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Abstract: A model that predicts the stiffness degradation in multidirectional reinforced laminates
due to off-axis matrix cracks is proposed and evaluated using data from fatigue experiments. Off-axis
cracks are detected in images from the fatigue tests with automated crack detection to compute
the crack density of the off-axis cracks which is used as the damage parameter for the degradation
model. The purpose of this study is to test the effect of off-axis cracks on laminate stiffness for
different laminate configurations. The hypothesis is that off-axis cracks have the same effect on the
stiffness of a ply regardless of the acting stress components as long as the transverse stress is positive.
This hypothesis proves to be wrong. The model is able to predict the stiffness degradation well for
laminates with a ply orientation similar to the one used for calibration but deviates for plies with
different in-plane shear stress. This behavior can be explained by the theory that off-axis cracks
develop by two different micro damage modes depending on the level of in-plane shear stress. It is
found that besides influencing the initiation and growth of off-axis cracks, the stiffness degradation is
also mode dependent.

Keywords: crack detection; fiber-reinforced polymers; fatigue damage model; composite fatigue;
off-axis cracks

1. Introduction

Components made from multidirectional fiber-reinforced composite laminates experi-
ence several distinct damage mechanisms when exposed to fatigue loads. The macroscopic
damage mechanisms are matrix cracks, delamination, and fiber failure. This sequence of
damage mechanisms during fatigue loading can be categorized into characteristic damage
states [1]. The first fatigue-damage state of multi-axial laminates is matrix cracking in
off-axis plies where multiple matrix cracks develop and grow in number and length. These
so-called off-axis cracks typically span the whole thickness of a ply and propagate along the
fiber direction. One of the main effects of off-axis cracks is a significant stiffness reduction
of the laminate but not immediate failure of the component [2–8].

Since multiple similar cracks form under fatigue loading, the crack density is used
as a measure for the amount of damage in the material in many progressive damage
models [9–17]. These models describe the evolution of off-axis cracks as well as their
effect on the stiffness of a laminate. Therefore, off-axis crack densities are often used
in the development and calibration of these models or to compare their predictions to
experimental data. Transmitted or transilluminated white light imaging (TWLI) can be
used for transparent composites like glass fiber-reinforced polymers (GFRPs). It is an
efficient, reliable and relatively simple method to capture off-axis cracks [2,10,18–20]. TWLI
uses a light source placed behind a transparent specimen and a camera on the other side.
An undamaged specimen appears bright as it only absorbs a small portion of the light.
Cracks, on the other hand, scatter the light and therefore appear as dark lines in the images.
For non-transparent laminates, more sophisticated techniques like computed tomography
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may be used [21]. Up to now, a few methods have been developed to compute the crack
density from TWLI images. The simplest is to count all cracks along a straight line normal
to the fiber direction and divide the number of counted cracks by the length of the line.
This method only takes the number of counted cracks and not their length into account
and the results are influenced by the selection of the path. As shown in Refs. [17,22,23],
including the crack length results in an improved description of the average damage state
of the material. A better approach that includes some information of the crack length is
the weighted crack density used by Quaresimin et al. [7]. It clusters the cracks into eight
groups of crack lengths and then computes a weighted average. Still, manually counting
and categorizing the cracks is labor intensive and prone to human errors. An automated
algorithm that takes the images as input and detects all cracks in a given direction has
been developed by Glud et al. [24]. Based on this algorithm, we have developed CrackDect,
an open-source package for evaluating crack densities [25]. With this package, even large
fatigue test series can be evaluated efficiently. Figure 1 qualitatively shows the evolution of
off-axis cracks and the associated stiffness degradation as well as examples of images taken
during fatigue tests. CrackDect takes these images and computes the crack density.

Figure 1. Evolution of off-axis cracks during fatigue tests. The stiffness stays constant as long as there
are no cracks (1). After the onset of matrix cracking (2), the cracks grow in number and size and the
stiffness starts to decrease due to the damage. (3) The last stage of matrix damage in composites is
crack saturation and finally total failure usually due to other damage mechanisms like fiber failure
and delamination.

Many fatigue models have been developed to describe the effect of fatigue damage in
composite laminates. Degrieck and Van Paepegem [26] sorted them into three categories:
fatigue life models, phenomenological models, and progressive damage models. To accu-
rately describe the effect of distinct damage modes, progressive damage models are the
most promising candidates since they take the actual cause of the degradation of a mechan-
ical property—the damage—into account. Usually, this is done in a two step approach. In
the first step, a damage model describes the evolution of a damage variable with respect to
the undamaged material. The second step computes the effect of this damage on mechan-
ical properties. Many models have been developed that establish a connection between
off-axis cracks and laminate stiffness [9–17,27]. Often, the Finite Element Method (FEM) is
used to compute the elastic response of a laminate. One widely-used approach is to model
a representative volume element of the laminate with cracks in one or more plies [17,19].
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Resolving the laminate into its plies and computing the effect of cracks on the ply-level has
the advantage that the elastic response of any laminate can be computed. The drawback of
FEM is that it is time-consuming when implemented as a sub-model for evaluation of large
composite structures. Carraro et al. [9] further compared several modeling techniques and
developed an analytical model based on shear lag analysis with the capability to compute
the elastic response of any symmetric laminate. One drawback of this model is that the
laminate must be symmetric and the elastic response is computed for cracks in both sym-
metric plies. This means that bending loads which yield unsymmetrical stress distributions
in the laminate cannot be accounted for. Schuecker et al. [27] proposed a static damage
model that computes the stiffness degradation based on the Mori-Tanaka method. The
Mori-Tanaka method is a micro-mechanical approach to compute homogenized material
properties of a material consisting of a matrix and an embedded inclusion [28]. This allows
to compute the stiffness degradation for each ply separately and then combine all plies
using classical laminate theory to compute the overall stiffness of the damaged laminate.
In Schuecker’s approach, the effect of crack-like void inclusions on the stiffness of a ply is
computed. Even though this model has been developed for static load cases, it should also
be applicable to fatigue since the stiffness degradation is only dependent on the amount of
cracks. The main advantages of this model are:

1. The Mori-Tanaka homogenization scheme computes the effect of damage on the
stiffness. The resulting stiffness tensor is positive, definite and symmetric. Therefore it
meets the thermodynamic limits of the engineering constants of the damaged material
without having to develop individual correlations for all the independent engineering
constants [29].

2. The model can be calibrated easily to a new material. All data to calibrate the model
can be obtained with standard static and fatigue tests.

3. The stiffness degradation is ply-based. Classical laminate theory is used to compute
the overall stiffness of the laminate. Therefore, stress-redistribution to other plies
is automatically accounted for. The model builds on well-established methods and
focuses on efficiency.

Naturally, the model has limitations and prerequisites arising from classical lami-
nate theory and the Mori-Tanaka method, but it has proven to provide an overall rela-
tively simple yet effective approach to compute stiffness degradation of laminates due to
cracks. Also, it does not consider delaminations or other damage mechanisms of composite
laminates [27,30].

In this work, Schuecker’s degradation model is combined with crack detection by
replacing the evolution function for static loads by the crack evolution detected from
experimental data. Based on the off-axis crack density from experiments, the stiffness
degradation computed by the degradation model is compared to experimental stiffness
data. Opposed to other works like [31], where crack densities of similar specimens have
been averaged, we take the crack density of each individual test and compute the result-
ing stiffness degradation. This enables a comparison of experimental stiffness data and
predictions based on experimental crack density data for individual specimens. Also, a
mostly-automated procedure to fit experimental crack density data from the automated
crack detection is presented.

2. Methods
2.1. Experimental Fatigue Data

Experimental data from fatigue tests of ±θs GFRP laminates from [32] is used for
comparison with computations of the damage model. The specimens with a gauge length
of 100 mm, a width of 20 mm, and a thickness of 2 mm (12 layers) had been cut from
GFRP laminate plates produced from a unidirectional glass fiber weave and epoxy resin.
The plates had been produced by vacuum pressing manually-impregnated glass fiber
layers. The stacking sequence of the laminates is [+θ3/− θ3]s. For the fatigue tests, stress-
controlled sinusoidal load cycles with an R-ratio of 0.1 and a frequency of 5 Hz had been
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periodically interrupted to perform displacement-controlled quasi-static tensile tests. The
servo-hydraulic material testing system MTS 810 by MTS Systems Corporations had been
used for all tests with an optical displacement measurement system (CV-X100 by Keyence)
to provide a free field of few for the images taken during the tests. This procedure allows
to track the change in stiffness as a function of the number of cycles and take images for
the crack detection. For a more detailed description of the experimental setup, the reader is
refered to [32]. In addition to the stiffness of the laminates, the crack density is evaluated
from TWLI images with crack detection. For this work, the results of the fatigue tests for
±45°, ±60°, and ±75° laminates are used. Laminates with a ply orientation of less than
±45° show delamination as the main damage mode and only little off-axis cracks. The
unidirectional 90° laminates show hardly any cracks before final failure.

For each laminate type, two fatigue tests had been conducted. Table 1 lists the static
stiffness, transverse strength R2, and in-plane shear strength R12 of the material. In the
referenced data from [32], a miscalculation had happened in the evaluation of the in-plane
shear strength and in-plane shear modulus G12, which is corrected in this work. Addition-
ally, the static ply properties are corrected with respect to the fiber volume fraction of the
individual specimens. The procedure is described in Appendix A. The aforementioned
miscalculation does not effect the validity of the tests since only the evaluation had to
be redone. The load level of the fatigue tests, which is the ratio of the maximum load
in the fatigue test to the static strength of the laminate, is computed by the Puck failure
criterion [33]. The exact computation is given in Appendix B. The load levels of the tests are
75% for ±45°, 78% for ±60°, and 74% for ±75° laminates. The slight differences between
load levels arise from the corrections done in the evaluation.

Table 1. Elastic constants of the composite ply material from static tests.

E1 [GPa] E2 [GPa] ν12 [−] G12 [GPa] R2 [MPa] R12 [MPa]

35.6 10.9 0.27 3.2 57.9 58.3

2.2. Crack Detection

The Python package CrackDect is used to to automatically evaluate the crack density
from the TWLI images [25]. This package includes a sightly modified crack detection
algorithm compared to [24]. Example pictures of a specimen at the beginning, during,
and at the end of the fatigue test prior to image processing are shown in Figure 2. The
processing pipeline of the images is as follows:

1. Shift correction: Since the individual images from a fatigue test are not aligned
perfectly due to increasing strain and unavoidable inaccuracies of the test rig (see
Figure 2), the shift of the specimen in the images must be corrected.

2. Region of interest: Only the area of the specimen without edges or other features like
the black line that is used for optical strain measurement (see Figure 2), is evaluated
by the crack detection since they might cause false detections.

3. Crack detection: Cracks are detected in a cumulative way. Cracks detected in the nth
image are added to the n + 1st image.

The exact procedure of this processing pipeline is explained in [25] where the open-
source code of all functions can be obtained. The input parameters are listed in Table 2 for
each test series. It is observed that the crack width of the first major visible cracks varies
slightly with the fiber orientation. Cracks in the ±45° specimens appear to be thinner than
in ±75° specimens. Therefore, the average width of cracks that should be detected by the
crack detection is set individually for each test series to get comparable results between
the test series. To avoid artifacts in the crack detection or false detection due to inherent
noise in the images, cracks of less than 50 pixels (0.7 mm) in length are excluded from the
evaluation. The crack density is defined as

ρc =
∑n

i=1 Li

A
, (1)
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with Li as the length of crack i and A as the area of the region of interest (evaluation area).
Since the crack detection only computes the crack density based on pixels, the conversion
from pixel to millimeter is also listed in Table 2.

Table 2. Input parameters for CrackDect. The coordinates of the region of interest x0 to y1 are given
in pixel.

Test Ply Angle [◦] Crack Width [px] Pixel per mm x0 x1 y0 y1

±45° T1 45 8 69.2 200 1500 0 900
±45° T2 45 8 70.3 200 1500 0 950
±60° T1 60 8 68.8 100 1400 0 850
±60° T2 60 10 70.2 100 1400 0 1000
±75° T1 75 15 69.6 200 1400 0 1000
±75° T2 75 12 70.2 200 1450 0 900

(a) (b) (c)

Figure 2. Example of TWLI images taken from a ±45° specimen with a load level of 75% before the
test (a), after 254 cycles (b), and and after 4013 cycles (c). In (a), the evaluation area is shown for the
crack density (region of interest) marked with the blue rectangle. In (b), a typical crack pattern for a
±45° is laminate shown and (c) shows the last image taken before failure. The shift of the specimen
can easily be observed by the drift of the black line at the bottom from (a–c). In (c), delamination
between the plies can be spotted as dark areas.

Instead of using the extracted densities directly, a crack density function is defined by
fitting a cumulative Weibull distribution function to the experimental crack density data.
The Weibull function is used since it has a form similar to the experimental crack density
plotted over the number of cycles in logarithmic space. A direct fit of such a crack density
function to the experimental data resulted in convergence problems, even with non-linear
least squares algorithms (scipy.optimize.curve_fit) [34]. Therefore, a two-step approach
was used to achieve a satisfactory quality of the fit. This fitting process is qualitatively
illustrated in Figure 3. The first step is a linear regression in the region where the crack
density increases linearly. For experiments that reach crack saturation, the linear fit is done
from 30% to 85% of the maximal crack density. If crack saturation is not reached because
the specimen fails prior to that, the region for the linear regression extends to 100%. In
the second step, the following three-parameter cumulative Weibull distribution function is
fitted to the linear regression

ρ
f it
c (n) =

[
1− exp

(
−
(

n− n0

λ

)k
)]
· ρsat

c , (2)

with λ and k as scale and shape parameters respectively, and n0 to shift the fitted curve
along the x-axis. Note that n0 is a fitting parameter and does not correlate with the cycles to
damage initiation ninit defined later in Section 3.1. Since the Weibull distribution function
has a span of 0–1, the fitted crack density function is scaled with the saturation crack
density ρsat

c .
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Figure 3. The experimentally obtained crack densities are fitted with a two-step approach. The first
step is a linear regression from 30% to 85% of the saturation crack density. In the second step, a
cumulative Weibull distribution function is fitted to the linear regression.

2.3. Damage Model

To compute the stiffness degradation of a laminate for a given damage state, Schuecke’s
damage model is used [27]. Like most progressive damage models, it consists of a part that
describes the evolution of a damage variable and a part that computes the effect of this
damage on the stiffness of the material. The first part computes the damage variable as
a function of the loads for each ply. Then, in the second part, the degradation of stiffness
based on the damage variable is computed using the Mori-Tanaka method. Here, only the
second part of the model is used since the evolution of the damage variable is obtained by
calibration to the fitted crack density functions. The damage variable in the model represents
the volume fraction of crack-like inclusions in the Mori-Tanaka formulation, which for void
inclusions, is given by

EMTM,void = E(m)

[
I +

V
1−V

(I − S)−1
]−1

, (3)

where V is the inclusion volume fraction, I is the identity tensor, E(m) is the initial stiffness
tensor of the ply, and S is the Eshelby tensor [35,36]. To compute the Eshelby tensor for
transversely isotropic materials, the numerical computation scheme by Gavazzi et al. [37]
is used.

The Eshelby tensor for an inclusion depends on the surrounding material and the
shape of the inclusion. It is assumed that the inclusion geometry is the same for all cracks
and independent of the orientation of the ply. Often, an extremely sharp or disk-like
inclusion geometry is used when the effect of cracks in a material is computed by the Mori-
Tanaka method. Experimental evidence shows that off-axis cracks are often not straight but
have a crooked path since the crack has to find the way of least resistance between the fibers.
Cracks sometimes even split and merge on the way through the ply [20,38]. Here, the
introduction of an orientation tensor to give idealized penny shaped cracks an orientation
distribution similar to the crooked paths of the real cracks is avoided. Instead, one oblate
ellipsoidal pore that represents the homogenized effect of these cracks qualitatively is used.
It has been reported in [39,40] that this approach gives satisfactorily results. In this work, an
aspect ratio of 100,1,10 in the 1,2,3-direction of the ply is chosen. The reasoning is as follows:
The cracks are substantially longer in fiber direction than in out of plane direction so the
1-direction is set to 10 times the 3-direction. Also, cracks are relatively flat compared to the
thickness of the ply so the 3-direction is 10 times the 2-direction. A schematic representation
of this idealized inclusion is shown in Figure 4a and its effect on the ply properties is shown
in Figure 4b. The curves of E1, E2, ν12 and G12 as function of to the inclusion volume show
that E2 is reduced the most relative to its initial value. The stiffness in fiber direction E1 is
reduced only slightly up to an inclusion volume fraction of 0.1. This behavior qualitatively
agrees well with the stiffness degradation of a ply due to off-axis cracks. The degradation
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of E1, E2, ν12 and G12 could be fine-tuned by adjusting the aspect ratios if additional data
from static tensile tests were available that allows to relate the engineering constants of a
ply directly to off-axis cracks.

(a) (b)
Figure 4. Representation of off-axis cracks in one ply (a) looking in fiber direction. The crack path
is often not straight and can branch or merge. Therefore, an oblate ellipsoid is chosen as a single
inclusion shape to compute the homogenized effect of these cracks. The effect of this inclusion is
shown in (b) with the aspect ratios of 100,1,10 in 1,2,3-direction, respectively.

2.4. Calibration

The Mori-Tanaka method uses inclusion volume fractions to compute the effect of an
inclusion in a surrounding matrix material, but since the crack density is analyzed, the
model needs to be calibrated to experimental data. A link between the crack density and
the inclusion volume fraction for the analyzed stiffness degradation must be established.
For this, the ±45° tests are used to calibrate the model. The following equation links the
crack density (ρc) to the inclusion volume fraction (V) with a simple correlation factor (µ).

V = µ · ρc (4)

The calibration process is illustrated in Figure 5. First, the experimental stiffness data
is smoothed to reduce scatter using a lowess filter [41] with a window length of 40% the
range of cycles. Then, the stiffness degradation relative to its initial value up to crack
saturation (see Table 3) is calculated from this smoothed curve. Parallel to this, a model of
the laminate is built with classical laminate theory. For each ply, the stiffness is reduced
according to the damage model (see Equation (3)) as a function of the inclusion volume
fraction. The inclusion volume fraction to reach the experimental stiffness degradation is
optimized with the minimization algorithm from SciPy (scipy.optimize.minimize) [34]. From
this, the correlation factor µ can easily be computed from Equation (4). This procedure is
carried out for the two ±45° tests and the average is used as the global calibration constant
for the material.

Table 3. Results of the crack detection. The cycle number to damage initiation ninit, saturation nsat,
and crack density growth rate in semi-logarithmic space dρc/d(log(n)) are listed to compare the
laminates.

Test ρsat
c [mm−1] ninit nsat dρc/d(log(n)) [mm−1]

±45° T1 3 140 4000 2.8
±45° T2 3 30 1500 2.7
±60° T1 2.1 304 2100 3.2
±60° T2 1.7 487 2200 2.3
±75° T1 1.3 93,086 - 2.9
±75° T2 1.3 68,314 - 2.7
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Figure 5. A schematic representation of the correlation process. The stiffness and crack density is
evaluated in fatigue tests. The needed inclusion volume fraction is optimized to yield the same
stiffness degradation as observed in the experiment. With Equation (4), the correlation constant is
then computed from the experimental saturation density.

3. Results and Discussion
3.1. Crack Detection Results

The results of the crack detection are shown in Figure 6. An example of the cracks
detected in +60° direction for the ±60° T1 specimen after 759 load cycles is shown in
Figure 6a. At this state, the crack density is 0.8 mm/mm2. The bigger cracks are detected
well while cracks smaller than 50 pixel or 0.7 mm in length are filtered out. Since the
laminate consists of 12 plies, cracks in the bottom layer will appear fainter and not as
sharp as cracks in the top layer. Therefore, the detection is less reliable for cracks in the
bottom layer. Cracks in negative fiber-direction are not included because the noise, blur and
overlap with cracks in positive fiber direction from the top plies resulted in too many false
detections. Since the plies in negative direction develop approximately the same amount of
cracks as in positive direction (see Figure 2), only the positive direction is analyzed.

(a) (b)
Figure 6. Results of the crack detection. An example of the detected cracks for ±60° T1 is shown at
759 cycles (a). Cracks are only detected in the chosen direction of +60°. (b) shows the crack density
results for all tests and the crack density functions.

Figure 6b shows the evolution of the crack density over loading cycles and the corre-
sponding fitted crack density functions for all specimens. In the ±45° laminates, off-axis
cracks initiate earlier than in ±60° and ±75° laminates. The ±45° laminates also show
the highest crack saturation density. The ±75° laminates do not reach the state of crack
saturation because they fail before. The growth rate of the crack density seems to be
approximately constant for all tests when plotted on a logarithmic scale.
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The results of the crack detection are listed in Table 3. The point of damage initiation
ninit, crack saturation nsat and the crack density growth rate of the linear region are used
to compare the crack detection results. The saturation density ρsat

c is taken manually at
the point where the crack accumulation reaches a plateau. Since the ±75° laminates do
not reach crack saturation, the maximum crack density of ±75° T1 is used for the fitted
curves. In the ±45° tests, the crack density increases again after reaching a first plateau due
to delaminations that cause problems with the crack detection. Therefore, the saturation
density is taken at the first plateau. The point of damage initiation ninit is defined as the
first point with a crack density above 0.1 mm−1 and the point of crack saturation nsat are
the cycles needed to reach the saturation crack density ρsat

c . For ±75° tests, crack saturation
is not reached. The crack density growth rate is the slope of the linear regression, the first
step of the fitting process.

These results show that the automated crack detection is suited to efficiently obtain
off-axis crack densities of multidirectional GRFP laminates. Damage initiation is easily
detected and the crack density function can be modeled by a three-parameter cumulative
Weibull distribution by fitting it to the linear regression of the region of constant crack
density increase in semi-logarithmic space (see Figure 6b). The number of cycles until the
saturation density is reached are also captured by the crack detection. It should be noted
that the accuracy of the crack detection decreases when approaching saturation due to
delamination and merging of cracks (see Figure 2c). From our experience, almost all cracks
are detected up to approximately 80 percent of the saturation level. From there on, the
merging of side-by-side cracks into one black line and delamination leads to misses and
false detections. To improve the accuracy of the crack detection near saturation, image
differencing techniques that allow to see only changes from one image to the next could be
used (see [24]). The prerequisite to this is an extremely precise shift correction. This can be
achieved with position markers on the images that allow a precise tracking of image shift
and distortion. Since our images did not have these markers, a simpler version of the shift
correction had to be used.

3.2. Stiffness Degradation Model

The calibration of the damage model for the material from [32] yields a correlation
constant of 0.011 mm for the chosen inclusion aspect ratios of 100,1,10. Note that the
correlation constant depends on the chosen aspect ratios. The results of the computed
stiffness degradation are shown in Figure 7 along with experimental data for all laminates.
The comparison between model and experiments for the ±45° laminates and ±60° T2
shows good agreement. Since the calibration constant is computed from the ±45° tests,
good agreement of the stiffness drop is expected for ±45° specimens. Nonetheless, the
curves follow the same shape as the experiments which is determined by the inclusion
geometry. This indicates that the chosen inclusion geometry describes the effect of off-axis
cracks for this laminate and our assumptions on the inclusion geometry are reasonable. For
±60° T1, the detected crack density is higher than for ±60° T2. Therefore, the computed
stiffness degradation is also higher compared to ±60° T2. The trend of experimental data
and the shape of the curves from the degradation model for ±45° and ±60° laminates is
similar. Contrary to the ±45° tests, the experimentally observed stiffness degradation does
not stop at the saturation of the off-axis cracks for the ±60° laminates (see Figure 7). As
listed in Table 3, crack saturation is reached at around 2000 cycles for the ±60° tests. The
computed stiffness of the ±75° laminates drops earlier than the experimental curves. It
seems that off-axis cracks in ±75° laminates do not have the same effect at the local ply
coordinate system as for ±45° laminates.
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The error of the model increases from the ±45° laminates, where the calibration is
carried out to the ±75° laminates. Carraro et al. [42] have shown that the macroscopic
damage initiation is driven by two damage modes that depend on the level of in-plane
shear stress. For plies with mostly in-plane shear stresses σ12 in the ply coordinate system
shown in Figure 4a, the driving force for damage evolution at the micro scale is local
maximum principal stress (LMPS). For plies with mostly positive in-plane transverse stress
σ22, local hydrostatic stress (LHS) is the driving force. The shift between LMPS and LHS
in GFRP occurs at a fiber direction of around 60° [42]. Fractographic images also show
different crack patterns for off-axis cracks depending on the in-plane shear stress. It has
also been found that shear stress significantly reduces the number of cycles for damage
initiation [7,43]. With differences in the micro-structure of the fracture plane between
the two damage types, the effect of cracks on the ply stiffness can also be expected to be
different for the LMPS/LHS damage types. For our model, this would require a separate
correlation for the ±45° and ±75° tests, since these tests correspond to LMPS and LHS
type damage, respectively. The presence of these two separate damage types would also
explain the large difference in the number of cycles to damage initiation from ±45° to ±75°
laminates (see Figure 6). The ±45° and ±60° tests show damage initiation at less than 500
cycles with ±45° being a bit lower than ±60°. On the other hand, the ±75° tests show
damage initiation at more than 50,000 cycles, although the fatigue load level for all tests has
been set to about 75% of the static strength. These findings back the theory of two distinct
microscopic damage types controlled by in-plane shear stresses.

Figure 7. Stiffness degradation for the individual tests and damage model results. Comparison for
(a) ±45° tests, (b) ±60° tests, and (c) ±75° tests.

In Figure 8, the experimental stiffness is plotted over crack density up to saturation.
At the beginning, a small drop in stiffness without an increase in the crack density is visible
for some specimens. After this initial drop in stiffness, all curves except ±75° T1 show a
linear correlation up to saturation. Note that this does not conclude that the degradation of
stiffness is linear since the crack density follows a S-shaped curve. For±75° T1, a distinctive
kink compared to the linear regression is visible. Also, the scatter of the experimental data
for ±75° T1 (see Figure 7) is higher at the beginning. At around 200,000 cycles, this scatter
nearly vanishes. This could be an indication of a problem in the evaluation or experimental
procedure for this specimen. The linear relation between crack density and stiffness shows
that the crack density is a good choice as a damage parameter.
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Figure 8. Relationship of the experimentally determined stiffness and crack density up to saturation.
For the ±45° and ±60° specimen, the stiffness degradation correlates linearly with the crack density.
Note that the fact that the stiffness for the ±75° specimen is higher compared to ±60° is a result of
the given ply material properties and in accordance with classical laminate theory.

4. Conclusions

In this work, the effect of off-axis cracks in GFRP laminates is studied by using test
results of the crack density and computing the effect of these cracks on the stiffness of the
laminate. It is shown that crack detection can be used to efficiently evaluate images of
off-axis cracks from fatigue tests and the fatigue crack density function can be modeled
by a three-parametric cumulative Weibull distribution function. A mostly-automated
scheme is presented for the calibration of the crack density functions from experimental
data. Furthermore, the stiffness degradation model for multidirectional fiber-reinforced
polymer laminates from Schuecker, which uses Mori-Tanaka homogenization on the ply-
level, is tested against experimental fatigue data. The results suggest that it is necessary to
distinguish the effect of off-axis cracks on the stiffness of a ply depending on the microscopic
crack type. This requires a separate calibration for cracks formed under LMPS and LHS
conditions, respectively. This observation agrees well with the theory by Carraro and
Quaresimin which also distinguishes the evolution of off-axis fatigue cracks based on the
micro-damage mechanisms driven by LMPS and LHS. A distinct jump in cycles to damage
initiation is also found where the micro-damage mechanisms change. A new test campaign
is under way to further test the damage model for both microscopic damage types.
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Appendix A. Quasi-Static Material Parameters

The basic characterization of the quasi-static material parameters is done with UD0°
specimens for E1 and ν12, UD90° specimens for E2 and ±45° specimens for G12. In the
referenced data set [32], a miscalculation has happened in the evaluation of the in-plane
shear modulus G12 which is corrected here according to DIN EN ISO 14129. Additional
measurements of the fiber volume fraction revealed differences between the specimens.
Therefore, the ply stiffness of each laminate is corrected to a fiber volume fraction of
45%. For this, the semi-empirical Chamis model is used to approximate the engineering
constants as a function of the fiber volume fraction since it showed good agreement with
experimental data for GRFP [44]. This modified rule of mixture (ROM) replaces the fiber
volume fraction in the iso-stress model (Reuss) for Ec

2 and Gc
12 with the root of the fiber

volume fraction. The iso-strain model (Voigt) for Ec
1 and νc

12 is not altered. For isotropic
matrix and fibers, this leads to the following set of equations:

Ec
1 = (1−V f )Em + V f E f

1

Ec
2 =

[
1−
√

V f

Em
+

√
V f

E f
2

]−1

νc
12 = (1−V f )νm + V f ν f

Gc
12 =

[
1−
√

V f

Gm
+

√
V f

G f

]−1

(A1)

For the correction, the elastic constants of the matrix Em and νm must be known. Since
the elastic constants for each laminate at a certain fiber volume fraction are tested, the
elastic constants of the fibers can be estimated. This estimate is then reinserted in the same
equations to obtain the elastic constants of the composite as a function of the fiber volume
fraction. In Table A1, the fiber volume fractions for each laminate and the tested elastic
constants are listed. With this data, the elastic constants at a fiber volume fraction of 45% in
Table 1 are computed. In the degradation model, the stiffness is corrected for each laminate
individually.
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Table A1. Fiber volume fractions of the laminates and the quasi-static elastic constants in ply-
coordinates determined from tests.

Laminate Fiber Volume Fraction [−] Elastic Constant

0° 42.2 Ec
1: 33.6 GPa, νc

12: 0.28
90° 42.4 Ec

2: 10.3 GPa
±45° 52.8 Gc

12: 3.7 GPa
±60° 41.8 -
±75° 45.7 -

Matrix - Em: 3.55 GPa, νm: 0.43 GPa

Appendix B. Fatigue Load Level

The fatigue load level of laminates is computed by Puck´s failure criterion [33]. A
load level of 75% means that the laminate is loaded in the fatigue tests up to 75% of its
static strength. In Figure A1, the stress space for Puck mode A with the stress vectors of the
tests is shown. In the ±45° laminates used to test the in-plane shear strength according to
DIN EN ISO 14129, significant transverse stresses σ22 are present. The shear strength R12
for the material is therefore corrected using Puck´s failure criterion based on the strength of
the ±45° and UD90° laminates. With this corrections, the fatigue level of the tests are 75%
for ±45°, 78% for ±60° and 74% for ±75° laminates. As a comparison, the stress vector for
a typical carbon fiber-reinforced laminate is also shown. The higher ratio of fiber stiffness
to transverse stiffness yields nearly no transverse stress so no correction is necessary for
carbon fiber-reinforced composites.

Figure A1. Puck mode A failure area (red) with stress vectors of the tests. In the ±45° laminate,
significant transverse stress σ22 is present. Therefore, the in-plane shear strength R12 is corrected
with Pucks failure criterion (black arrow). As a comparison, the stress vector for a typical ±45° CFRP
laminate is also shown (red arrow).
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