRAM HR Raman spec-
trometer (HORIBA Scientific, Kyoto, Japan). Raman excitation was achieved using a
solid-state laser module with a center wavelength of 532 nm. The highest laser power used
was 90 mW. The employed optical microscope was integrated into a 50× microscope objec-
tive. The numerical aperture was set to 0.5 and the working distance for the observation
was 10.6 mm (LMPlanFL N, Olympus, Tokyo, Japan), which provides the excitation light
and collects the Raman signal. Using a neutral filter with 50% transmission resulted in a
sample output of 20 mW. The laser spot size was approximately 1.7 µm laterally and about
2 µm axially. There are two optical windows per point when the Raman spectral range is
set at 400 to 3100 cm−1. Each measurement took 3 s to acquire, and 5 measurements at each
site were taken.
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3. Results & Discussion
3.1. Mechanical Characterization of the 3D-Printed Samples

In Figures 2 and 3, stress vs strain graphs of a tensile (Figure 2A) and a flexural
(Figure 3A) test of a randomly selected specimen are depicted. All the graphs with bars
in Figures 2–4 are average values; therefore, the deviation bars are also presented in the
graphs. Moreover, the mathematical average has been calculated from the experimental
results acquired during the testing of the specimens.
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Figure 2. (A) Tensile stress compared to strain curves experimentally determined for the unfilled
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experimentally calculated tensile mod. of elasticity values and their deviation for the materials of
this work.
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As is presented in Figure 2, the tensile strength has increased by a maximum of 53.8%
in 10.0 wt.% ZnO additive loading when correlated to the corresponding results for the
unfilled HDPE thermoplastic. The tensile modulus of elasticity was also increased by 79.2%
with a 10.0 wt.% ZnO addition. In terms of tensile modulus, there is a visible trend in all
the investigated cases that the tensile modulus increases with filler content until the filler
concentration reaches 20%. There is no literature on 3D-printed HDPE composites that
correlates with these mechanical property results. Only HDPE with TiO2 filler has been
studied, but mainly with injection-molded samples [50,52]. Moreover, no discoveries on
mechanical properties are included in these study papers. In the only work that studies
HDPE with TiO2 filler for MEX 3D printing [51], a similar trend in the results is reported,
although the enhancement in the current study with the addition of ZnO is higher.

As it is presented in Figure 3, there is an increase in the flexural strength of a maximum
of 400% in the composite with 2.5 wt.% ZnO loading when correlating the results to the
pure HDPE thermoplastic. Moreover, the modulus of elasticity was increased by 550% with
a 0.5 wt.% ZnO addition. In all the cases examined, there is a clearly discernible trend where
the flexural modulus of elasticity slightly falls along with the filler percentage until the filler
concentration reaches 20%. There is no research available yet in the literature on HDPE
3D-printed composites to support these experimental results regarding the mechanical
response of the composites. Only HDPE with TiO2 as a filler has been studied, but mainly
on samples prepared with injection-molding processes [50,52]. Moreover, in these studies,
no mechanical performance findings are reported. Correlating the flexural test results
with the only work that studies HDPE with TiO2 filler for MEX 3D printing [51], a similar
trend in the results is reported, although again the enhancement in the current study with
the addition of ZnO is higher. Figure 4 below depicts the comparison of all materials
studied in this work for (a) tensile toughness, (b) flexural toughness, and (c) microhardness
Vickers results.

From the results presented in Figure 4 above, it is evident that the tensile toughness
reaches a peak increase of 49.5% at 10 wt.% filler loading when compared to unfilled HDPE
material. About a 322% increase is noted at 2.5 wt.% while examining flexural toughness
results. The micro-hardness Vickers results show a trend that the hardness increases along
with the filler loading, reaching a maximum peak of 102% increase with the introduction
of 20 wt.% filler concentration when compared to unfilled HDPE 3D-printed specimens.
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Similar findings for HDPE with micro-additives and micro-hardness Vickers measurements
have been reported in the literature [62].

3.2. Thermal Properties Investigation

The complete TGA data for the pure HDPE is shown in Figure 5 below and the
HDPE/ZnO composites with 0, 5, 10, and 20 wt.% developed in the work. Additionally,
Figure 5B presents the corresponding weight loss rate graph.
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The mass loss curves of the materials are comparable until they begin to degrade fast,
as seen in Figure 5A. This shows that adding ZnO fillers to the HDPE matrix material did
not influence the HDPE thermoplastic’s thermal stability. The residual material should
agree with the pertinent weight percent of the additive employed in each case for the
creation of the micro-composites (Figure 5A). The residual percentage of the ZnO additive
is consistently lower than the applied proportion in all cases evaluated.

For instance, the remaining proportion in the case of HDPE/ZnO is 20 wt.% composite,
as it was determined during the TGA to be 18.03 wt.%. Such small discrepancies can be
ascribed to the precision of the apparatus, differences from the 3D printing process, or
losses from the first extrusion of the filament. The maximum weight loss rate shifts slightly
to higher temperatures with the increase in the ZnO additive concentration. The maximum
weight loss rate is reported for the highest ZnO loading composite of 20 wt.% (Figure 5B).

According to the DSC study presented in Figure 6, the melting point (Tm) was
marginally affected (raised) with the addition of the ZnO additives compared to the unfilled
HDPE thermoplastic. This shift, though, is considered insignificant to produce any valid
conclusions other than that the introduction of the ZnO particles in the composites did not
affect the chain mobility significantly when compared to the unfilled HDPE material. In all
instances of ZnO, this increase is noticeable with an increase in filler wt.%.
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3.3. Morphological and Structural Characteristics of the Prepared Composites

Figure 7 presents different captures taken with an SEM of a tensile test sample made
with unfilled HDPE. Figure 7A depicts the fracture area, while Figure 7B presents the side
surface of the sample. In the fracture area image, it is shown that the sample’s 3D-printed
structure collapsed with the failure of the specimen, with the development of voids due to
the failure of the bonding of the strands. The fracture area does not show high deformation
regions, although, overall, the sample was highly deformed before failure, which is a
characteristic of the HDPE material. On the side surface, the layers can be identified,
although they do not have a uniform linear shape, again due to the nature and behavior of
the material in 3D printing.
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Figure 7. Images taken on unfilled HDPE 3D-printed tensile test samples with SEM (A) fracture
region and (B) side area.

Figure 8 presents high-resolution SEM images of the fracture area of randomly selected
tensile test specimens, one from each filler loading studied herein, i.e., HDPE/ZnO 0.5 wt.%
in Figure 8A, HDPE/ZnO 2.5 wt.% in Figure 8B, HDPE/ZnO 5.0 wt.% in Figure 8C, and
HDPE/ZnO 10.0 wt.% in Figure 8D. Note that in Figure 8B, the magnification of 300× is a
detailed view of Figure 8A, to examine the specimens’ fracture area more closely. Same with
Figure 8C,D. It should also be noted that due to heavy structural deformation present in the
samples, SEM images of the 20 wt.% ZnO composites were not possible to be acquired in a
quality suitable to be presented in the figures, so they were not included as they would be
confusing to interpret. As can be observed, the samples were highly deformed before their
failure, and a clear ductile behavior is shown. The fracture areas have collapsed, with high
deformations and significant changes in their shape and reductions in their dimensions.
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Figure 9 presents high-resolution SEM side surface images of randomly selected 3D-
printed tensile test specimens. One specimen was chosen and is presented from each
different material studied herein. The side surface is depicted in two magnifications in
each specimen, i.e., 30× and 150×. HDPE/ZnO 0.5 wt.% in Figure 9A,B; HDPE/ZnO
2.5 wt.% in Figure 9C,D; HDPE/ZnO 5.0 wt.% in Figure 9E,F; and HDPE/ZnO 10.0 wt.%
in Figure 9G,H.
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Figure 9. 3D-printed tensile test samples (randomly selected) SEM images of their side surfaces for
the composites prepared herein: (A) 0.5 wt.% at 30× magnification, (B) 0.5 wt.% at 150× magnifi-
cation, (C) 2.5 wt.% at 30× magnification, (D) 2.5 wt.% at 150× magnification, (E) 5 wt.% at 30×
magnification, (F) 5 wt.% at 150× magnification, (G) 10 wt.% at 30× magnification, and (H) 10 wt.%
at 150× magnification.
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As the filler concentration increases, the fracture mechanism of the samples, as it is
observed in the SEM images, becomes less ductile. The neck, due to the deformation of the
3D printing strands, is gradually reduced until it disappears, according to the interpretation
of the aforementioned SEM images from Figures 7 and 8. This is because the filler reduces
chain mobility by occupying empty spaces within the polymer chain. Tensile and flexural
strength measurements support the claims made above since chain mobility in the polymers
is correlated to the mechanical behavior of the polymers [63]. This statement is consistent
with the DSC results that reported a slight shift in Tm.

Regarding layer fusion, the SEM images in the right column of Figures 7 and 9 show
slight variations in layer fusion in the 3D-printed samples. Notably, for the 0.5 wt.% and
2.5 wt.% samples, a more uniform layer fusion appears with no visible defects, as shown in
the corresponding images for the 5 and 10 wt.% composites. In these images, the layers
are clearly visible along with their boundaries. The specimens’ general printability was
more challenging when the ZnO concentration was higher than 10 wt.%. The nozzle of
the 3D printer during the 3D printing process of the samples tended to clog, and as a
result, the filament was burned. According to the SEM examination, the increase in filler
concentration did not affect shrinkage, layer deposition, or fusion. Thermal investigation
of the composites revealed that the Tg temperature was not affected. This is an indication
that no substantial change in the polymer’s chain mobility occurred.

The main Raman peaks, which can be seen in Figure 10, come from HDPE Pure.
Stretching of the C–O–C was discovered at 1064, 1131, and 1297 cm−1. At 1418 and
1441 cm−1, CH3 deformation and CH2 deformation, respectively, were discovered. Finally,
CH2 symmetric stretching and C–H antisymmetric stretching were found at 2850 cm−1

and 2883 cm−1, respectively. In comparison to HDPE pure, none of the samples that
contained ZnO showed any differences. Table 2 presents the Raman peaks identified in
the measurements.
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Table 2. Major Raman peaks identified and their related assignments.

Wavenumber (cm−1) Raman Peak Assignment

1064 C-O-C stretching [64]
1131 C-O-C stretching [65]
1297 C-O-C stretching [64]
1418 CH3 deformation [64]
1441 CH2 deformation [64,66]
2850 CH2 symmetric stretching [67]
2884 C-H antisymmetric stretching [68]

4. Conclusions

The results of the current study’s overall mechanical tests (Figure 11) showed that
adding ZnO particles at certain filler concentrations might greatly increase the HDPE
polymer matrix’s overall mechanical strength. For the first time in the literature, HDPE
composites containing ZnO filler were fabricated in various concentrations by means of
extrusion melting, and 3D-printed specimens were built and examined regarding their
mechanical, thermal, and morphological properties. More precisely, HDPE with 10 wt.%
filler loading increased tensile strength by 53.8%, while HDPE with 2.5 wt.% filler increased
flexural strength by 400%. The addition of the ZnO particles in the HDPE thermoplastic
improved the mechanical performance of the 3D-printed specimens in the tensile and
flexural tests.
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The aforementioned results diverge from prior literature findings and point to a novel
3D printing capability. The HDPE thermoplastic can be utilized for composites as an
inventive development, featuring superior mechanical properties compared to the unfilled
HDPE polymer.

The overall result and key points of the current research are summarized as follows:

• Extrusion melting was used to create an HDPE-composite filament with improved
mechanical properties.

• The 10% wt. ZnO composite depicted an enhancement in the tensile strength of 53.8%,
which is documented.

• The flexural strength was enhanced by 400% in the 2.5 wt.% ZnO composite, when
compared to the unfilled HDPE polymer.
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• The inclusion of the ZnO microparticles had no impact on the materials’ overall
thermal characteristics.

• After 10% filler loading, the printability of the specimens became challenging.

The aim of the work was proven through the methodology, the experimental findings,
and the analysis of the results, i.e., ZnO can improve the mechanical response of the HDPE
thermoplastic in MEX 3D printing. Such results can expand the fields of applications of
the MEX process by using the HDPE polymer, which is, as mentioned, a popular material
in various industrial fields and applications. The procedure can be further improved
for industrial applications in upcoming developments. Future research can test various
additive doses, identify the HDPE matrix’s ZnO filler’s percolation threshold, and improve
the procedure for commercial application.
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