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Abstract: In tape placement process, the laying angle and laying sequence of laminates have proven
their significant effects on the mechanical properties of carbon fibre reinforced composite material,
specifically, laminates. In order to optimise these process parameters, an optimisation algorithm is
developed based on the principles of genetic algorithms for improving the precision of traditional
genetic algorithms and resolving the premature phenomenon in the optimisation process. Taking
multi-layer symmetrically laid carbon fibre laminates as the research object, this algorithm adopts
binary coding to conduct the optimisation of process parameters and mechanical analysis with
the laying angle as the design variable and the strength ratio R as the response variable. A case
study was conducted and its results were validated by the finite element analyses. The results
show that the stresses before and after optimisation are 116.0 MPa and 100.9 MPa, respectively,
with a decrease of strength ratio by 13.02%. The results comparison indicates that, in the iterative
process, the search range is reduced by determining the code and location of important genes, thereby
reducing the computational workload by 21.03% in terms of time consumed. Through multiple
calculations, it validates that “gene mutation” is an indispensable part of the genetic algorithm in the
iterative process.

Keywords: composite materials; genetic algorithm; important genes; strength ratio; finite ele-
ment analysis

1. Introduction

Carbon fibre reinforced composite materials (CFRP) are widely used in the fields of
aviation equipment structures [1], fuselages and wings manufacturing due to their high
corrosion resistance, high strength and lightweight [2,3]. As a typical representative of
the practical application of composite materials, laminates have a direct impact on the
mechanical properties of CFRPs, which depend highly on their laying angle and laying
sequence. Hence, many investigations have been conducted in-depth on exploring the
influence of these two variables and searching for their optimal combinations.

A genetic algorithm (GA) is a random search method abstracted by simulating gene
selection and genetic mechanisms in the natural environment. It can not only solve linear
problems but also can be used to solve nonlinear problems; and genetic algorithm is
sensitive to the problem of discretization, so it has attracted the attention of scholars [4],
and it has been applied to many occasions. At present, scholars worldwide favor the use of
genetic algorithms to optimise the design of the mechanical properties of laminates, and
certain research results have been obtained. Wang et al. [5] applied a multi-island genetic
algorithm to optimise the damage of different loads to the laminate during low-velocity
impact and optimised the laminate sequence. Strain energy was taken as the optimisation
objective and the laying angle as the design variable. Their results show that the impacted
area was reduced by 42.1%, and the residual compression strength increased by 10.79%. It
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is notable that the laying angle was optimised as a continuous variable rather than discrete
as in the other investigations mentioned above. Chen et al. [6] aimed at optimising the fibre
laying angle to achieve the minimum stress of the laminate, and used a genetic algorithm
to obtain the best laying angle and minimum stress of the laminate. Their method realised
the optimisation of the laying angle of two-layer laminates and three-layer laminates by
taking the design variable as a continuous variable.

In order to improve the reliability, some optimisation strategies were proposed by Xiu
and Cui [7], which took the buckling load of laminate as the optimisation objective, and
the laying angle of laminate as constraint condition, and used the neural network model
and genetic algorithm to optimise the ratio of laying angle to the buckling load of the
laminate. The optimisation method proposed in their investigation is capable of producing
a better laying sequence with the same material weight under the condition that the laying
angles are given and the number of layers is a constant; nevertheless, the critical process
parameter, laying angle, cannot be optimised by this method and is just taken as a given
constant. Feng et al. [8] took the strength of laminate as the optimisation objective, and
the laying angle of laminate as the constraint condition. In order to obtain a reasonable
laying angle and ply number, Jin et al. [9] proposed a two-step optimisation strategy and
developed a three-level optimisation model with embedded genetic algorithm and Tsai-Wu
failure criterion. The concept of sublayer was introduced into the optimisation method for
the optimisation of the location of layers, geometric dimensions, number of layers, and
laying sequence. The authors claimed that the introduction of this concept improved the
manufacturability of laminates, however, the laying angle was not optimised in this work.
By embedding the Tsai-Hill failure criterion, Park et al. [10] used genetic algorithms to
apply different loads to the symmetrical composite laminates under different boundary
conditions to perform mechanical optimisation design. Tournament selection and uniform
crossover methods were adopted in the optimisation process. The laying angle was taken
as the design variable as a continuous variable, and a low failure index was obtained. The
results showed that the modified genetic algorithm was capable of identifying a global
optimal solution for the parameter’s optimisation of laid laminates.

Furthermore, new encoding approaches and operators have been developed for ge-
netic algorithms to accelerate the convergence speed and computational accuracy. A genetic
algorithm was used to calculate the fibre laying angle and validated that the calculation
results can effectively improve the strength of the laminate. This work improved the genetic
algorithm by modifying the encoding approach and the integer encoding was embedded in
the iteration process for the laminate parameters optimisation. The advantage of this modi-
fication is that integer encoding has the potential to avoid unnecessary iterations of floating
number, thereby improving the computational efficiency theoretically. The laying angle in
this optimisation was specified to 0◦, ±45◦, and 90◦, leading to weakening the designability
of laminates to some extent. By designing a new mutation operator and crossover operator,
Wang et al. [11] adopted a symbol encoding method for the development of a self-adaptive
genetic algorithm with the bending stiffness parameter as the fitness function. They deeply
explored the influence of the adaptively changing crossover operator and the mutation
operator on the genetic algorithm and further optimised the laying order. Compared with
the traditional genetic algorithm, their modification enhanced the reliability, convergence
speed, and computational efficiency of the optimisation process. Another self-adaptive
genetic algorithm was proposed by Yang et al. [12] through the automatic change of the
mutation rate and crossover rate according to fitness value. This algorithm took the maxi-
mum deformation of laminate as optimisation objective, the laminate angle as constraint
condition, and called ABAQUS to analyse the stress of the laminate. The results show that
this algorithm is easier to get convergence than the traditional genetic algorithm. Hwang
et al. [13] designed an elite comparison operator for the genetic algorithm to accelerate the
iteration process for the optimisation of laminates. This elite comparison operator was used
to identify the differences in the design variables from two different generations, thereby
maintaining the similar ones and changing the different ones to find their possible values.
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Two optimisation problems were solved by this modified genetic algorithm and the results
indicate that the designed operator has the potential to speed up the convergence of the
optimisation process.

The above investigations mainly focus on the change of optimisation parameters,
design of encoding methods, and improvement of operators in the application of traditional
genetic algorithms. However, in order to improve the precision of traditional genetic
algorithms and eliminating the premature phenomenon in the optimisation process, this
article improves the genetic algorithm (improved genetic algorithm, referred as IGA below)
on the basis of the principles of traditional genetic algorithms through the application
of binary coding to explore important gene codes and their locations. In this IGA, the
laying angle is set as the constraint condition, and the minimum stress as the optimisation
objective, which customised this algorithm for the optimisation of process parameters of
laminates tape placement. Based on the Tsai-Wu failure criterion [9], the laying angle and
laying sequence were optimised; and the obtained stress was compared with that of the
traditional genetic algorithm to validate the IGA. In addition, the optimal solutions were
further validated by a finite element analysis of a laminate with the same geometry, loading,
and boundary conditions.

2. Mathematical Model of Laminate and the IGA
2.1. On- and off-Axis Stress Conversion of Laminates

Generally speaking, a multi-layer laminate can be formed by stacking multiple mono-
layer boards at different laying angles. According to the designability of composite materi-
als and the theoretical basis of elastic mechanics, the on-axis direction of the monolayer
boards can be laid at different angles and in different orders according to the loading
conditions to meet the requirements of strength and stiffness design of the structural parts
under the load conditions.

Research for the classical laminate theory (CLT), the establishment and derivation of
formulae are mainly based on the following assumptions:

• The layers of the laminate need to be firmly bonded so that the deformation between
the layers is consistent, and relative slippage between the layers can be avoided;

• Laminates are thin plates with an invariable thickness, and their strength in the
thickness direction is relatively small to negligible in respect to that in other directions;

• The bending deformation of the laminate needs to be in a small deflection range, and
the straight line perpendicular to the midplane must be maintained before and after
the bending deformation while the length of the straight line remains unchanged (viz.
γxz = γyz = 0; εz = 0);

• It is considered that each monolayer of the laminate is in a plane stress state, that is,
the theory of plane stress is suitable for the analysis of the laminate structure of thin
planes, curved surfaces, or shells.

For simplification of the formula derivation process, the median plane of the laminate
is taken as the reference plane, viz. the plane perpendicular to the z-direction at the middle
point of the thickness of the laminate. According to the above assumptions, let the stress
function x and y be ϕ, then the corresponding stress components σx, σy, τxy, are given in
Equation (1) as below:

σx =
∂ϕ2

∂y2 , σy =
∂ϕ2

∂x2 , τxy =
−∂ϕ2

∂x∂y
(1)

Since the classic laminate theory only considers plane stress and ignores the existence
of interlayer stress in the iterative process, the stiffness coefficient of each layer of the
laminate is different so that the internal force of the laminate can only be integrated layer
by layer. Assuming that the stress of the kth layer of the laminate is

{
σk
}

, the internal force
of the laminate can be expressed as:
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
Nx
Ny
Nxy

 =
n

∑
k=1

∫ zk

zk−1


σk

x
σk

y
τk

x

dz,


Mx
My
Mxy

 =
n

∑
k=1

∫ zk

zk−1


σk

x
σk

y
τk

x

zdz (2)

The stress–strain relationship of the kth layer of the laminate is as follows:
σk

x

σk
y

τk
xy

 =


Qk

11 Qk
12 Qk

16

Qk
21 Qk

22 Qk
26

Qk
61 Qk

62 Qk
66




εk
x

εk
y

γk
xy

 (3)

Substituting Equation (2) into Equation (1), and through integration, the stress–strain
relationship of the laminate can be obtained as follows:

Nx
Ny
Nxy
Mx
My
Mxy


=



A11 A12 A16 B11 B12 B16
A21 A22 A26 B21 B22 B26
A61 A62 A66 B61 B62 B66
B11 B12 B16 D11 D12 D16
B21 B22 B26 D21 D22 D26
B61 B62 B66 D61 D62 D66





ε0
x

ε0
y

γ0
xy

kx
ky
kxy


(4)

where, Aij, Bij, Dij are

Aij = ∑n
k=1
∫ zk

zk−1
Qk

ijdz = ∑n
k=1 Qk

ij(zk − zk−1)

Bij = ∑n
k=1
∫ zk

zk−1
Qk

ijzdz = 1
2 ∑n

k=1 Qk
ij
(
z2

k − z2
k−1
)

Dij = ∑n
k=1
∫ zk

zk−1
Qk

ijz
2dz = 1

3 ∑n
k=1 Qk

ij
(
z3

k − z3
k−1
)
 (5)

where, i, j = 1, 2, 6; Aij is the in-plane stiffness coefficient, Bij is the coupling stiffness
coefficient, and Dij is the bending stiffness coefficient.

The flexibility matrix of the laminate is

S′ =
[

A′ B′

H′ D′

]
(6)

where, A′ = A−1 + A−1B(−BA−1B + D)
−1BA−1; B′ = B−1 − A−1BD; H′ = B−1 −

D−1BA−1; D′ = (−BA−1B + D)
−1.

As the presence of the matrix [B] indicated, the laminate is prone to the coupling
of bending deformation and tension and compression deformation when subjected to
force; in addition, in-plane deformation is relatively easy to occur when subject to bending
stress, and further leads to the warpage of the laminate after curing (that is, Bij 6= 0, which
means it is hard for the calculation of laminates). For this reason, the composite material
laminates generally used in engineering should be symmetrically laid (Bij = 0) to avoid the
calculation difficulties caused by the coupling stiffness [14]. Note that symmetry is assumed
in this study to make sure the laminate only subject to tensile strain but no flexure [14],
though it is difficult to always keep symmetry exactly in industry. Therefore, the flexibility
matrix S of the laminate at this time can be simplified as:

S′ =
[

A−1 0
0 D−1

]
(7)

At the same time, through the stress conversion matrix [Tσ], the off-axis stress of each
layer can be converted into the on-axis stress. The specific conversion formula is shown in
Equation (8):



J. Compos. Sci. 2022, 6, 21 5 of 24


σ1
σ2
τ12

 =

 m2 n2 2mn
n2 m2 −2mn
−mn mn m2 − n2


σx
σy
τxy

 (8)

where, m = cos θ, n = sin θ, and θ is the laying angle of each layer of fibres.

2.2. Failure Criterion for Laminates

After comprehensively considering the advantages and disadvantages of multiple
strength criteria, Tsai and Wu [15] proposed a new strength criterion based on the tensor
form. That is, the matrix breaks based on Tsai-Wu criterion, as below:

F11σ2
1 + F22σ2

2 + F66σ2
6 + 2F12σ1σ2 + F1σ1 + F2σ2 = 1 (9)

where, σ1 is the longitudinal stress, σ2 is the transverse stress, σ6 is the shear stress, XT is
the longitudinal tensile strength, XC is the longitudinal compressive strength, YT is the
transverse tensile strength, YC is the transverse compressive strength, S is the shear strength;
F1, F11, F2, F22, and F66 are strength parameters as shown below in Equation (10).

F1 = 1
XT
− 1

XC
F11 = 1

XCXT

F2 = 1
YT
− 1

YC
F22 = 1

YTYC

F66 = 1
S2

 (10)

The value of F12 here has little effect on the calculation of the strength criterion, and
this is validated by the investigation cited here [16]. Then let F12 = 0, the calculation result
of Equation (9) and that of the Hoffman strength criterion are relatively close with an error
of 10%. Hence, Equation (9) is improved as below in Equation (11).

F11σ2
1 + F22σ2

2 + F66σ2
6 + 2F12σ1σ2 + 2F16σ1|σ6|+ 2F26σ2|σ6|+ F1σ1 + F2σ2 = 1 (11)

The value of F16, F26 here is obtained by a semi-empirical formula [17], and the value
of F12 is the value when the Tsai-Wu strength criterion and the Hoffman criterion are the
same. See Equation (12) for details.

F16 = 1
5S
√

XT XC
F26 = 1

5S
√

YTYC

F12 = − 1
2 F11

 (12)

Note that the value of F12 here is not −1/2
√

F11F22 because:

• The absolute value of Equation (12) is relatively not very large, and it is a negative
value, which is reasonable;

• When part of the curves in Figure 1 [15] is under the 0 MPa line, there is a situation
where the value of σ1 is greater than 2XC; and this situation does not exist in reality
because when greater than, fracture has already appeared for composite materials.
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From Equation (11), when the calculated value on the left side of the equation equates
1, it indicates that the material has just reached the critical failure state; when the left side
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is greater than 1, it indicates that damage has begun; when the left side is less than 1, it
indicates that the material is in a safe state, and there is still a certain safety margin.

In order to obtain better calculation speed and expected values in genetic algorithms,
a suitable. fitness value is generally specified. Here, the strength ratio is applied to the
laminate, namely

R =
σi
σ

(13)

where R is the ratio of a certain component of the ultimate stress to the corresponding
component of loading stress, and i = 1, 2, 6.

The meaning of “correspondence” here [18] assumes that the loading is linear, that is, the
stress components increase simultaneously in a certain proportion, and this situation is in line
with the actual application in industrial production. Transforming Equation (13) to get Rσ = σi,
substitute this into Equation (11) and after simplification to produce Equation (14) below.(

F11σ2
1 + F22σ2

2 + F66σ2
6
)

R2 + 2(F12σ1σ2 + F16σ1|σ6|+ F26σ2|σ6|)R2

+(F1σ1 + F2σ2)R = 1
(14)

This is a quadratic equation in one variable. It is easy to get Equation (15) as below.

R =
−b +

√
b2 + 4a

2a
(15)

where:
a = F11σ2

1 + F22σ2
2 + F66σ2

6 + 2(F12σ1σ2 + F16σ1|σ6|+ F26σ2|σ6|)
b = F1σ1 + F2σ2

(16)

Equation (15) is called the strength ratio equation. From the definition of the strength
ratio, it can be seen that when R > 1, the material has not failed; when the applied stress
is increased to (R − 1) times, the material fails. R cannot be less than 1 because this is
mathematically meaningless; on contrast, R < 1 in engineering applications still has a
certain reference value, that is, it indicates that the applied stress must be reduced or the
size of the structure must be increased to ensure that the structure is not damaged.

2.3. Genetic Algorithm and Its Improvement

Genetic algorithm is based on the natural law of survival of the fittest by simulating
the theory of genetics and biological evolution proposed by Darwin, thereby retaining the
excellent genes and individuals [19].

The core content of genetic algorithm mainly includes four parts, namely selection,
crossover, mutation, and fitness evaluation. The optimisation process is shown in Figure 2.
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At present, the improvement of genetic algorithm mainly focuses on self-adaptive
genetic operators, that is, generating a certain number of individuals, improving the
crossover rate and genetic probability between individuals during genetic operations,
and using average fitness to improve calculation efficiency. The method proposed in this
paper is to start from the population; when generating the population, only one individual
is generated. Then the genes of this individual mutate later in the evolution process,
and the gene mutation means gene transfer from one vertex to another according to the
definition of the hyperplane. The calculation is performed by gene mutation; the better
genes and positions are selected through fitness, and negative feedback adjustment is used
to generate individuals with important genes, and then identify the corresponding laying
angle through decoding. The basic mathematical theory mentioned above is:

For the full set space composed of individuals whose gene length is l [20], that is, the
individual space is given in Equation (17)

Ssp = {0, 1}l (17)

where we regard this as the spatial vertex set with the dimension l. When l = 3, it becomes
a three-dimensional cube.

As Figure 3 indicated, for three-dimensional individual space, the genes at each vertex
can be connected by 12 straight lines. It can also be seen that in a straight line, we only need
to change the value of one of the genes, then the gene can be converted into the gene at the
other end of the same line; in any plane, as long as the values of two genes are changed, the
genes at the four vertices can be switched to each other. Therefore, in a three-dimensional
individual space, the straight line and the plane are called the “hyperplane”, and the
interconnection between them constitutes the “subspace” in the space.
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Therefore, according to the above definition of “hyperplane”, for the i-th gene, if

f ((x1, · · · xi−1, 1, xi+1, · · · xl)) ≥ f ((x1, · · · xi−1, 0, xi+1, · · · xl)) (18)

for any xk = 0, 1(k 6= i) holds, or

f ((x1, · · · xi−1, 0, xi+1, · · · xl)) ≥ f ((x1, · · · xi−1, 1, xi+1, · · · xl)) (19)

for any xk = 0, 1(k 6= i) holds, the gene i is taken as an important gene. When Equation (18)
is established, important gene 1 is the better choice; while when Equation (19) is established,
important gene 0 is the better choice.
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Once the “hyperplane” is determined, it is possible to locate the gene value of the
corresponding position after confirming that the gene value of some gene position is valid,
thereby reducing the search range and further reducing the computational workload. The
specific process of the IGA is shown in Figure 4.
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3. IGA Applied to Composite Laminate Design
3.1. Ply Design Requirements for Laminates

For the ply design of laminates, the coupling effect caused by stretching and bending
during the curing process should be avoided since it causes resin cracking, warping
deformation and even delamination for laminates. Therefore, a design generally complies
with the following process design rules [21].
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• Standard laid layers should be adopted, which is supposed to include four angle
values of 0◦, ±45◦, and 90◦, respectively;

• Adjacent 4 monolayers cannot be formed at the same laying angle so as to prevent the
substrate from cracking, and simultaneously a full 90◦ ply should be avoided;

• The proportion of 0◦ laid layers is between 20% and 40%, ±45◦ layers between 40%
and 60%, and 90◦ layers must be between 10% and 30%.

3.2. Genetic Algorithm Coding

In the process of searching optimal solutions, the genetic algorithm generally uses
a finite length string code to define the solution to be solved, such as a binary code. The
layup of a laminate is a matter of discrete variables, so the choice of variables affects the
length of the code string to some extent. Since the other encoding schemes, such as integer
encoding and floating-point number encoding, are not unique in the subsequent mutations,
they are not conducive to genetic operations such as crossover and mutation. Therefore,
traditional binary encoding is selected hereof. The concrete corresponding method is:

00: 0◦; 01: −45◦; 10: 45◦; 11: 90◦

Since the initial population generates randomly, there must be a certain number
of initial individuals that do not meet the requirements of the laminate layup design;
these individuals must be eliminated, and the others that meet the requirements should
remain. The subsequent operations conduct all the above operations for each subsequent
generation, thereby ensuring that the population individuals are suitable. The operation is
like a “human intervention” in nature.

3.3. Fitness Function

In the genetic algorithm, fitness is used to evaluate the goodness of individuals adapt-
ing to the “environment”, thereby further weighing the degree to which individuals can
reach or approach the optimal solution in the process of genetic evolution [22]. Therefore,
the fitness function selected for this calculation is

Rs = R− (5n1 − 10n2) i = 1, 2 . . . n (20)

where, n is the total number of laminates, R(i) is the strength ratio of each layer of fibre,
n1 is the number of adjacent four layers with the same laying angle, n2 is the number of
layers that do not meet the requirements of the layup ratio, 5n1 + 10n2 is the penalty factor.
Because the initial individuals generated may not all meet the design requirements of the
laminate, as mentioned above, a certain high penalty is required for the fitness factor in
the searching process. Hence, through reduction of the fitness function value of unsuitable.
Individuals, the probability of being selected in selection replication is further reduced. In
actual operations, there may be a phenomenon that a high penalty makes Rs a negative
value, and such a value is not conducive to the calculation of the subsequent results.
Therefore, when it is a negative value, set Rs = 0.05, thereby forcing it to become a small
positive value by “human interference” to facilitate subsequent calculations. According
to the equations above, the optimisation process of the strength of laminate by the IGA
algorithm is the process of analysing and calculating the best strength ratio of the single
layer in the population.

3.4. Relevant Parameters Selection

In this paper, T300/5228 epoxy carbon fibre with good specific strength is selected,
and the material parameters are shown in Table 1.
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Table 1. Mechanical properties of T300 epoxy resin carbon fibre.

E1/Gpa E2/Gpa XT/MPa XC/MPa G12/Gpa YT/MPa YC/MPa S/MPa µ1 ρ/(kg/m3)

144 9.3 1633 1021 4.68 53.8 232 90 0.312 1610

In an optimisation process, the communication of individuals between populations
is not a complete fusion, but on the basis of absorbing each other’s excellent genes and
simultaneously ensuring that their own excellent genes are preserved. Therefore, indi-
viduals need to use different crossover rates PC and mutation rates Pm. Furthermore, the
values of PC and Pm also affect the global and local search capabilities and lead to different
optimisation results; empirically, researchers recommend to adopt a large value of PC and
small value of Pm. Here in this article, the two probability factors are specified as 0.95 and
0.005, respectively. The specific parameter settings related to the genetic algorithm are
detailed in Table 2.

Table 2. Parameter settings of genetic algorithm.

PC Pm Population Size Maximum Number of Iterations

0.95 0.005 20 500

At the same time, in order to speed up the optimisation process, the evaluation
parameters of the adaptive genetic operator are introduced [23], namely

U =
Rmax − Ravg

Ravg − Rmin + ε
(21)

where, Rmax is the maximum fitness value in each generation of individuals; Ravg is the
average fitness value in each generation of the population; Rmin is the minimum fitness
value in each generation; ε is an infinitesimal with the main purpose to prevent the extreme
case of 0 in the denominator.

Through Equation (21), the value of PC and Pm in the two cases of U > 1 and U < 1 is
further derived so as to speed up the calculation speed.

4. A Case Study
4.1. Relevant Parameters Selection

Given that a rectangular composite laminate beam with four sides simply supported
is designed, the size of the laminate is, length b = 2l with the value of 1300 mm, width
a = 132 mm, thickness h = 2.25 mm, and the bearing pressure perpendicular to the surface
q = 0.5 MPa. The design adopts a symmetrical 18-layer layup scheme. The geometric model
of the laminate is illustrated in Figure 5.
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The schematic diagram of the simply supported laminate beam is shown in Figure 6,
as below.
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Since σy is caused by the lateral load q, and q is a fixed value, which means that σy is a
function of y, here we can set (See the detailed derivation process of the equations in this
section at the Appendix A.)

σy = f (y) =
∂2 ϕ

∂x2 (22)

Then integrating Equation (22) it becomes

σy =
1
2

x2 f (x) + x f1(x) + f2(y). (23)

Substituting Equation (23) into compatibility Equation (26) it becomes

x2

2
d4 f (y)

dy4 S11 +
(

d4 f1(y)
dy4 S11 − 2 d3 f (y)

dy3 S16

)
x + (2S11 + S66)

d2 f (y)
dy2 − 2 d2 f1(y)

dy2 S16

+ d4 f2(y)
dy4 S11 = 0

(24)

where, the balance equation and compatibility equation are shown in Equations (25) and
(26), and the stress function ϕ is shown in Equation (1) above

∂σx
∂x +

∂τxy
∂y = 0

∂σy
∂y +

∂τxy
∂x = 0

 (25)

∂σx
∂x +

∂τxy
∂y = 0

∂σy
∂y +

∂τxy
∂x = 0

 (26)

If for any x, Equation (23) holds, then all the coefficients of Equation (24) need to be 0,
that is

S11
2

d4 f (y)
dy4 = 0

d4 f (y)
dy4 S11 − 2 d3 f (y)

dy3 S16 = 0

(2S11 + S66)
d2 f (y)

dy2 − 2 d2 f1(y)
dy2 S16 +

d4 f2(y)
dy4 S11 = 0.

(27)

Hence, it can set f (y) as

f (y) =
A1

6
y3 +

A2

2
y2 + A3y + A4 (28)
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According to the principle of Saint-Venant it gives

τxy = 0 y = ± h
2

σy = q y = + h
2

σy = 0 y = − h
2

} . (29)

At the same time, the component force according to the shear stress is Q, namely

Q = −ql x = l . (30)

Substituting Equation (28) into boundary condition Equations (29) and (30), and
according to the axial component force in the axial direction is 0, the stress expression of
σx, σy, τxy can be derived as [24]

σx = 12q
h3

(
2S12+S66

6S11
y3 − 1

2 x2y
)
+
(

6ql2

h3 −
3q

10h
2S12+S66

S11

)
y

σy = − 2q
h3 y3 + 3q

2h y + q
2

τxy = x
(

6q
h3 y2 − 3q

2h

) (31)

In order to conduct optimisation, R is first obtained by combining Equations (31) and
(15) according to the above requirements, and then it is substituted into Equation (20) to
produce the penalty fitness function; and the MATLAB script was written. For speeding up
the convergence process, here the adaptive operator of Equation (21) was introduced, then
the size of the crossover rate PC was calculated and so was the mutation rate Pm between
individuals, thereby further obtaining the target value. The compiled calculation program
was conducted on a PC with the CPUs (AMD Ryzen 71700 Eight-Core Processor, 2.99 GHz);
and the important gene was 0 with 2 important gene positions, which were the 1st and 5th
genes, respectively. In order to avoid contingency caused by one or two cycles, the program
for finding important genes was run repeatedly and the important genes generated after
each cycle were counted and sorted, and then through counting the number of occurrences
and position numbers, finally it got the important gene positions as the 1st and 5th genes.
Then injecting the obtained important genes into new individuals randomly generated,
the strength ratio R was obtained during the evolution process. It needs to run multiple
times to prevent local convergence that may occur accidentally and fail to reach the global
convergence value.

4.2. Results Discussion

The optimisation diagram of final strength ratio R is shown in Figure 7. It suggests that
after multiple runs, almost all optimisation curves had fluctuated in the fitness value in the
early stage. This is because it is necessary to determine whether the population individual
meets the requirements of the layup design after each iteration; if not, eliminate them
and introduce new individuals. Therefore, in the continuous genetic evolution process,
individuals that did not meet the requirements were eliminated, and new individuals
that meet the requirements were added in thereby ensuring that the original design layup
criteria were always met.

This value always changed in the optimisation process in the later stage. As indicated
by the first, fourth, fifth, and seventh optimisation curves in Figure 7, the best strength
ratio appeared at a certain genetic stage, and the genetic generation number was kept short.
The “best value” is produced by “gene mutation” and is not the global optimal solution.
Simultaneously, the 4th and 7th optimisation curves gradually increase with the number of
iterations. Although the optimal strength ratio was found due to the “gene mutation”, the
final optimisation curve converges locally, which also indicates that the genetic algorithm
has the disadvantage of local convergence, and thus, unable to find the global optimal
solution smoothly.
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In order to determine whether the curve is reasonable and whether the calculation
result meets the initial design requirements, the curve was processed through polynomial
data fitting. The seven strength ratios were averaged in the fitting process, and the final
fitting result is shown in Figure 8.
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The expression of the red curve in Figure 8 is given below as,

R = A4n4 + A3n3 + A2n2 + A1n + A0 (32)

where
A4 = −6.5604e− 13 A3 = −7.3372e− 10

A2 = −2.4327e− 7 A1 = 3.0651e− 5
A0 = 3.8198

(33)

According to statistics, Goodness of fitting T2 is the indicator to evaluate the degree of
fit [25]. It is expressed in Equation (34) below.

T2 =
∑N

i=1
(

R̂i − R
)2

∑N
i=1 (Ri − R)2 (34)

where, R̂i is the fitted value; R is the average value of the initial data; Ri is the i-th initial
data. Putting the average of the strength ratios of the IGA algorithm into Equation (34),
it becomes T2 = 0.943. The value range of T2 is 0 to 1. The closer to 1, the better the
fitting effect is. In order to further determine the reliability of this improved algorithm, the
number of iterations was increased up to 550 generations, and the optimisation iteration
was performed three times with their results averaged. At the same time, the calculation
result of the fitted curve was substituted for comparison, as shown in Figure 9.
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Figure 9. The curve of reliability of the IGA.

Figure 9 shows that after 550 generations with the maximum difference ratio of 0.1%,
the minimum difference ratio of −0.18%, the maximum difference range of 0.208%, and T2

of 0.943 at the same time; hence, it can be considered that the IGA algorithm and the fitted
curve are reliable.

It can be seen from Tables 3 and 4 and Figure 7 that when the number of iterations
evolves to 52 generations at the earliest stage, the strength ratio R reaches the maximum
value of 3.825, suggesting a significant improvement with the increase rate of 48.83%, and
further, in the iterative process, the laying angle ±45◦ gradually approaches the outermost
layer, which can also effectively improve the impact resistance and stability of the laminate.
At the same time, through decoding the optimised layering scheme inversely, it suggests
that the number of genes 0 is gradually increasing. This gradual increase also shows that
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0 is an important gene, which is consistent with the initial calculation results. Compared
with the traditional genetic algorithm, in order to ensure a single variable, the population
initially formed by the IGA was retained, and simultaneously ensuring that other initial
settings remained unchanged; then optimisation iterations were performed. The calculation
results are shown in Figure 10 and Table 5.

Table 3. Calculation data for searching for the optimal solution.

Earliest Number of Iterations Converging Globally? Strength Ratio/R

321 Y

3.825

374 Y
52 Y

467 N
311 Y
372 Y
242 N

Table 4. Comparison before and after layup optimisation.

Strength Ratio/R Layup Scheme/◦

Before optimisation 2.57 [0/+45/90/−45/0/+45/−45/90/−45]S *
After optimisation 3.825 [−45/+45/−45/+45/0/90/0/0/90]S *

* The small “s” next to the right bracket denotes symmetric layup hereof.
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Table 5. Calculation results of traditional genetic algorithm.

Earliest Number of Iterations Strength Ratio R Layup Scheme/◦

12/22/172/41/22/24/25 8.819 [9]S *
* “[9]” denotes there are nine layers with a laying angle of 0◦.

Figure 10 presents that the strength ratio R obtained by the GA algorithm mainly
shows an increasing trend at the beginning, and the maximum strength ratio R is 8.819. At
the same time, Table 5 shows that the laying angles are all 0◦ at this stage, and then the
strength ratio R fluctuates. This can be attributed to the “gene mutation” due to mutation
during the evolution process. From Table 4, it is known that the “gene mutation” has
produced Gene 1; however, as indicated by the layup scheme in Table 4, the laying angle
does not meet the original design criteria, which led to the phenomenon of “prematurity”.

At the same time, through the comparison between Figures 7 and 10 it results that:

• Due to the existence of “gene mutation”, the IGA algorithm identifies the optimal
strength ratio, but due to the existence of local convergence, it is necessary to rely on
“gene mutation” to find the optimal strength ratio. Hence, “gene mutation” cannot
be removed in actual operation. At the same time, in order to avoid contingency, it is
necessary to run multiple times to ensure the unity of the results, thereby preventing
local convergence produced by a single run. The GA algorithm has an “unreasonable”
maximum strength ratio in the 149th generation, and this reversely indicates the
occurrence of the “premature” phenomenon.

• The average running time of the IGA algorithm is 217.41 s, while the traditional genetic
algorithm is 275.293 s. It is obvious that the IGA algorithm has a certain improvement
in its iterative operation efficiency, with an increase of 21.03%.

5. FEM Validation

In order to validate the proposed IGA, a finite element model of a laminate was
developed with a length of 1200 mm, a width of 130 mm, and thickness of 2.25 mm.
The laminate has a total of 18 monolayers with a thickness of each layer of 0.125 mm.
The Laminate plate was constrained by fixed the x, y, and z directions on all four sides
(U1 = U2 = U3 = 0). That is to say, the laminate plate was set as a simply supported beam.
Then the plate was meshed with hexagonal shell elements with eight nodes (SC8R) and
reduced integration. A uniform load of 0.5 MPa was applied perpendicular to the x–y
plane of the laminate plane. Finally, the finite element analysis was conducted through the
commercial software ABAQUS and the simulation results before and after optimisation
were obtained, as shown in Figure 11.

As indicated by Figure 11a,b, the maximum stress in the fibre direction before op-
timisation is 116.0 MPa, and the maximum stress after optimisation is 100.9 MPa. The
stress value is greatly reduced, and the reduction ratio reaches 13.02%, indicating that the
optimisation results meet the initial requirements. The stresses at the other two directions,
namely s22 and s12 changed from 8.57 MPa and 8.80 MPa to 5.464 MPa and 11.11 MPa,
respectively. These two directions are not the directions mainly subject to applied forces
and the corresponding stresses are also relatively small to s11. At the same time, it can be
found from the figures that the maximum stress is mainly concentrated on the two long
sides of the laminate. This is because the use of four-sided simple support leads to stress
concentration.
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6. Conclusions

Through the development of an IGA, the laying angle and laying sequence of laminates
were optimised and the optimal results were compared with those of traditional genetic
algorithms. The reliability of the optimisation was further validated by comparison with
the finite element analysis results and the conclusions are drawn as below.

• Based on the genetic algorithm, this paper optimised the layering angle of laminate,
and adopted the identification of important genes to determine the important genes
and their positions and reduced the query range so that the calculation cost in terms
of time was reduced by 21.03%.
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• In the process of genetic evolution, the operation “gene mutations” is essential and
indispensable, and it proves that the “gene mutation” has the potential to facilitate the
identification of global optimal solutions.

• Through the development of MATLAB script, it found the important genes were the
first and fifth genes. The optimisation results show that the improved strength ratio is
3.825, and the optimal laying angle is sequentially [−45◦/+45◦/−45◦/ 45◦/0◦/90◦/0◦/
0◦/90◦]s.

• The stresses before and after the optimisation were 116.0 MPa and 100.9 MPa, respec-
tively, with a decrease of 13.02%. This comparison validates the IGA and the optimal
results can provide a reference for engineering design.
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Nomenclature

Qk
ij off-axis modulus of row i and column j

R̂i the fitted value
σk

x the stress of kth layer along x direction
σk

y the stress of kth layer along y direction
τk

xy the shear stress of kth layer in x–y plane
A′ in-plane flexibility matrix
Ai polynomial coefficients, i = 0 . . . . . . 4
Aij in-plane stiffness of row i and column j in matrix
B′ coupling flexibility matrix
Bij coupling stiffness of row i and column j in matrix
D′ bending flexibility matrix
Dij bending stiffness of row i and column j in matrix
Fi, Fij strength parameter, i, j = 1, 2, 6 respresnting x, y, and x–y direction, respectively
R the average value of the initial data
Ravg mean fitness values of individuals in each generation
Ri the i-th initial data
Rmax maximum fitness in each generation of individuals
Rmin minimum fitness value in each generation of individuals
Rs fitness function
S′ flexibility matrix
S′11 flexibility coefficients
S′16 flexibility coefficients
S′66 flexibility coefficients
S′ij flexibility coefficient of row i and column j in matrix
Ssp individual space
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XC longitudinal compressive strength
XT longitudinal tensile strength
YC transverse compressive strength
YT transverse tensile strength
n1 number of same layering angles for four consecutive layers
n2 number of layers that do not meet the ratio requirement
xi the kth gene
PC crossover probability
Pm mutation probability
γ0

xy the shear strain of middle plane in x–y plane
γk

xy the shear strain of kth layer in x–y plane
ε0

x the strain of middle plane along x-direction
εk

x the strain of kth layer along x-direction
ε0

y the strain of middle plane along y-direction
εk

y the strain of kth layer along y-direction
σ1 the stress of kth layer along fibre direction
σ2 the stress of kth layer along the vertical fiber direction
σ6 the shear stress of layer in-plane
τ12 the shear stress of kth layer in-plane
a width of laminate
b length of laminate
E1 longitudinal modulus of elasticity
E2 transverse modulus of elasticity
G12 shear modulus of elasticity in the plane of the lamina
h thickness of laminates
k kth layers
Mx the bending moment of x-direction
Mxy the torque of x–y plane
My the bending moment of y-direction
n total number of layers
Nx the force of x-direction
Nxy the shear force of x–y plane
Ny the force of y-direction
Q shear stress
q uniform loading pressure
R the ratio of a certain component of the ultimate stress to the corresponding

component of loading stress.
S the shear strength in x–y plane
T the indicator to evaluate the degree of fitting
x the fiber direction
y the vertical fiber direction
Zk the z coordinate of kth layer
Zk−1 the z coordinate of k − 1th layer
µ1 poisson’s ratio in the x-direction
ρ density
ϕ stress function
U genetic operator evaluates parameters
l half-length of laminate
ε an infinitesimal value

Appendix A

Considering a composite beam with simply supported ends, it has{
σz = 0

τyz = τzy = τzx = τxz = 0
(A1)

Here, only σx, σy, τxy are not zero. Then according to statics, it obtains the following
expressions.
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• Balance equation (ignoring body stress)


∂σx
∂x +

∂τxy
∂y = 0

∂σy
∂y +

∂τxy
∂x = 0

(A2)

Let stress ∅ be a function of x, y, the following relationship holds:

σx =
∂2∅
∂y2 , σy =

∂2∅
∂x2 , τxy = − ∂2∅

∂x∂y
(A3)

• Geometric compatibility equations

∂2εx

∂y2 +
∂2εy

∂x2 =
∂2γxy

∂x∂y
(A4)

• Physical equations

S = A−1 (A5)


εx = S′11σx + S′12σy + S′16τxy

εy = S′12σx + S′22σy + S′26τxy

γxy = S′16σx + S′26σy + S′66τxy

(A6)

• Substituting (A3) into (A6) and then into (A4), it can obtain the equation below,

S′22
∂4∅
∂x4 − 2S′26

∂4∅
∂x3∂y

+
(
2S′12 + S′66

) ∂4∅
∂x2y2 − 2S′16

∂4∅
∂x∂y3 + S′11

∂4∅
∂y4 = 0 (A7)

The expressions of σx, σy, τxy from (A7) as below
1© Since σy is caused by the constant shear force q, and its value does not depend on x,

it is a function of y. Therefore, we can set σy = f (y)

∂2∅
∂x2 = σy = f (y) (A8)

Through integral formula (A8), it can produce:

∅ =
1
2

x2 f (y) + x f1(y) + f2(y) (A9)

2© Therefore, substituting (A9) into the compatible equation, each item of (A7) can be
obtained as follows:

∂4∅
∂x4 = 0, ∂4∅

∂x3∂y = 0

∂4∅
∂x2y2 = d2 f (y)

dy2

∂4∅
∂x∂y3 = x d3 f (y)

dy3 + d3 f1(y)
dy3

∂4∅
∂y4 = x2 d4 f (y)

2dy4 + x d4 f1(y)
dy4 + d4 f2(y)

dy4

(A10)

Substituting into the compatible Equation (A4), it becomes

(
2S′12 + S′66

)d2 f (y)
dy2 − 2S′16

(
x

d3 f (y)
dy3 +

d3 f1(y)
dy3

)
+ S′11

(
x2 d4 f (y)

2dy4 + x
d4 f1(y)

dy4 +
d4 f2(y)

dy4

)
= 0 (A11)
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If it holds for any x of the above formulas, then it gets

S′11
2

d4 f (y)
dy4 = 0 (A12a)

S′11
d4 f1(y)

dy4 − 2S′16
d3 f (y)

dy3 = 0 (A12b)

(
2S′12 + S′66

)d2 f (y)
dy2 − 2S′16

d3 f1(y)
dy3 + S′11

d4 f2(y)
dy4 = 0 (A12c)

If (a) holds, then

f (y) =
A1y3

6
+

A2y2

2
+ A3y + A4 (A13)

If (b) holds, then

f1(y) =
A1

12
S′16
S′11

y4 +
B1

6
y3 +

B2

2
y2 + B3y + B4 (A14)

Because B4 is not used in next equation, it can be omitted.
If (c) holds, then

f2(y) =

[
1
30

A1

(
S′16
S′11

)2

− A1

120

(
2S′12 + S′66

)
S′11

]
y5 +

[
1

12
B1

S′16
S′11
− A2

24

(
2S′12 + S′66

)
S′11

]
y4 +

C1

6
y3 +

C2

2
y2+C3y + C4 (A15)

Because (C3 y + C4) is not used in next equation, it can be omitted.
Finally, through combining the Equations (A13)–(A15), it obtains stress function as

below,

∅ = 1
2 x2 f (y) + x f1(y) + f2(y) = 1

2 x2
(

A1y3

6 + A2y2

2 + A3y + A4

)
+

x
(

A1
12

S′16
S′11

y4 + B1
6 y3 + B2

2 y2 + B3y
)
+

[
1

30 A1

(
S′16
S′11

)2
− A1

120
(2S′12+S′66)

S′11

]
y5+[

1
12 B1

S′16
S′11
− A2

24
(2S′12+S′66)

S′11

]
y4 + C1

6 y3 + C2
2 y2

(A16)

Through the expression of ∅, here it obtains its stress component σx, σy, τxy

σx = ∂2∅
∂y2 =

[
2
3 A1

(
S′16
S′11

)2
− A1

6
(2S′12+S′66)

S′11

]
y3 +

[
A1

S′16
S′11

x + B1
S′16
S′11
− A2

2
(2S′12+S′66)

S′11

]
y2+[

A1
2 x2 + B1x + C1

]
y +

[
A2
2 x2 + B2x + C2

]
σy = f (y) = A1y3

6 + A2y2

2 + A3y + A4

τxy = −
(

∂2∅
∂x∂y

)
= −

[
x
(

A1
2 y2 + A2y + A3

)
+ A1

3
S′16
S′11

y3 + B1
2 y2 + B2y + B3

]
(A17)

1. When the upper and lower boundaries y = ±h/2, τxy = 0 (this holds for any x),
through the above equation, the relational expressions of A2, A3, B1, B2, B3, and A1
can be derived.

x
(

A1
2

h2

4 + A2
h
2 + A3

)
+ A1

3
S′16
S′11

h3

8 + B1
2

h2

4 + B2
h
2 + B3 = 0

x
(

A1
2

h2

4 − A2
h
2 + A3

)
− A1

3
S′16
S′11

h3

8 + B1
2

h2

4 − B2
h
2 + B3 = 0

(A18)
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Because τxy = 0 holds for any x, the first items of the Equation (A18) can produce:
A1
2

h2

4 + A2
h
2 + A3 = 0

A1
2

h2

4 − A2
h
2 + A3 = 0

(A19)

Solving the Equation (A19), A2 = 0 A3 = − h2

8 A1 can be obtained. The other items of
the Equation (A18) can produce:

A1
3

S′16
S′11

h3

8 + B1
2

h2

4 + B2
h
2 + B3 = 0

− A1
3

S′16
S′11

h3

8 + B1
2

h2

4 − B2
h
2 + B3 = 0

(A20)

Solving the Equation (A20), B3 B2 can be obtained B3 = − h2

8 B1

B2 = − h2

12
S′16
S′11

A1 =
S′16
S′11

q
h

(A21)

When the upper and lower boundaries the y = ±h/2, the equations of{
y = + h

2 , σy = q
y = − h

2 , σy = 0
,σy = f (y) = A1y3

6 + A2y2

2 + A3y + A4 hold. Then the relational ex-

pression of A2, A3, A4 and A1 can be derived. The derivation process is shown as below
A1
6

h3

8 + A2
2

h2

4 + A3
h
2 + A4 = q

− A1
6

h3

8 + A2
2

h2

4 − A3
h
2 + A4 = 0

(A22)

Solving the Equation (A22), A3 A4 can be obtained A3 = q
h −

h2

24 A1

A4 = q
2 −

h2

8 A2 = q
2

(A23)

From the Equations (A19) and (A23), A1 A3 can be obtained A1 = −12 q
h3

A3 = 3q
2h

(A24)

2. With the boundary of x = l, the shear force Q = −ql,

h
2∫

− h
2

{
−
[

x
(

A1

2
y2 + A2y + A3

)
+

A1

3
S′16
S′11

y3 +
B1

2
y2 + B2y + B3

]}
dy = −ql (A25)

Then the relational expression of A2, A3, B1, B2, B3 and A1 can be derived. The deriva-
tion process is shown, as below

(
−A1

2
l
1
3

y3 − A2l
1
2

y2 − A3ly− A1

3
S′16
S′11

1
4

y4 − B1

2
1
3

y3 − B2
1
2

y2 − B3y
)∣∣∣∣

h
2

− h
2

= −ql (A26)

Integration of the above formula, it produces

lA1 + B1 =
24ql − 24hlA3 − 24hB3

h3 (A27)
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Because A3 = 3q
2h as shown in Equation (A24) and B3 = − h2

8 B1 in Equation (A21),
B1 and B3 can be obtained here as below.{

B1 = 0

B3 = − h2

8 B1 = 0
(A28)

3. Since the σx at the x-axis direction is zero; the moment is also zero. Hence, it gives
∫ h

2
− h

2
(σx)x=ldy = 0 (A29a)∫ h

2
− h

2
(σx)x=lydy = 0 (A29b)

Through this Equation (A29), the relational expression of A2, B1, B2, B3, C1, C2, and A1
can be derived. From (a) of (A29), it gets C2 = 0; and from (b) of (A29), it gets C1 =

6
5

q
h

(
S′16
S′11

)2
+ 6 ql2

h3 − 3
10

q
h
(2S′12+S′66)

S′11
Finally, here the coefficients, A1, A2, A3, A4, B1, B2, B3, C1,

C2 are all been obtained, the following equation holds:

∅ = 1
2 x2
(
− 2q

h3 y3 + 3q
2h y + q

2

)
+ x
(
− q

h3
S′16
S′11

y4 +
S′16q

2S′11h
y2
)
− 2q

5h3

[(
S′16
S′11

)2
−
(

2S′12+S′66

)
4S′11

]
y5+

1
6

[
6q
5h

(
S′16
S′11

)2
+ 6ql2

h3 −
3q

10h
2S′12+S′66

S′11

]
y3

(A30)

Finally, σx, σy, τxy can be obtained through Equation (A30) as below.

σx =
−12q

h3

{[
2
3

(
S′16
S′11

)2
− 2S′12+S′66

6S′11

]
y3 +

S′16
S′11

xy2 + 1
2 x2y

}
+[

6q
5h

(
S′16
S′11

)2
+ 6ql2

h3 −
3q

10h
2S′12+S′66

S′11

]
y +

S′16
S′11

q
h x

σy = − 2q
h3 y3 + 3q

2h y + q
2

τxy = −
[

x
(
− 6q

h3 y2 + 3q
2h

)
− 4q

h3
S′16
S′11

y3 +
S′16
S′11

q
h y
]

(A31)
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