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Abstract: Designing a novel platform capable of providing a proper tissue regeneration environment
is a key factor in tissue engineering. Herein, a green composite based on gelatin/agarose/zeolite
with pomegranate peel extract was fabricated as an innovative platform for tissue engineering.
Gelatin/agarose was loaded with pomegranate peel extract-loaded zeolite to evaluate its swelling
behavior, porosity, release rate, and cell viability performance. The composite characteristics were
evaluated using XRD and DSC. The hydrogel performance can be adjusted for the desired aim by
zeolite content manipulation, such as controlled release. It was shown that the green nanocomposite
exhibited proper cellular activity along with a controlled release rate. Moreover, the hydrogel
composite’s swelling ratio was decreased by adding zeolite. This study suggested a fully natural
composite as a potential biomaterial for tissue engineering, which opens new ways to design versatile
hydrogels for the regeneration of damaged tissues. The hydrogel performance can be adjusted
specifically by zeolite content manipulation for controlled release.

Keywords: gelatin; zeolite; green composite; tissue engineering; wound healing; facial mask

1. Introduction

Tissue engineering, as a newly emerging field, has attracted significant attention for
the regeneration of damaged tissues/organs. Different factors are centered on tissue engi-
neering, including cells, biological factors, and scaffolds [1–3]. Scaffolds can be fabricated
with different structures like hydrogels that provide a proper environment for cellular
activities. Various therapeutic agents have been examined for enhanced regeneration in
scaffold design with exceptional cellular performance; sometimes capable of reducing the
inflammation and inhibiting bacterial infections [4–6]. A scaffold with robust properties is
of priority because of possessing an adjustable character for the desired target. For example,
adjusting the water-uptake performance of hydrogel composite facilitates the application
of a designed scaffold for wound healing purposes [7,8].

Polysaccharides have been widely utilized in tissue engineering to fabricate scaffolds.
Gelatin, as one of the promising natural polymers, exhibits an acceptable performance for
tissue regeneration. Gelatin has been vastly utilized for wound healing because of its proper
biocompatibility, ECM-resemblance, and pain-relieving properties [9–11]. Agarose shows
self-gelling behavior as the widely used member of the polysaccharide family. Hydrogel
formation needs a crosslinking agent to form a 3D network [12–14]. Crosslinking agents
are small molecules that usually cause toxicity in the system. Self-gelation property of the
agarose allows for eliminating the need for crosslinking agents [15,16].
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Therapeutic factors can be loaded within the scaffold to increase the regeneration
performance. Pomegranate, Punica granatum L. (Lythraceae), and its peel and seed (after
aril) are known as precious materials in the healthy bioactive compounds, exhibiting antiox-
idant properties [17,18]. This is probably the main reason they have conventionally been
used for inflammation and depigmentation therapies since a long time ago. The main ingre-
dients of the pomegranate being responsible for therapeutic performance are polyphenols,
flavonoids, and tannins. Kanlayavattanakul et al. showed that Pomegranate Peel Extract
has proper cellular antioxidant and proliferative activities [19]. Loading therapeutic agents
within the hydrogel results in burst release. On the other hand, encapsulation of the thera-
peutic agent within a carrier can make it possible to control the release rate [20–22]. Zeolite
can be utilized as a platform for the delivery of various types of therapeutic agents [23]. Ze-
olite is capable of enhancing cell attachment strength, and in particular, can act as a specific
topology guide on the cellular activity to achieve desired goals, thanks to the high surface
area and high-level protein adsorption capacity. Furthermore, it has been shown that the
nanoporous structure regulates the function of cells by changing the conformation of the
proteins involved in the cellular attachment or by changing the surface energy [24,25].

Designing a proper scaffold for tissue engineering necessitates the combination of
various factors in order to achieve the desired target. In this work, pomegranate peel
extract-loaded gelatin/agarose/zeolite hydrogel composite was synthesized and charac-
terized which can be used potentially as a scaffold for skin regeneration and rejuvenation.
Thermal behavior, swelling behavior, release pattern, water vapor transition rate, and the
biocompatibility of the composite were investigated to have a better understanding of the
composite in the clinical applications. It is believed that this approach paves the way to
design a novel platform for tissue engineering, specifically for skin care products.

2. Material and Methods

Gelatin, agarose, sodium aluminate (Al (Al2O3):50–56%, Na (Na2O): 40–45%), sodium
metasilicate nonahydrate, and sodium hydroxide were received from Sigma (St. Louis,
MO, USA). Pomegranate peel extract was received from Chicest Polymeran Sanat (Urmia,
Iran). All materials used as received without any purification.

2.1. Green Composite Fabrication

Zeolite was synthesized using the previously described method [26]. Briefly, 0.24 g
sodium aluminate, 2.21 g of diatomite, and 1.6 g TPABr were mixed in a certain amount of
deionized water. The mixture pH was adjusted at 10 using sodium hydroxide, followed
by transferring into an autoclave for the hydrothermal process. The product was then
filtered and washed using DI water several times and then dried at 100 ◦C overnight.
Calcination was performed at 500 ◦C for 6 h to form Na-ZSM-5. In this study, no template
was used to obtain the as-synthesized powder. At the final step, the obtained Na-ZSM-5
was treated by an ion exchange agent (NH4NO3) for 6 h at 80 ◦C followed by filtering and
washing with distilled water. The HZSM-5 powder was finally achieved via calcination at
500 ◦C for 4 h. On the other hand, gelatin and agarose were dissolved in water and mixed
with zeolite at ambient temperature for incubation. The resulting hydrogel was stored for
further investigation.

2.2. Mechanical Properties

Cylinders with 10 mm diameter and 6 mm thickness were made from hydrogels to
investigate the mechanical properties. Samples underwent uniaxial compression using a
Santam-STM200 instrument with the load cell of 10 KN and the strain rate of 1 mm·min−1

to determine samples’ modulus.

2.3. Swelling Behavior

The swelling characteristic of hydrogel has a critical role in final applications. To
evaluate the swelling performance, samples (W0) were initially weighed and followed by
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immersion in water. At determined periods, the immersed sample (Wt) was weighed to
determine the swelling ratio (SR = (Wt − W0/W0)).

2.4. Porosity Evaluation

The morphology of the selected hydrogel was assessed via scanning electron mi-
croscopy (SEM). The SEM images were taken from the fracture surfaces of the samples.
Moreover, liquid displacement technique was utilized to understand the porosity of the
composite. The freeze-dried hydrogel was soaked in ethanol for 3 min. Then samples were
taken out, and the sample porosity was calculated using Porosity = (V0 − V2)/(V1 − V2)
equation, where V0, V1, and V2 are the initial volume of ethanol, the volume after the
sample immersion, and the final volume without sample, respectively.

2.5. Thermal Behavior

Differential Scanning Calorimetry (DSC) technique (PerkinElmer 8000) was applied
to monitor the changes in the heat flow of the sample vs. the temperature under nitrogen
flow. Heating and cooling rates were +10 ◦C/min and −10 ◦C/min, respectively.

2.6. Release Behavior

Hydrogel composite was mixed with the Pomegranate Peel Extract. Initially, Pomegranate
Peel Extract (PX) was added to each sample’s solution before gelation to study the release
kinetics. The samples were soaked with the PBS at 37 ◦C to mimic the biological environ-
ment. UV–Vis spectroscopy (λ = 472 nm) was performed to assess the drug release values
in PBS to investigate the release behavior. Various concentrations of PX were used to make
standard solutions to graph the calibration curve. The absorbance of each sample was
calculated from the Beer-Lambert law.

2.7. Cellular Assessment

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used
for the cell viability test. Samples were sterilized and immersed in PBS overnight followed
by soaking in Dulbecco’s modified eagle medium (DMEM). Then, samples washed by PBS
and fibroblast cells (L929 mouse fibroblast cell line) cultured on the samples in a 48-well
culture plate and incubated at 37 ◦C with 5% CO2. After that, DMEM was rinsed, and the
MTT solution was poured on the sample to evaluate the sample biocompatibility. After a
certain time, using DMSO dissolved the formazan released from cells, and the absorbance
at a certain wavelength was read using an ELIZA reader.

2.8. Statistical Analysis

Data were shown as mean ± standard deviation and evaluated using Student’s t-test.
p value < 0.05 was believed significant.

3. Result and Discussion

In this work, the hydrogel composite was fabricated based on agarose self-gelling
properties. 3D network formation of hydrogel formation is a challenging issue because
of using the crosslinking agent. Crosslinking agents form a 3D network of hydrogel
and provide mechanical stability, but they typically show toxicity. Self-gelling hydrogels
such as agarose forms 3D network without crosslinking thanks to the hydrogen bond,
electrostatic interaction, and helical structure formation (Figure 1). Self-gelling material like
agarose can be used with other polysaccharides like alginate to reduce the cross-linking
agent usages [27].
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Figure 1. Agarose Gelation Mechanism: agarose chains lean to form helical structure and gel because of the hydrogen
bonding and electrostatic interaction.

Different ratios of agarose and gelatin were selected to evaluate the mechanical and
thermal behaviors of the composites. It was found that the addition of more gelatin resulted
in network failure and reduced the composite mechanical properties. The Modulus of
the composites is shown in Table 1. Agarose shows a self-gelling behavior by forming
networks through hydrogen bonds, which is illustrated in Figure 1. On the other hand, DSC
thermograms showed that the addition of gelatin to the agarose decreases the melting point
of the composite, indicating the weakness of the gel network (Figure 2). In other words,
gelatin addition to the agarose network hampers the network formation and weakens
the gel network strength, which results in the reduction of the melting point of the gel
along with the reduction in the mechanical strength. The agarose melting point is around
100 ◦C; however, adding gelatin reduced the composite gelation point to around 90 ◦C.
As observed in all of the peaks, the samples show one broad melting peak, indicating
adequate miscibility of the agarose and gelatin. Also, as the SEM image (Figure 3) showed
a uniform microstructure without any phase separation. It should be noted that such
uniform composites are highly desirable in tissue engineering.

Gelatin is the denatured form of collagen, showing high biocompatibility. Selecting a
hydrogel for tissue engineering applications requires maintaining a subtle balance between
simplicity and complexity. Along with the biocompatibility and cell affinity, mechanical
properties should be considered. Also, one should consider that the stiffness of the hydrogel
might affect cell activities. Rowlands et al. showed that the cells could proliferate and
spread easily on the hydrogel with a stiffness of around 25 kPa [28]. For this reason, the
AGel-2 sample was selected for further investigations. The next step was the addition of
zeolite to the composites. The strong diffraction peaks in the XRD pattern (Figure 4) of
zeolite show the creation of crystalline phases. The main peaks are observed at 23.21◦,
and 34.02◦.

Table 1. Green composite modulus.

Sample Ratio (Agarose/Gelatin) Modulus (kPa)

Agarose - 30
AGel-1 (90/10) 27
AGel-2 (80/20) 25
AGel-3 (70/30) 20
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Figure 4. XRD pattern of the zeolite.

By variation of the zeolite content, hydrogel composite’s swelling ratio can be adjusted
to an optimum value, which is an important fact in tissue engineering applications such
as wound healing systems. A moist milieu improves the healing procedure of the wound
by controlling hydration/dehydration, increasing angiogenesis, and synthesizing collage
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which decreases the pain along with improving the wound aesthetics. The infection risk
of the moist environment is lower than conventional dry trophies [29]. To this aim, the
hydrogel composite swelling behavior was evaluated with different content of the zeolite.
The swelling ratio of the hydrogel composite is illustrated in Figure 5. The it is evident
that introducing zeolite into the hydrogel composites improves the hydrogel composite
integrity and decreases the swelling ratio.
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Figure 5. Swelling ratio of the hydrogel composite with different content of the zeolite.

Porosity has a significant role in tissue engineering. The function of seeded cells
highly depends on the porosity, which has a dominant role in nutrient/waste exchange and
oxygen diffusion. Moreover, porosity affects cellular activities, including cellular adhesion
and interaction. The porosity of samples was measured by the liquid displacement method,
and found to be about 87%, which is suitable for tissue engineering applications [30].

Cell viability on hydrogel composites was evaluated using the MTT method. Support-
ing the cell growth is the most important factor of the scaffold, which causes the proper
regeneration. Figure 6 represents the MTT results during 5 days. The graph indicates that
on the first day, the samples’ proliferation is roughly similar (p > 0.05). After incubation for
3 and 5 days, cells exhibited better proliferation in the samples compared to tissue culture
polystyrene, suggesting that the hydrogel composites provide a desirable environment for
the cell proliferation (Figure 6). Zeolite presence in the composites causes the creation of
anchors on the scaffold and increases the focal adhesion [31,32]. Figure 6 reveals that the
sample with 0.5% zeolite has a slightly higher cell proliferation compared to other samples.
Hence, it can be inferred that the zeolite addition up to 2% does not affect the hydrogel
biocompatibility adversely, and the synthesized hydrogel composites show adequate bio-
compatibility and cell proliferation. Zeolite addition can be used to adjust the therapeutic
agent release to achieve the controlled and sustained release. In this regards, PX release
was assed using different percentage of the zeolite in hydrogel.

PX shows cutaneous advantages and is used for treating skin disease such as hyper-
pigmentation. It is reported that PX exhibited proper cellular biocompatibility in both
form of the serum and mask [19]. PX assists the wound healing process through promot-
ing hemostasis, immunomodulatory, antibacterial, anti-atherosclerotic, and anti-oxidative
activity, as well as killing parasites [33]. In this work, the release kinetics of the PX was
studied to determine its release behavior using different content of the zeolite (Figure 7). It
can be deduced that the zeolite addition affects the release behavior, and the zeolite content
can be adjusted based on the desired release rate.
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4. Conclusions

In this study, hydrogel composites based on gelatin/agarose/zeolite were fabricated to
evaluate their properties as a scaffold for tissue engineering. The optimum gelatin/agarose
composition was selected, showing the proper mechanical properties along with acceptable
biocompatibility. The hydrogel showed acceptable mechanical stability and porosity for
tissue engineering. By adding the zeolite, composite properties such as swelling and
drug release rate can be adjusted depending on the application. Zeolite presence within
the hydrogel reduces the swelling ratio, as well as the release rate of therapeutic agent,
wherein can be used to achieve the desired drug release rate. Our findings showed that
such hydrogel composites could be suitable candidates for tissue engineering applications.
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