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Abstract: Biocomposites based on thermoplastic polymers and natural fibers have recently been
used in wind turbine blades, to replace non-biodegradable materials. In addition, carbon nanofillers,
including carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs), are being implemented
to enhance the mechanical performance of composites. In this work, the Mori–Tanaka approach is
used for homogenization of a polymer matrix reinforced by CNT and GNP nanofillers for the first
homogenization, and then, for the second homogenization, the effective matrix was used with alfa
and E-glass isotropic fibers. The objective is to study the influence of the volume fraction Vf and
aspect ratio AR of nanofillers on the elastic properties of the composite. The inclusions are considered
in a unidirectional and random orientation by using a computational method by Digimat-MF/FE
and analytical approaches by Chamis, Hashin–Rosen and Halpin–Tsai. The results show that CNT-
and GNP-reinforced nanocomposites have better performance than those without reinforcement.
Additionally, by increasing the volume fraction and aspect ratio of nanofillers, Young’s modulus E
increases and Poisson’s ratio ν decreases. In addition, the composites have enhanced mechanical
characteristics in the longitudinal orientation for CNT- reinforced polymer and in the transversal
orientation for GNP-reinforced polymer.

Keywords: biocomposite; carbon nanotube; graphene nanoplatelet; homogenization; Mori–Tanaka;
natural fiber; wind energy

1. Introduction

The future materials used in turbine blades for wind or marine energy are mainly
focused on the use of lighter materials with enhanced mechanical properties and low
cost [1–4]. In the field of modern wind energy, the use of biocomposites is a sustain-
able solution, especially for small blades [5–10]. On the other hand, most blades are
disposed of in landfills, provoking environmental issues since the blades are made from
non-biodegradable fibers like glass and carbon [11–13]. Natural fibers and biodegradable
polymers are biocomposite materials. Natural fibers like alfa, sisal, hemp and flax fibers
have low cost and low density with high strength, and are non-abrasive, biodegradable and
eco-friendly compared to glass/carbon fibers [14,15]. For the matrix, thermoplastic material
is an emerging type, and is relatively cheap and eco-friendly. However, thermoplastic
composites also have higher stiffness and fatigue strength [16]. The use of CNTs and GNPs
provided enhanced mechanical properties of materials, which resulted in higher fatigue
resistance, shear strength and fracture toughness compared to the conventional composites
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reinforced by microscale materials [17–21]. One of the benefits of reinforced composite
materials with nanofillers is their ability to avoid micro-cracking progression and provide
improved transverse shear distribution to minimize delamination failure [22]. CNTs may
be dispersed in polymer resin or deposited on fiber surfaces to improve their interfacial
interactions between the matrix and the fibers [23,24]. CNTs and GNPs have a large spe-
cific surface area, which leads to good interfacial adhesion with the matrix and a small
weight fraction can dramatically change their mechanical [25–30], thermal [31–33] and
electrical [34] properties. Certain challenges can be overcome during the manufacturing
process of nanocomposites, especially in the dispersion and functionalization of nanofillers.
The large surface area/volume ratio of CNTs results in van der Waals attractive forces that
cause excessive nanofiller agglomeration. Due to the extreme non-uniform dispersion and
weak bonding at the interfaces, this tendency of the nanofillers to agglomerate degrades
the mechanical properties of the nanocomposites. While nanoscale experimental research
is still a growing field, computational modeling techniques are the best way to investigate
the impact of such parameters. In order to characterize nanocomposites with atomic to mi-
cromechanical methods, several analytical and computational models have been developed
for this purpose [35–41]. Many micromechanical homogenization approaches based on
CNT and GNP nanocomposites are used to study their mechanical, electrical and thermal
properties, as discussed in some review articles [25,27–30].

Ramanathan et al. [42] studied functionalized graphene sheets at 0.05 wt% embedded
in PMMA polymer, with an increase in Young’s modulus by 33%. In addition, in the study
of Das et al. [43], only 0.6% of functionalized graphene layers can significantly enhance the
Young’s modulus of PVA and PMMA polymers. Thostenson et al. [44] studied MWCNT-
reinforced polystyrene composite by using the Halpin–Tsai model, and the elastic modulus
composite was predicted and compared with experimental results. It was shown that when
the diameter of carbon nanotubes increases, the mechanical performances of the composite
improved significantly. In Hu et al.’s [45] study, molecular and computational structural
mechanics were used to analyze the mechanical deformation of an RVE representing a
carbon nanotube-reinforced composite. The stiffness of the interface and RVE geometry
were investigated and, with a volume fraction between 0.48 and 2.75%, the reinforcement
can increase by 10 to 70% in the length direction of the nanotube. Shi et al. [46] studied
the effects of carbon nanotube waviness and their agglomeration in polymer-reinforced
composite by using a novel method, the orientations considered are aligned and random
and the analysis was evaluated by Eshelby–Mori–Tanaka theory. Zhong et al. [47] presented
a finite element analysis of a unidirectional flax fiber/polypropylene composite with Hashin
criteria failure damage. This computational mechanical prediction had very consistent
results with an experimental study.

Jespersen et al. [48] investigated a computational study of disc-shaped and fiber
reinforcements embedded in polyurethane coatings. They showed high performance in
improving the anti-erosion protection of wind turbine blades. Doagou-Rad et al. [49]
examined a computational and Mori–Tanaka analytical study of CNT- and GNP-reinforced
composite with finite element and molecular dynamic analysis. Three orientations were
taken into account, aligned, random and wavy inclusions. The results demonstrate that
curved random fibers deteriorate the elastic performance of nanocomposite. Pontefisso
et al. [50] studied the restacking graphene sheet effect, which enhances interphase and
hardiness properties of nanocomposites. Additionally, when the graphene nanoplatelets
cause crack deviation at early stages, CNTs maintain debonding bridges between the
fibers and matrix after the crack is created. Dai et al. [51] showed that by increasing the
volume fraction, aspect ratio and interface mechanical characteristics, Young’s modulus
can be improved. On the other hand, Young’s modulus decreases with several parameters:
clustering, crumpling and misalignment of graphene sheets. Thus, random graphene
sheets reduce Young’s modulus in comparison to aligned graphene sheets. Dai et al. [52]
report that carbon/glass hybrid reinforcement by aligned CNTs increases the composite
fatigue performance under cyclic mechanical and environmental loading. Many works
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used functionally graded CNT nanofillers to improve the vibratory structural response of a
conical composite shell [53–55]. Sobhani et al. [56] evaluated the properties of homogenized
composite by using the rule of mixture method.

In this study, a biocomposite based on polypropylene PP and alfa fibers has been
simulated and compared with unsaturated polyester UP and E-glass fiber. The novelty is
the reinforcement of the polymer with CNT and GNP nanofillers in order to have improved
thermomechanical properties of composites used in wind turbine blades. The polymers
reinforced with nanofillers have a higher strength to mass ratio, and they have been used to
reinforce the structure, specifically in the areas of the blade where there is a high mechanical
load [57]. They have also been utilized to improve thermal performance on the exterior
blade surface for deicing in cold areas [58]. In this paper, we also propose a procedure
allowing the evaluation of the properties of a multiphase composite by a multiscale ho-
mogenization procedure. There are two computational tools used based on Mori–Tanaka
theory: Digimat-MF is a mean field homogenization module to define composite behavior
as a function of volume fraction, shape, size and orientation of inclusions; Digimat-FE
is a finite element module used to generate realistic microstructures as a representative
volume element RVE. The RVE is the smallest volume of a composite which represents
the behavior of the whole composite. In the 1st homogenization of CNT/GNP in polymer,
the analytical Mori–Tanaka approach [59,60] is utilized and validated with computational
Digimat-MF/FE. Additionally, in the 2nd homogenization of hybrid polymer with fibers,
analytical methods are employed: Mori–Tanaka, Chamis [61], Hashin–Rosen [62] and
Halpin–Tsai [63,64], and validated with Digimat-MF/FE. The flowchart of the main ho-
mogenization procedure is shown in Figure 1. All analytical models are implemented in
Matlab.
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Figure 1. Multiscale analysis procedure of three-phase nanocomposite homogenization.

2. First Homogenization
2.1. Mori–Tanaka Approach

The Mori–Tanaka approach [65–68] was used for the homogenization procedure,
which is based on Eshelby tensor theory, in order to evaluate the effective transversely
isotropic properties of CNT/GNP-reinforced matrix and fiber composite. The strain con-
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centration factor Ar
dil , which depends on the shape of the inclusion, is formulated for the

rth inclusion as:
Ar

dil =
[

I + Sr C0
−1(Cr − C0)

]−1
(1)

where Sr is the Eshelby tensor for the rth inclusion, C0 and Cr are stiffness tensors for the
matrix and rth inclusion, respectively. I represents the fourth order unity tensor [68].

The stiffness of the reinforced matrix for aligned inclusions can be defined as:

CC, aligned =

(
V0C0 +

N−1

∑
r=1

VrCr Ar
dil

)(
V0 I +

N−1

∑
r=1

Vr Ar
dil

)−1

(2)

where phase 0 is for matrix, and N − 1 is for the remaining inclusion phases.
For randomly oriented inclusions, the average orientation is considered as indicated

in curly brackets. Then, the effective stiffness of the reinforced matrix is written as:

CC, random =

(
V0C0 +

N−1

∑
r=1

Vr

{
Cr Ar

dil
})(

V0 I +
N−1

∑
r=1

Vr

{
Ar

dil
})−1

(3)

The Eshelby tensor coefficients of the fourth order are dependent on the inclusion
geometry. Similarly, the general Hooke’s law [69] is expressed as:

σ11
σ22
σ33
σ12
σ23
σ31

 =



E1111 E1122 E1133 0 0 0
E1122 E2222 E2233 0 0 0
E1133 E2233 E3333 0 0 0

0 0 0 E1212 0 0
0 0 0 0 E2323 0
0 0 0 0 0 E3131





ε11
ε22
ε33
γ12
γ23
γ31

 (4)

where εij is the strain tensor, σij is the stress tensor and γij is the shear strain tensor.
The five transversely isotropic constants of composite can be predicted through the

Mori–Tanaka approach as:
E11 = 1

S1111
ν12 = ν13 = −E11S2211

G12 = G13 = 1
S3131

E22 = E33 = 1
S2222

ν23 = −E22S3322
G23 = 1

S1212

(5)

where E11 is the axial Young’s modulus, E22 is the in-plane Young’s modulus, ν12 is the
transverse Poisson’s ratio, ν23 is the in-plane Poisson’s ratio, G12 is the transverse shear
modulus and G23 is the in-plane shear modulus. The Eshelby tensor Sijkl depends on the
shape of inclusion [70], and their determination is summarized in the flowchart [71] either
for the oblate or prolate form as shown in Figure 2.

The ratio between the length of the third axis a3 and the first or second axis a1 = a2 is
called the aspect ratio of the ellipsoid and denoted as α:

α =
a3

a1
=

a2

a1
(6)
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Thus, CNT inclusion is considered as fiber-like spheroidal inclusions and their Eshelby
tensor can be described as in Equation (7). For GNP inclusion, it considered as disc-shaped
spheroidal inclusions, and their Eshelby tensor is given by the same equations in (7), but
with g replaced by g′ described in Equation (9).

S1111 = 1
2(1−ν0)

{
1− 2ν0 +

3α2−1
α2−1 −

[
1− 2ν0 +

3α2

α2−1

]
g
}

S2222 = S3333 = 3
8(1−ν0)

α2

α2−1 + 1
4(1−ν0)

[
1− 2ν0 +

9
4(α2−1)

]
g

S2233 = S3322 = 1
4(1−ν0)

{
α2

2(α2−1) −
[
1− 2ν0 +

3
4(α2−1)

]
g
}

S2211 = S3311 = 1
2(1−ν0)

α2

α2−1 + 1
4(1−ν0)

{
3α2

α2−1 − (1− 2ν0)
}

g

S1122 = S1133 = 1
2(1−ν0)

[
1− 2ν0 +

1
α2−1

]
+ 1

2(1−ν0)

[
1− 2ν0 +

3
2(α2−1)

]
g

S2323 = S3232 = 1
4(1−ν0)

{
α2

2(α2−1) +
[
1− 2ν0 − 3

4(α2−1)

]
g
}

S1212 = S1313 = 1
4(1−ν0)

{
1− 2ν0 − α2+1

α2−1 −
1
2

[
1− 2ν0 −

3(α2+1)
4(α2−1)

]
g
}

(7)

where

g =
α

(α2 − 1)3/2

{
α
(

α2 − 1
)1/2

− cosh−1α

}
(8)
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where ν0 is the matrix Poisson ratio.

g′ =
α

(α2 − 1)3/2

{
cos−1α− α

(
α2 − 1

)1/2
}

(9)

In this work, a computational simulation of aligned and random CNT- and GNP-
reinforced polymer has been processed to predict the effective elastic properties of the
nanocomposite. Mori–Tanaka homogenization has been applied with finite element analy-
sis by Digimat-FE. The details of FE analysis, including type of element, mesh generation
and boundary conditions using the software Digimat-MF/FE [72], are described in Figure 3.
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analysis by Digimat-FE. The details of FE analysis, including type of element, mesh 
generation and boundary conditions using the software Digimat-MF/FE [72], are 
described in Figure 3. 

1. General parameters 
- Analysis type: Mechanical 
- Mean field homogenization: Mori–Tanaka scheme in first order 

2. Materials 

Inclusion and polymer model: 
- Constitutive law: Elastic model 
- Elasticity: Isotropic symmetry 
- Parameters: Density + Young’s modulus + Poisson’s ratio 

3. Microstructures 
The polymer is assigned as matrix phase, and for the inclusion a detailed description is given as below: 
- Phase type: Inclusion 
- Phase behavior: Deformable 
- Phase fraction: Volume fraction 
- Shape parameter: Fixed aspect ratio, (a) for CNT and (b) for GNP 

  
(a) (b) 

- Orientation: [𝜃 = 90°, 𝜑 = 0°] for aligned (a), 𝑎௜௝ tensor for 3D random (b) 

  
(a) (b) 

- Mechanical loadings: Uniaxial strain loading in direction 1 

Figure 3. Cont.
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The representative volume elementary RVE model of CNT/GNP-reinforced polymer
is generated by automatic random algorithm seed as shown in Figure 4. For CNT inclusion,
it is considered to have two shapes: cylindrical and ellipsoidal (prolate) with aligned
and random orientations, as seen in Figure 5a–d. For GNP inclusion, it is considered
as platelets and ellipsoids (oblate) with aligned and random orientations, as shown in
Figure 5e–h. There are many physical parameters of CNTs and GNPs influencing the
elastic properties of nanocomposite, such as aspect ratio, volume fraction, orientation,
agglomeration, interphase, etc. In the present work, just three parameters are investigated:
the orientation, volume fraction and aspect ratio of nanofillers. The aspect ratios are
AR = 50 and AR = 0.05 for CNT and GNP nanofillers, respectively. Therefore, the various
phases used for our composites are: unsaturated polyester (UP) and polypropylene (PP)
polymers, alfa and E-glass fibers and CNT and GNP nanofillers. The influence of elastic
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properties of the three phases is compared in the coming sections. The nanofillers, polymers
and fibers have isotropic elastic properties as shown in Table 1.
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(a) Random cylindrical. (b) Random prolate ellipsoid. (c) Aligned cylindrical. (d) Aligned prolate ellipsoid. (e) Random
nanoplatelets. (f) Random oblate ellipsoid. (g) Aligned nanoplatelets. (h) Aligned oblate ellipsoid.
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Table 1. Mechanical properties of nanofillers, polymers and fibers.

Nanofillers
[73]

Polymers
[74,75]

Fibers
[76–78]

CNT GNP PP UP Alfa E-Glass

Density ρ(g/cm3) 1.2 2.2 0.9 1.3 1.52 2.54
Young’s modulus E(GPa) 500 1030 1.4 3.8 19.4 73

Poisson’s ratio v 0.261 0.19 0.45 0.42 0.34 0.23
Aspect ratio AR 50 0.05 - - Continuous Continuous

2.2. Results and Discussion

To guarantee the validity of our computational model, a comparison with analytical
approaches has been considered, in the low- and high-volume fractions of inclusions. For
the case of random CNT and GNP inclusions, the composite has an isotropic property. The
effective Young’s modulus E∗m and Poisson’s ratio ν∗m are obtained by using the analytical
approach of Mori–Tanaka with two other computational methods of Digimat-FE and
Digimat-MF, where (*) indicates the effective mechanical properties of CNT- and GNP-
reinforced matrix. The effect of volume fraction Vf on elastic properties of composite has
been investigated, with an aspect ratio of 50 for CNT and 0.05 for GNP as presented in
Figure 6. The maximum volume fraction of the nanofillers is up to 50%. The Young’s
modulus E∗m and Poisson’s ratio ν∗m are 500 GPa, 0.26 for CNTs and 1030 GPa, 0.19 for
GNPs, and 1.4 GPa, 0.45 for PP (see Table 1). For a random CNT reinforcement of PP,
Mori–Tanaka has E∗m = 37.75 GPa and ν∗m = 0.296, Digimat-MF has E∗m = 29.56 GPa and
ν∗m = 0.306 as shown in Figure 6a; for random GNP reinforcement of PP, Mori–Tanaka
has E∗m = 13.0926 GPa and ν∗m = 0.3457, Digimat-MF has E∗m = 13.011 GPa and ν∗m = 0.3452
(Figure 6b). There is a good agreement between analytical and computational elastic
properties of random CNT-PP until 10% for E∗m and ν∗m as seen in Figure 6a. The elastic
properties predicted by the FE method are similar to analytical results in a small volume
fraction (<3%), where E∗m has an error of 12.31% for CNT-PP and 2.8% for GNP-PP (Table 2),
and ν∗m has an error of 22.49% for CNT-PP and 5.78% for GNP-PP (Table 3). FE analysis gives
accurate results and a detailed overview of the FE with complex inclusion morphology
and offers the possibility to analyze the local stresses of the meso-structure, while MF only
approximates engineering constants with less computing and CPU time. Thus, Digimat-FE
considers that the composite has an orthotropic mechanical behavior, contrary to analytical
models which consider that nanofillers have an isotropic behavior. In addition, in FE
the inclusions are considered as cylindrical, but for MF the inclusions are considered as
ellipsoidal.

In the case of aligned nanofillers, the composite has a transversely isotropic property.
CNT-PP with a fiber shape has better elastic properties of composite in the longitudinal
direction than in transverse direction. On the contrary, GNP-PP has better mechanical
properties in the transverse direction than in the longitudinal direction because of its
disc shape. As seen in Figure 6, Mori–Tanaka and Digimat-MF are agreed for all volume
fractions, with longitudinal and transversal Young’s modulus and Poisson’s ratios of E∗11,
ν∗23 and E∗22,ν∗12, respectively.

In general, by increasing the CNT or GNP volume fraction, Young’s modulus E∗m
increases and Poisson’s ratio ν∗m decreases, as demonstrated in Figure 7. The highest
stiffness E∗m is obtained for CNT-reinforced UP polymer and the lowest stiffness E∗m is for
GNP-reinforced PP. The comparison of Young’s modulus E∗m and Poisson’s ratio ν∗m of
nanocomposites in transversal and longitudinal directions indicates that CNT-reinforced
PP and UP in the longitudinal direction 11 have a higher Young’s modulus. The elastic
properties deteriorate when the inclusion is random in comparison when the inclusions
are aligned.
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Table 2. Young’s modulus E∗m of CNT- and GNP-reinforced PP matrix.

Yo
un

g’
s

M
od

ul
us

E* m

Volume
Fraction

3D Random Orientation Axial Orientation 11 In-Plane Orientation 22

Digimat
FE

Digimat
MF

Mori–
Tanaka

MT
Digimat

FE
Digimat

MF
Mori–

Tanaka
MT

Digimat
FE

Digimat
MF

Mori–
Tanaka

MT

C
N

T-
PP

1% 1.58095 1.8283 1.8297 3.67453 3.57723 3.57723 1.62954 1.62316 1.62316
1.5% 1.93555 2.0425 2.0457 4.40577 4.67516 4.67516 1.70240 1.67269 1.67269
2% 1.99163 2.2569 2.2626 4.87082 5.77938 5.77938 1.69843 1.71036 1.71036

2.5% 2.49321 2.4715 2.4804 6.65220 6.88993 6.88993 1.71373 1.74164 1.74164
3% 2.35354 2.6864 2.6993 6.77522 8.00688 8.00688 1.76859 1.76908 1.76908

G
N

P-
PP

1% 1.54629 1.5262 1.5262 1.49323 1.50311 1.50311 1.59839 1.61565 1.61565
1.5% 1.54629 1.5901 1.5901 1.49323 1.55395 1.55395 1.59839 1.72410 1.72410
2% 1.63762 1.6545 1.6545 1.61087 1.60436 1.60436 1.88727 1.83307 1.83307

2.5% 1.60123 1.7194 1.7194 1.68573 1.65435 1.65435 2.08842 1.94267 1.94267
3% 1.73906 1.7849 1.7850 1.68363 1.70395 1.70395 2.07030 2.05295 2.05295

Table 3. Poisson’s ratio ν∗m of CNT- and GNP-reinforced PP matrix.

Po
is

so
n

ra
ti

o
ν

* m

Volume
Fraction

3D Random Orientation Transverse Orientation 12 In-Plane Orientation 23

Digimat
FE

Digimat
MF

Mori–
Tanaka

MT
Digimat

FE
Digimat

MF
Digimat

MT
Digimat

FE
Digimat

MF
Mori–

Tanaka
MT

C
N

T-
PP

1% 0.44182 0.43847 0.43843 0.44863 0.44908 0.44908 0.65448 0.65069 0.65069
1.5% 0.40406 0.43320 0.43312 0.44238 0.44862 0.44862 0.67621 0.68556 0.68556
2% 0.51008 0.42824 0.42810 0.44494 0.44816 0.44816 0.68971 0.70782 0.70782

2.5% 0.48195 0.42354 0.42334 0.44787 0.44769 0.44769 0.72118 0.72317 0.72317
3% 0.52998 0.41910 0.41882 0.44172 0.44722 0.44722 0.72086 0.73434 0.73434

G
N

P-
PP

1% 0.41464 0.44660 0.44660 0.44114 0.43990 0.43990 0.42285 0.42205 0.42205
1.5% 0.41464 0.44494 0.44493 0.44114 0.43502 0.43502 0.42285 0.41003 0.41003
2% 0.44717 0.44329 0.44329 0.42983 0.43025 0.43025 0.38425 0.39909 0.39909

2.5% 0.48956 0.44167 0.44166 0.42274 0.42559 0.42559 0.35891 0.38908 0.38908
3% 0.46768 0.44006 0.44006 0.41418 0.42102 0.42102 0.37605 0.37990 0.37990
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To conclude, in longitudinal direction 11, CNT-reinforced UP has enhanced elastic
properties, and for transversal direction 22, GNP-reinforced UP has higher mechanical
properties, which is explained by the molecular structure of CNTs and GNPs (Figure 8).
Additionally, Young’s modulus E∗m and Poisson’s ratio ν∗m of CNT and GNP inclusions are
better than those of UP and PP polymers.
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2.3. Effect of Aspect Ratio (AR)

The effect of the aspect ratio of CNT and GNP inclusions is considered to study the
inclusions’ geometry effect on the elastic properties of reinforced PP and UP polymers of
the first homogenization. This study is evaluated by Digimat-MF for the first homogeniza-
tion, and CNTs and GNPs are assumed to be randomly oriented with an aspect ratio of
50–103 [79,80] for CNT inclusion and 1–10−4 [81] for GNP inclusion.

The effective Young’s modulus E∗m and Poisson ratio ν∗m have been computed using
Digimat-MF for different aspect ratios as a function of the volume fraction of randomly
CNT- and GNP-reinforced PP. The aspect ratio used for CNTs is in the range 50–103 with a
step of 100, and 1–10−4 for GNPs with a step of 10−1. For CNT-PP, by increasing the volume
fraction and aspect ratio, E∗m increases nearly linearly with a maximum value of 50 GPa,
and ν∗m decreases with a minimum value of 0.29 (Figure 9a). For GNP-PP, E∗m increases
by increasing the volume fraction and decreases by increasing the aspect ratio, with a
maximum value of 261 GPa for 10−4 (Figure 9b). It can be concluded that by increasing
the aspect ratio of CNT inclusion, the elastic properties are enhanced considerably. This is
contrary to GNP inclusion, which has degraded elastic properties by increasing the aspect
ratio. This is due to the cylindrical form of CNTs and the platelet form of GNPs.
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3. Second Homogenization
3.1. Mathematical Model

The matrix reinforced with random CNT and GNP inclusions obtained in the 1st ho-
mogenization was used with alfa and E-glass fibers in the 2nd homogenization. Analytical
and computational methods have been used to investigate the mechanical properties of
a composite. The results of E∗m and ν∗m obtained by the analytical Mori–Tanaka approach
were used for the Chamis, Hashin–Rosen and Halpin–Tsai approaches described later. The
results of E∗m and ν∗m obtained in the 1st homogenization by Digimat-MF were used in the
2nd homogenization by the same computational method (Digimat-MF/FE). An FE geome-
try of fiber-reinforced effective polymer has been modeled by Digimat-FE (Figure 10), the
fiber used is continuous in the longitudinal direction 11 with a constant volume fraction of
50% and is perfectly bonded with the effective polymer. The computational and analytical
elastic properties of the composite were compared. The effective volume fraction is closed
to the reference volume fraction generated in RVE geometry, as seen in Table 4, which
ensured the viability of the computational method. Composite geometry was meshed with
23,987 tetrahedron elements for the fiber and 30,128 for the matrix.
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Table 4. Number of elements and effective volume fraction of fiber and matrix of meshing.

Number of Elements Effective Volume
Fraction on Mesh

Effective Volume Fraction on
Geometry

Fiber 23987 0.501893 0.502655
Polymer 30128 0.498107 0.497345

3.1.1. Chamis Approach

The method of Chamis [61,82] represents the most used homogenization technique,
with five independent constants to describe the mechanical behavior of a composite. The
equations defining the elastic properties of a unidirectional lamina made of anisotropic
fibers in an isotropic matrix are formulated by Equations (10)–(15). Alfa and E-glass fibers
are considered as isotropic; the axial and in-plane Young’s and shear modulus are the same,
(E f

11 = E f
22) and (G f

12 = G f
23).

E11 = E f
11Vf + E∗mV∗m (10)

E22 = E33 =
E∗m

1−Vf

(
1− E∗m/E f

22

) (11)

G12 = G13 =
G∗m

1−Vf

(
1− G∗m/G f

12

) (12)
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G23 =
G∗m

1−Vf

(
1− G∗m/G f

23

) (13)

ν12 = ν13 = ν
f
12Vf + ν∗mV∗m (14)

ν23 =
E22

2G23
− 1 (15)

3.1.2. Hashin–Rosen Approach

The Hashin–Rosen [62] homogenization approach is a variational method, it represents
a simple technique to compute the mechanical behavior of unidirectional fiber-reinforced
effective polymer in which both alfa and E-glass fibers and the matrix have isotropic
characteristics. The final reinforced composite has transversely isotropic properties as
expressed in Equations (16)–(30).

E11 = E f Vf + E∗mV∗m +
4Vf V∗m

(
ν f − ν∗m

)2

V∗m/k f + Vf /k
∗
m + 1/G∗m

(16)

E22 = E33 =
4 ktGt

kt + Gt

(
1 + 4kt(ν12)

2/E11

) (17)

ν12 = ν13 = ν f Vf + ν∗mV∗m +
Vf V∗m

(
ν f − ν∗m

)(
1/k

∗
m + 1/k f

)
V∗m/k f + Vf /k

∗
m + 1/G∗m

(18)

G12 = G13 = G∗m
V∗mG∗m +

(
1 + Vf

)
G f(

1−Vf

)
G∗m + V∗mG f

(19)

ν23 =
E22

2Gt
− 1 (20)

G23 =
E22

2(1 + ν23)
(21)

where the parameters can be formulated as follows:

k f =
E f

2(1− ν f −
(

ν f

)2 (22)

k
∗
m =

E∗m
2(1− ν∗m − ( ν∗m)

2 (23)

kt =
k
∗
mk f +

(
Vf k f + V∗mk

∗
m

)
G∗m

V∗mk f + Vf k
∗
m + G∗m

(24)

Gt = G∗m

(
α + β∗mVf

) (
1 + ξ

(
Vf

)3
)
− 3Vf (V∗mβ∗m)

2

(
α−Vf

)(
1 + ξ

(
Vf

)3
)
− 3Vf (V∗mβ∗m)

2
(25)

α =
Gt/G∗m + β∗m
Gt/G∗m − 1

(26)

β∗m =
1

3− 4ν∗m
(27)
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β f =
1

3− ν f
(28)

G f =
E f

2
(

1 + ν f

) (29)

ξ =
β∗m − β f G f /G∗m
1 + β f G f /G∗m

(30)

where E f , ν f , Vf and G f are Young’s modulus, Poisson’s ratio, volume fraction and shear
modulus of fiber, respectively. E∗m, ν∗m, V∗m and G∗m are Young’s modulus, Poisson’s ratio,
volume fraction and shear modulus of the effective matrix, respectively. k f and k

∗
m denote

the plane strain bulk moduli for the fibers and effective matrix, respectively.

3.1.3. Halpin–Tsai Approach

The Halpin–Tsai model [83] is used to predict the mechanical properties of composites
reinforced by short fibers. However, these equations were primarily developed for long-
fiber composites [84]. The elastic properties can be formulated as:

P
Pm

=
1 + ζηVf

1− ηVf
(31)

η =
Pf /Pm − 1
Pf /Pm + ζ

(32)

where P represents the property of the composite of which Pf and Pm are the corresponding
fibers and effective matrix properties, respectively, including Young’s modulus E, Poisson’s
ratio ν and shear modulus G. Vf is the volume fraction of fiber and ζ is the geometry
parameter of fiber calculated as follows:

• ζ = 2l/d for calculation of the longitudinal modulus.
• ζ = 2 for calculation of the transversal modulus.

3.2. Results and Discussion

Figure 11a clearly shows that longitudinal Young’s modulus E11 of aligned alfa fiber-
reinforced CNT-PP polymer increases by varying the nanofiller volume fraction. The
effective Young’s modulus E11 of fiber-reinforced polymer obtained from Digimat-MF/FE,
Chamis, Halpin–Tsai and Hashin–Rosen methods shows good predictions for low volume
fractions of nanofillers. Note that results in the computational method with Digimat-MF
and FE are matched. E11 has a maximum value of 28.57 GPa for analytical methods and
24.46 GPa for computational methods. The values of transversal Young’s modulus E22
obtained from analytical and computational methods shows a non-linear relationship
with a maximum value of 24 GPa for computational methods and 27 GPa for analytical
methods. The value of Young’s modulus E22 increases as the CNT volume fraction increases.
Analytical results are quite far from computational results, especially for high-volume
fractions. The Hashin–Rosen, Halpin–Tsai and Chamis methods overestimated FE results.
In Figure 11b, the transverse Poisson’s ratio ν12 decreases linearly by increasing the CNT
volume fraction. Computational results closely match the values of all analytical methods
until 20%. Then ν12 of Hashin–Rosen is above Digimat-MF/FE from 30% with a value
of 0.326, and Chamis and Halpin–Tsai are below Digimat-MF/FE with a value of 0.318.
The in-plane Poisson’s ratio ν23 decreases as a function of the CNT volume fraction. It
is observed that the graph is non-linear, and ν23 decreases till it reaches its minimum
value of 0.331 for Chamis and Halpin–Tsai in which the CNT volume fraction does not
show any considerable influence on ν23 from 20%, and they are close with a difference of
8.1%. Hashin–Rosen and Digimat-MF/FE are close until 10%. ν23 decreases sharply and
approaches zero for Hashin–Rosen. It is concluded that the mechanical properties of the
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composite are stronger in the longitudinal direction of the fibers than in the transverse
direction. For Young’s modulus, computational results of E11 are greater than E22 by 2.03%.
For Poisson’s ratio, ν23 is higher than ν12 by 2.12%.
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Figure 11. Elastic properties of CNT-PP matrix reinforced by alfa aligned fiber (50 vol%) vs. CNT volume fraction.
(a) Young’s modulus E. (b) Poisson’s ratio ν.

For alfa-reinforced GNP-PP, analytical and computational results of axial Young’s
modulus E11 are in good agreement with a value of 16.2 GPa, and for transversal Young’s
modulus E22 = 15.88 GPa, where Chamis and Hashin–Rosen overestimate the FE results
(Figure 12a). The transverse Poisson’s ratio ν12 decreases as a function of volume frac-
tion (Figure 12b) where all results converge to 0.342. For 1%, ν12 has a value of 0.3904,
0.3912, 0.3933, 0.3870 and 0.3910 for Digimat-FE, MF, Chamis, Hashin–Rosen and Halpin–
Tsai, respectively. The in-plane Poisson’s ratio ν23 of Digimat-FE, MF and Hashin–Rosen
models decreases and Halpin–Tsai remains quite constant, while Chamis increases until
a maximum of 0.6 at 20% and then decreases. All analytical models overestimate the
computational results, in which ν23 has a minimum value of 0.3459, 0.3461, 0.5260, 0.3925
and 0.3425 for Digimat-FE, MF, Chamis, Hashin–Rosen and Halpin–Tsai, respectively.
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(a) Young’s modulus E. (b) Poisson’s ratio ν.

It is concluded that the numerical results of CNT/GNP-PP-reinforced alfa are much
more accurate than the analytical results, and the inclusion of CNT reinforces the alfa fiber
much more than GNPs, although GNPs have a higher Young’s modulus. It is observed
that the prolate form of CNTs is stronger than the oblate form of GNPs. The value of E11 of
CNT composite is 33.36% higher than that of GNP composite, and for E22, it is also higher
by 33.16%.

The longitudinal Young’s modulus E11 increases as a function of CNT and GNP vol-
ume fraction-reinforced alfa and glass fibers with PP and UP polymers. Glass-reinforced
matrix has an E11 greater than alfa-reinforced matrix, especially for UP polymer (Figure 13a).
Alfa fiber-reinforced polymer has maximum values of E11 in the order of 31.58 GPa,
25.96 GPa, 24.47 GPa and 16.2 GPa for CNT-UP, GNP-UP, CNT-PP and GNP-PP, respec-
tively. Concerning glass fiber-reinforced polymer, E11 has maximum values in the order of
58.43 GPa, 52.8 GPa, 51.33 GPa and 43.06 GPa for CNT-UP, GNP-UP, CNT-PP and GNP-
PP, respectively. Good mechanical properties have been observed for CNT-UP effective
matrix and the worst for GNP-PP. In addition, the transversal Young’s modulus E22 is
lower than E11 (Figure 13b). Alfa-reinforced composite has a higher transverse Poisson’s
ratio ν12 than glass-reinforced composite (Figure 13c). The in-plane Poisson’s ratio ν23 of
glass-reinforced composite decreases for all volume fractions, while that of alfa-reinforced
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composite decreases until 30% and then remains constant for UP matrix (Figure 13d). It is
concluded that CNT inclusion and glass fibers have a greater effect than GNP inclusion
and alfa fibers on the mechanical performance of biocomposite. When the volume fraction
of CNT and GNP inclusions is large, their mechanical properties dominate over those of
alfa and glass fiber. Due to their high elastic properties, UP polymer, CNT inclusion and
glass fiber can improve the composite property more than PP polymer, GNP inclusion and
alfa fiber. GNPs have a higher Young’s modulus than CNTs, but because of their plate
shape, the composite has not increased mechanical stiffness. Focusing on the alfa fiber, for
polymer, E11 of alfa CNT-UP has a higher value than alfa CNT-PP by 22.51%. For inclusion,
alfa CNT-UP has an E11 value greater than alfa GNP-UP by 17.01%. In the same way, E11
of glass CNT-UP is 46.38% greater than alfa CNT-UP. The same observations were found
for the other elastic properties of E22, v12 and v23. It is observed that in the three phases of
the biocomposite, CNT and GNP inclusions dominated the mechanical properties at high
volume fractions.
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transverse Poisson’s ratio. (d) 𝑣ଶଷ in-plane Poisson’s ratio. 

Figure 13. Comparison of the transverse elastic moduli of an effective matrix reinforced by aligned alfa and E-glass fibers
vs. nanofiller volume fraction by Digimat-MF. (a) E11 axial Young’s modulus. (b) E22 in-plane Young’s modulus. (c) v12

transverse Poisson’s ratio. (d) v23 in-plane Poisson’s ratio.
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4. Conclusions

This study is a comparison between homogenization methods, and also between
the performance of synthetic and natural materials used for the benefit of wind turbine
blades. The elastic performance of alfa and E-glass composites with CNT and GNP
inclusion-reinforced PP and UP polymers was investigated using computational and
analytical approaches. The influence of volume fraction, aspect ratio and orientation on the
mechanical properties of nanocomposites was highlighted. It is shown that the mechanical–
elastic properties can be significantly affected by the shape of the inclusions and their
orientation, in particular for large volume fractions and aspect ratios. The following
important observations are highlighted:

• Computational and analytical models are in good agreement for aligned inclusions
with enhanced mechanical properties for all volume fractions, contrary to random
inclusions which are in good agreement until 10% of volume fraction.

• Due to its shape, the improved mechanical properties of the CNT matrix are in the
longitudinal axis and for the GNP matrix are in the transversal axis. In addition, it is
observed that CNT- and GNP-reinforced UP has enhanced mechanical properties in
comparison with PP polymer for random and aligned inclusions. Additionally, the
elastic properties of inclusions dominate those of polymers and fibers. The effect of
aspect ratio (AR) on elastic properties has been studied, and by increasing AR from 50
to 103, E∗m increases for CNTs and, by decreasing AR from 1 to 10−4, E∗m increases for
GNPs, which demonstrates that the shape of inclusions is significant

• In the 1st homogenization of aligned CNT-reinforced PP, longitudinal Young’s mod-
ulus E11 = 152.35 GPa is greater than the random E∗m = 4.77 GPa, and transversal
E22 = 29.56 GPa is lower than E∗m. Concerning GNP-reinforced PP, transversal E22
= 21.21 GPa is greater than the random E∗m = 13.01 GPa and E11 = 6.98 GPa is lower
than E∗m. For random inclusions, CNT- and GNP-reinforced UP has improved Young’s
modulus E∗m, and for aligned inclusions, enhanced Young’s modulus is shown by
CNT-UP in the axial direction (11) and GNP-UP in the transversal direction (22).

• In the 2nd homogenization, CNT-PP-reinforced alfa composite has transversely isotropic
properties, and has a longitudinal Young’s modulus E11 = 24.46 GPa close to the
transversal Young’s modulus E22 = 23.97 GPa. The in-plane Poisson’s ratio ν23 = 0.33
is close to the transverse ν12 = 0.32. For GNP-PP-reinforced Alfa, E11 =16.22 GPa is
greater than E22 = 15.82 GPa and ν23 = 0.35 is greater than ν12 = 0.34. It is observed
that the mechanical properties of the biocomposite are somewhat more favorable in
the longitudinal direction than transversal because the volume fraction of the alfa
fiber is 50%, and the rest is for the matrix reinforced by random CNTs and GNPs that
dominate the mechanical behavior of the biocomposite.

• The alfa fibers present a promising alternative to the synthetic fibers of E-glass used in
wind turbine blade fabrication because of their lightness, availability and biodegradability.
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