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Abstract: Porous silica particles have shown applications in various technological fields including
their use as catalyst supports in heterogeneous catalysis. The mesoporous silica particles have
ordered porosity, high surface area, and good chemical stability. These interesting structural or
textural properties make porous silica an attractive material for use as catalyst supports in various
heterogeneous catalysis reactions. The colloidal nature of the porous silica particles is highly useful in
catalytic applications as it guarantees better mass transfer properties and uniform distribution of the
various metal or metal oxide nanocatalysts in solution. The catalysts show high activity, low degree
of metal leaching, and ease in recycling when supported or immobilized on porous silica-based
materials. In this overview, we have pointed out the importance of porous silica as catalyst supports.
A variety of chemical reactions catalyzed by different catalysts loaded or embedded in porous silica
supports are studied. The latest reports from the literature about the use of porous silica-based
materials as catalyst supports are listed and analyzed. The new and continued trends are discussed
with examples.

Keywords: porous silica; catalyst; heterogeneous catalysis; catalyst support; stability

1. Introduction

Porous silicas are chemically and thermally stable materials with uniform pore size,
pore distribution, high surface area, and high adsorption capacity [1–3]. The size and
shape of the porous silica particles as well as the structure of pores on them can be tuned
by controlling synthetic parameters like temperature, reaction time, and the amount of
silicates/silica source; adjusting the surfactant concentration; changing the calcination
conditions; etc. [4,5]. The pore size and its uniformity contribute to the strength of porous
silica material [6]. A huge number of reports appear in the literature on silica and porous
silica materials and their applications [7–13]. This shows their versatility and use in various
technological or industrial applications. In particular, mesoporous silica nanoparticles
are useful in several fields of application, such as environmental, biomedical, energy, and
as catalyst supports [14]. They are also used in drug delivery [15], vaccine development,
biomass conversion, and as catalyst or catalyst supports [16]. Due to the ordered porosity
and unique features, they also act as highly efficient nano adsorbents for the adsorption
removal of various toxic pollutants [17,18]. These extended applications of porous silica
particles are due to the ease of their functionalization of both the internal and external
surfaces of their pores with various organic functional groups [19]. The porous silica
particles can also be used as a strong support matrix in catalytic applications [20].

The first report about the synthesis of ordered mesoporous silica material was in
early 1990 [21]. Recently, there are several modified and new synthetic techniques for

J. Compos. Sci. 2021, 5, 75. https://doi.org/10.3390/jcs5030075 https://www.mdpi.com/journal/jcs

https://www.mdpi.com/journal/jcs
https://www.mdpi.com
https://orcid.org/0000-0002-5372-2969
https://doi.org/10.3390/jcs5030075
https://doi.org/10.3390/jcs5030075
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcs5030075
https://www.mdpi.com/journal/jcs
https://www.mdpi.com/article/10.3390/jcs5030075?type=check_update&version=2


J. Compos. Sci. 2021, 5, 75 2 of 17

the synthesis of porous silica particles. The newly invented techniques provide some
advantages over the old methods. They offer control over synthesis conditions during
nucleation and growth process [22]. Due to this, it is possible to produce silica nanoparticles
with pore diameters ranging from microporous (below 2 nm) and mesoporous (2–50 nm)
to macroporous (above 50 nm) [23]. The most common types of silica materials in the
mesoporous pore size range are Mobil Crystalline Materials-41 (MCM-41) [24]; Santa Bar-
bara Amorphous (SBA-15) [25,26] with hexagonal pore structure; and other types such as
Hiroshima Mesoporous Material (HMM-33), Technical Delft University (TUD-1), folded
sheets mesoporous materials (FSM-16), SBA-16, MCM-48, SBA-11, SBA-12, SBA-16, KIT-5,
etc. Table 1 enlists the most common types of porous silica particles with their characteristic
features and properties. Figure 1 shows the structures of different types of mesoporous
silica nanoparticles. Due to the excellent chemical stability and the possibility of incorpora-
tion of various nanomaterials (catalysts), porous silica materials have received increased
attention as catalyst supports. Among the various types of mesoporous silica materials
mentioned above, MCM-50, SBA-11, and SBA-12 are reported as excellent adsorbent and
catalytic supports [27].

Table 1. List of different types of mesoporous silica nanoparticles (MSNs) and their characteristic
properties [27].

MSN Family MSN Type Pore Symmetry Pore Size (nm) Pore Volume (cm3/g)

M41S
MCM-41 2D hexagonal 1.5–8 >1.0
MCM-48 3D cubic 2–5 >1.0
MCM-50 Lamellar 2–5 >1.0

SBA

SBA-11 3D cubic 2.1–3.6 0.68
SBA-12 3D hexagonal 3.1 0.83
SBA-15 2D hexagonal 6–0 1.17
SBA-16 Cubic 5–15 0.91

KIT KIT-5 Cubic 9.3 0.45

COK COK-12 Hexagonal 5.8 0.45

FDU FDU-12 3D Cubic 10–26 0.66
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The solid or porous silica materials are most commonly synthesized by sol-gel and
hydrothermal processes. These methods include the use of reagents such as tetraethoxysi-
lane (TEOS) as a silica source, cetyltrimethylammonium bromide (CTAB) as a templating
agent, trimethyl benzene (TMB) as a modulator to tune the pore diameter, and alcohol
as a solvent in combination with water [28,29]. The most established way to synthe-
size the catalyst-immobilized porous silica is using catalyst material as a base in a sol–
gel process that will result in densely structured particles impregnated on or inside the
highly branched silica network [30]. The composition and pore structure of the catalyst-
immobilized porous silica materials can be studied with various characterization techniques
such as infrared spectroscopy (IR), X-ray diffraction (XRD), thermogravimetric analysis
(TGA), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission
electron microscopy (TEM), and nuclear magnetic resonance (NMR) [31,32]. These tech-
niques can be used to conform the formation of siloxane network, porosity, formation, and
incorporation of the catalyst particles in the silica matrix. Porous silicas are good catalyst
supports because of their inertness, multi-functionalities, and stability in almost all solvents
and high catalytic selectivity. The first report of using mesoporous silica in a polymer
synthesis catalysis was reported by Aida’s group in Japan, which opened a new route for
advanced solid supported catalysis [33]. Their ability to catalyze (by virtue of the catalyst
loaded) any reaction of alkylation, arylation, or vinylation of various alkenes in organic
catalysis makes them an attractive material [34]. Their ability to readily separate from the
product after reaction completion is another characteristic feature of porous silicas [35].
Porous silica-based materials have also been investigated as supports for enzymes such as
cytochrome C (MW-12k) and showed that the immobilization of enzymes on inorganic ma-
terial like porous silica is very useful in practical applications [36]. This is a classic example
of the potential of porous silicas to improve the stability of biomolecules or an enzyme
under extreme conditions. In this brief review, we have presented basic information about
porous silica particles and highlighted their use as catalyst supports. The requirements of
good catalyst supports are discussed, and the very latest reports from the literature about
the use of porous silica-based materials as catalyst supports are enlisted with analysis.

MCM: Mobil Crystalline Materials; SBA: Santa Barbara Amorphous; KIT: Korea
Advanced Institute of Science and Technology, COK: Centre for Research Chemistry and
Catalysis Mobil Crystalline, FDU: Fairleigh Dickinson University.

2. Catalyst Support Properties and Requirements

Catalyst supports are important to support solid catalysts as they increase the effi-
ciency of the supported metals or metal oxides by acting as a catalytically active center.
The support can be chemically inert or it may interact with the active component (actual
catalyst). Note that the interactions of the reactants in solid, liquid, or in gaseous forms
with the support material must be non-destructive. The interactions of the support material
with the active catalyst thereby affect the catalyst activity and selectivity. The support
material may not contribute directly to the catalytic reaction process but may contribute
indirectly by adsorbing the reactants near the embedded catalysts. The materials used as
catalyst supports must show chemical stability, high surface area, as well as capability of
dispersing metal or metal oxide particles highly over their surface. This is very important
when expensive metals, such as gold, silver, platinum, ruthenium, palladium, etc., are used
as the catalysts. Nanoparticles of noble metals are prepared to obtain the catalyst with
high surface area and the supports must expose the right sides or maximum surface of the
nanomaterials for the chemical reaction to occur. Supports give the catalyst its physical
form, texture, mechanical resistance, and certain activity particularly for bifunctional cata-
lysts. The surface chemical (functional groups) and physical properties of surfaces affect
the performance of the supported metals. By keeping in mind these requirements, various
oxides and carbon compounds are being used as catalyst support materials. Among all
materials, silica (SiO2) acts as an excellent catalyst support material due to its outstanding
chemical and physical properties. The porosity plays an important role in increasing the
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efficiency of catalyst supports. The shape as well as the size of pores of the support have
an important effect on the activity and stability of embedded catalysts. Metal nanoparticles
supported on porous silica-based supports exhibit higher catalytic activity arising from the
higher accessibility of the active sites. A variety of porous silica particles are available as
catalyst supports. Table 2 lists the main types of porous silica materials used as catalyst
supports and their characteristic properties. The chemical inertness and high stability
make these materials ideal catalyst supports. Figure 2 shows a representative example
of how nickel nanoparticles are loaded or trapped inside different types of mesoporous
silica-based catalyst supports. The different arrangements of the embedded catalyst inside
the porous silica are clearly visible.

Table 2. Comparison of the properties of various porous silica particles.

Full Name
Santa Barbara
Amorphous

Type 15

Santa Barbara
Amorphous

Type 16

Mobil
Composition of
Matter No. 41

Mobil
Composition of
Matter No. 48

Hexagonal
Mesoporous

Silica

Short name SBA-15 SBA-16 MCM-41 MCM-48 HMS

Structure directing
agent

Pluronic 123
(non-ionic)

Pluronic F127
(non-ionic) CTAB (cationic) CTAB (cationic) Amines (non-ionic)

pH at synthesis Acidic
(pH ~ 1)

Acidic
(pH ~ 1)

Basic
(pH ~ 11–13)

Basic
(pH ~ 11–13)

Basic
(pH ~ 9)

Features

Hexagonal pores,
2D array, p6mm

symmetry,
channels

interconnected by
small micropores

3D cubic
arrangement
connected by

spherical cavities,
Im3m space
symmetry

1D mesopores,
p6mm hexagonal,

absence of
interconnected

pores

Ia3d 3D cubic
continuous pore

arrangement

Sponge-like
particles,

warm-hole
mesostructured

framework

Pore diameter

Uniform and
larger pore

diameter (4–30 nm)
facilitating easy

diffusion

Similar pore
diameter values
but nonuniform

mesopores

Smaller pore
diameter (1.5–10

nm) hindering the
diffusion of
substrates

Smaller pore
diameter (2–3 nm)

hindering the
diffusion of
substrates

Smaller pore
diameter than
SBA-15 (2–10)

Range of surface
area

Higher surface
area (~1000 m2/g),
high surface area
to volume ratio

Comparable
surface area values

to SBA-15

Lower surface area
(~800 m2/g)

Higher surface
area

(~1100 m2/g)

Surface area
(800–1000 m2/g)

Stability

Thick walls (up to
9 nm) and hence
more thermally

stable

Thick walls
comparable to

SBA-15

Thin walls (0.5 nm)
and thus poor
hydrothermal

stability

Thin walls and
hence

comparatively less
thermally stable

Less ordered
structure but
comparable

stability

There are some important points that need to be considered both during the post-
synthesis loading of the catalysts and in situ synthesis and loading of the catalyst particles
on the porous silica-based supports. During in situ synthesis (generation), the catalyst
particles get embedded inside the porous catalyst supports and may improve the overall
mechanical stability of the porous support matrix. Instead, the post-synthesis loading
of the catalyst particles inside the porous supports may pose some problems such as
pore blocking (as seen in some images in Figure 2). Therefore, the size of the catalyst
particles during post-synthesis immobilization must be smaller than the pore size. The
blocking of the pores will prevent the reactant in various states to enter the pores and the
overall conversion will be low. The covalent immobilization of catalyst particles during
the post-synthesis catalyst loading is also essential. The catalyst particles can be held by
strong bonds between the support and the surface of the catalyst. However, there is high
likelihood of compromising the catalyst surface for surface modification and subsequent
covalent immobilization reactions, which will affect the efficiency of the catalyst. The
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percentage of loading (with respect to the weight of the porous catalyst support) of the
catalyst can greatly affect the stability of the support matrix as well as the catalytic efficiency.
An optimum loading of the catalyst is necessary for efficient performance of the catalyst
in the reaction to be catalyzed. The shape of the pores available or created on the porous
matrix/particles also play an important role in determining the efficiency of the material. If
the shape of the catalyst particles and the pores is the same, then there is great possibility of
proper filling of the pores by catalyst particles. The post-synthesis covalent immobilization
of the catalyst and in situ synthesis and deposition of the catalyst on porous silica-based
supports guarantee high stability of the material.
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3. Types of Reactions

The versatility and stability of the porous silica-based catalyst supports are evidenced
by a variety of chemical reactions catalyzed by different catalysts supported on them.
The porous silica-based catalyst supports are used in the reactions such as aerobic ox-
idation of alcohols (1-phenylethanol and benzyl alcohol) [38]; oxidation of methane to
methanol [39,40], propene [41], benzene, benzyl alcohol [42], and toluene [43]; oxidative
removal of 4,6-dimethyldibenzothiophene [44]; photooxidation of CO [45]; CO oxidation at
low temperature [46–48]; organic oxidation of 1,2-dichloropropane [49,50]; photodegrada-
tion of methylene blue [51]; CO2 adsorption [52–54]; hydrodeoxygenation of anisole [55];
esterification to produce biofuels [56,57]; biodiesel production from palm acid distillate [58];
biofuel upgrade (hydrocracking of camelina FAMEs) [59]; model transesterification reaction
(ethyl acetate + methanol = methyl acetate) [60]; dehydration of glycerol [61]; hydrodesul-
furization [62]; decomposition of N2O [63] and formic acid (HCOOH <-> H2 + CO2) [64];
cycloisomerization of alkynoic acids to alkylidene lactones [65]; coupling reactions (clean
synthesis) [4,66,67]; carbon-carbon bond forming reactions [68]; removal of exhaust gas
pollutant [69]; waste water treatment [70]; polymerization of olefins [71–73]; biodegrad-
able polymer synthesis [74]; hydrocracking of pyrolyzed a-cellulose [75]; dehydration
transfer hydrogenation [76]; selective hydrogenation of butadiene [77]; hydrogenation of
methanol [78]; p-nitrophenol to p-aminophenol [79]; dehydrogenation [80–84]; CO2 to
methanol (CH3OH) [85]; epoxidation of styrene [86–88]; cyanosilylation [33]; reduction of
N2 to ammonia [89]; bromate [90]; photocatalytic water oxidation [91]; photocatalytic degra-
dation and removal of Cr(VI) and methylene blue [92]; photocatalytic hydrogen evolution
from water [93]; catalytic transfer hydrogenation for the synthesis of Y-valerolactone [94,95];
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Friedel-Craft alkylation reaction of aromatic compounds [96]; addition of carbon het-
eroatom bond formation [97]; and soot combustion [98].

A classic example of use of porous silica as catalyst supports is shown in Figure 3. It
shows highly monodispersed palladium nanoparticles immobilized in three-dimensional
dendritic mesoporous silica used as catalyst in Suzuki-Miyaura C-C cross-coupling. Instead,
Figure 4 shows AuPt alloy yolk@shell hollow nanoparticles and their incorporation into
hollow interiors of a mesoporous silica microspheres based on a rapid aerosol process.
The AuPt@SiO2 spheres showed excellent catalytic performance in the epoxidation of
styrene with conversion and selectivity of 85% and 87%, respectively. Note that the various
reactions mentioned above include different reactions conditions and states of the reactants,
solvents, and other chemicals, and the silica-based catalyst support withstands all those
conditions, proving its chemical stability, which is the prime requirement of the catalyst
support as mentioned above.
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4. Recent Reports, Analysis and Trends

The very latest reports from the literature about porous silica-based catalyst supports
are enlisted in Table 3 with the name of the catalyst material and reactions catalyzed.
Observation of the entries in Table 3 reveals some trends about the use of porous silica-
based materials as catalyst supports. Due to its simplicity and efficiency to produce
monodispersed porous silica particles, the sol–gel technique remains the most common
synthesis technique to obtain the porous supports. The trend of in situ synthesis and
loading of the catalysts in the same synthesis conditions is also observed. The soft (easily
degradable) template approach is the preferred technique to generate the porosity, and
it is observed in most of the reports. Instead, a variety of different catalysts, such as
noble metal nanoparticles, bimetallic nanoparticles, composite nanoparticles, alloys, noble
metal, composite material nanocrystals, etc., are embedded in the porous silica-based
supports. The pore sizes were tuned as per the sizes of various catalysts embedded in the
materials. A variety of new reactions are added to the previously reported reactions as
pointed out above. Most of the latest works also cover the studies of recyclability of the
catalysts immobilized on silica-based catalyst supports, this proves the good hydrothermal
or solvothermal (considering the fact that aqueous as well various solvents are used in
the various reactions carried out) stability of the porous silica network. This is important
from a technology and cost point of view. All the reports suggest the improved catalytic
performance of the catalysts in various chemical reactions upon their immobilization on
the porous silica-based catalyst supports. In addition to mere catalyst supports, some of
the very interesting works report the chemical reactions catalyzed by porous silicas or by
functional (that is organic functional group bearing) porous silica nanoparticles.

Table 3. Summary of the latest reports from the literature about the use of porous silica-based catalyst supports.

Sr. No. Material Type of Synthesis Catalyst Chemical Reaction Ref.

1. Core-shell structured
magnetic silica. Sol-gel Bronsted acid Transesterification of soybean oils,

low-quality oils to biodiesel [101]

2.
Chondroitinase ABC

(I) on red porous
silicon nanoparticles

Electrochemical
etching chrondroitinase Biological enzyme catalysis

reaction [102]

3.
Mesoporous-silica-
supported metal

nanocatalysts
Sol–gel Metal nanocatalyst

(Ag, Pd, amines)

Dehydrogenation of formic acid
for Hydrogen generation
(HCOOH -> H2 + CO2)

[103]

4. Mesoporous silica
(SBA-15, MCM-41) Sol–gel

Palladium and
platinum

nanoparticles

Organic synthesis alcohols,
carboxylic acids, and esters [104]

5.
Mesoporous silica

spheres and
nanocapsules

Soft and hard dual
template Sulfonic acid

Biomass valorization catalysis,
conversion of cellobiose into

glucose
[105]

6. Silica nanoshell
(Pd/Fe3O4@h-SiO2) Sol–gel Pd nanocrystals

Biorthogonal Organic Synthesis,
carbocyclization reactions,

converting a range of
non-fluorescent substrates to

fluorescent products

[106]

7. Mesoporous fumed
silica Sol–gel Palladium, Cobalt,

Nickel, and Copper

Suzuki cross-coupling (SCC)
reactions (C-C bond forming

reaction) Cross-coupling reaction
between bromobenzene with

benzeneboronic acid give
biphenyl

[107]
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Table 3. Cont.

Sr. No. Material Type of Synthesis Catalyst Chemical Reaction Ref.

8.
Mesoporous
MoO3/SiO2

nanosphere networks
Self-assembly MoO3

oxidative desulfurization of
Dibenzothiophene (DBT) [108]

9. Silica Sol–gel IrO2
Photodegradation of methylene

blue [109]

10.
Dendrimer-like Porous

Silica Nanoparticles
(DPSNs)

Template-
mediated

self-assembly
Cu-BTC MOFs

Catalytic aerobic epoxidation of
olefins, cyclooctene to cyclooctane

oxide
[110]

11. Mesoporous Silica
(Fe@silica)

Sol-gel and
Hydrothermal Iron Oxidation [82]

12. Silica (CuO@SiO2) Sol-gel Cu nanoparticles
(NPs)

Cu-catalyzed organic
transformations, C-C bond

formation, reduction of organic
dye

[111]

13. Mesoporous silica
matrix (MMS)

Direct growth
technique

Hongkong University
of Science and

Technology (HKUST-1)
(Cu3(BTC)2, BTC 1

4
benzene-1,3,5-
tricarboxylate)
nanoparticles

Condensation reaction,
Friedlander reaction between

2-amino-5-chlorobenzophenone
and acetylacetone and Henry

reaction nitroaldol condensation
between nitromethane and 4-

nitrobenzaldehyde

[112]

14.

Functionalized
mesoporous SBA-15,

SBA-16, MCM-41,
MCM-48

Sol-gel Metal nanoparticles
(Ti, V, Cr, and Mo)

Catalytic transformation, Dry
Reforming of Methane (DRM)
reaction as CH4 + CO2 -> 2H2+

2CO

[33]

15. Porous SiO2
(Pt@HS-SiO2 PL) So-gel Platinum

Nanoparticles

Hydrogenation of alkenes (decene
to decane) and nitroarenes to

amino phenol
[113]

16. Silica (SiO2) powder Sol-gel Diethylenetriamine Knoevenagel reaction
(carbon-carbon (C-C) coupling). [114]

17. Biosilica
Microparticles

Diatom
(Thalassiosira
pseudonana)

Horseradish
peroxidase (HRP),

glucose oxidase, Gold
nanoparticles

Biological enzyme catalysis
reaction of T. pseudonana,

Oxidation of glucose.
[115]

18.

Folic
acid-functionalized

dendritic fibrous
nano-silica

(FA-KCC-1-NH2)
(FA = Folic acid,

KCC-I = fibrous nano
silica)

Hydrothermal KCC-1-NH-FA
nanoparticles

Amidation of carboxylic acids
with amines [116]

19.

Monodisperse
mesoporous silica

microspheres
(M-MSMs)

Sol–gel Au Nanoparticles Reduction of 4-nitrophenol (4-NP)
to 4-amino phenol [117]

20. CaSiO3-SiO2 powder Co-precipitation
method CaSiO3 (Na2O·nSiO2)

Decomposition of isopropyl
alcohol, dehydrogenation of the

alcohol producing acetone
[118]

21. ReO3/SiO2, silica
matrix Sol-gel ReO3 nanoparticles Photodegradation of Blue

Methylene [119]
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Table 3. Cont.

Sr. No. Material Type of Synthesis Catalyst Chemical Reaction Ref.

22.

Porous silicon dioxide
(SiO2) and carboxyl-

functionalized carbon
nanotube

(PtIrNi/SiO2-CNT-
COOH)

Sol-gel PtIrNi alloy
nanoparticles

Electrochemical Ammonia
Oxidation reaction (AOR) [120]

23.

Expanded mesoporous
silica

(EMSN)-encapsulated
Pt nanoclusters.

Sol-gel Pt nanoclusters
Artificial enzymes for tracking

hydrogen peroxide secretion from
live cells

[121]

24. Microporous silica
microcapsules

Gas-in-water-in oil
emulsions
(g/w/o)

Microporous silica
microcapsules

Ostwald ripening, generation of
gas-in-water-in-oil emulsions [122]

25.
Pt-loaded

ZSM-22/MCM-4
(Pt-MES)

Sol-gel Bronsted acid, Pt
nanoparticles

N-alkane isomerization for
refinery process by converting the
petroleum into the gasoline with

high quality and the diesel

[90]

26.

Organo-amine-
functionalized castor

oil templated
mesoporous silicas

Valorization of rice
husk Amine groups

Biodiesel synthesis,
transesterification of model

C4-C12 triglycerides (TAG) to
fatty acid methyl esters

[123]

27.

TEMPO-
functionalized

mesoporous silica
particles, MCM-41 and

SBA-

Co-condensation

(2,2,6,6
tetramethylpiperidin-

1-yl) oxyl
(TEMPO)

Heterogeneous oxidation
(oxidation of alcohols to
aldehydes), Knoevenagel
condensation (C-C bond

formation)

[124]

28. Silica-encapsulated
core–shell Co@SiO2

Hydrothermal Cobalt Fischer-Tropsch synthesis (FTS) [125]

29. Porous silica Sol-gel Gold nanoparticles Biomedical, catalytic, and optical
properties [14]

30.

Palladium
Nanocatalysts

Encapsulated on
Porous Silica @

Magnetic
Carbon-Coated Cobalt

Nanoparticles

Sol-gel Palladium
nanoparticles

Sustainable hydrogenation of
nitroarenes to aniline, alkenes and

alkynes
[126]

31.
SBA-15-based

composites
(X@SBA-15)

Impregnation and
hydrothermal

methods

Transition
metals/metal oxides

and nanocarbons

Water decontamination by
advanced oxidation processes [25]

32. Mesoporous silica Sol-gel Ni-Co bimetallic
hydroxide particles Urea oxidation reaction [127]

33.

Porous silica
nanotubes loaded Au

nanoparticles
(SiO2@Au@SiO2 NTs)

Sol-gel Gold nanoparticles Catalytic reduction of
4-Nitrophenol to 4-amino phenol [128]

34.
Self-propelled

mesoporous silica
nanorods (MSNRs)

Sol-gel Iron oxide (Fe2O3)
nanoparticles

Catalytic decomposition of
hydrogen peroxide by a sputtered

Pt layer
[129]

35. Porous silica Self-assembly
Metal and alloy

nanoparticles (Au, Ag,
pd, Ag/Pd)

Biomineralization, reduction of
4-nitrophenol to 4-amino phenol [130]
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Sr. No. Material Type of Synthesis Catalyst Chemical Reaction Ref.

36.

A novel and
yolk/shell nanoreactor
catalyst (H-Fe3O4@h-

Cu0@m-SiO2)

Hydrothermal CuO-nanoparticles A3 coupling reaction of alkynes,
aldehydes, and amines [131]

37. Micron-sized,
spherical SiO2

Mechanochemical Spherical silica Polyolefin catalyst production [132]

38. Ni@SiO2 core–shell
nanocatalysts Sol-gel Ni particles Catalytic oxidation of CH4 to CO2 [133]

39. Hollow SiO2 spheres Template synthesis Au nanoparticles
Catalytic Microreactors, reduction

of 4-nitrophenol to
4-aminophenol

[134]

40.

Monolacunary
Keggin-type

[PW11O39] 7-(PW11)
heteropolyanion

SBA-15
(PW11@TMA-SBA-15)

Sol-gel
N-

trimethylammonium
(TMA)

Oxidative desulfurization of
organosilica composite [135]

41. Porous silica Sol-gel Ni nanocatalyst Thermal gasification of waste
biomass [136]

42. Macroporous SiO2 Sol-gel Ag2O, Na2O or K2O Soot combustion reactions,
gas-solid-solid reactions [137]

43.

Aminopropyl
functionalized

mesocellular foam
silica (MCF)

Sol-gel Penicillin acylase
6-aminopenicillanic acid
production, biocatalytic

transformation
[138]

44.
TiO2/SiO2/C

nanofiber mat, SiO2
nanoparticles

Calcination TiO2/SiO2/C
Photocatalytic degradation of

organic pollutants (rhodamine B
and 4-nitrophenol) in water

[139]

45.
Alumina-coated silica

nanoparticles
(AlO-SiO NPs)

Sol-gel Alumina Surface reactions [140]

46. mesoporous
g-C3N4/SiO2 material Sol-gel Carbon nitride

(g-C3N4)
Photodegradation of rhodamine B

(RhB) under visible light [141]

47. Mesoporous silica
material KIT-6 Template synthesis Transition metals Electrocatalytic hydrogen

evolution reaction [142]

48. Pd/SiO2 and Fe/SiO2 Sol-gel

Metallic (Pd catalysts)
or metallic oxide (Fe

catalysts)
nanoparticles

Pd/SiO2 Hydrodechlorination of
2,4,6-trichlorophenol (TCP) in

water, Fe/SiO2 materials degrade
phenol

[143]

49. Bimodal porous silica Sol-gel NiO Phenol to cyclohexanol [144]

50.
Mesoporous silica

materials (SBA-15 and
MCM-41)

Sol-gel Phosphonic and
phosphoric acid esters

Asymmetric aldol reaction (C-C
bond formation) [145]

51. Mesoporous silica
(SBA-15) Sol-gel Laccase Enzyme aggregate (E-CLEA)

potential in phenol removal [146]

52.

Novel hollow-Co3O4
@Co3O4@SiO2 multi-

yolk-double-shell
nanoreactors

Sol-gel
Metals (Pd, Pt, Ru, Rh,

and Au) and metal
oxides.

CO Oxidation [147]
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Table 3. Cont.

Sr. No. Material Type of Synthesis Catalyst Chemical Reaction Ref.

53. Ordered mesoporous
silicas (MCM-41) Sol-gel Aluminum

Hydro isomerization and
Friedel-Crafts alkylation of

benzene with benzyl alcohol
[148]

54.
Colloidal mesoporous

silica nanoparticles
(LP-MSNs)

Co-condensation Alkyne-functionalized

Colorimetric reaction of guaiacol
(2-methoxyphenol), hydrolysis of

4-nitrophenyl acetate (NPA) by
LP-MSN-CA

[149]

5. Conclusions

This brief overview pointed out the importance of porous silica as catalyst supports.
A huge number of reports in the literature on this topic prove the versatility and efficiency
of porous silica as catalyst supports. A careful observation of the latest reports showed that
some previous trends about the synthesis of porous silica supports and in situ generation
and immobilization of the catalysts are continued. A variety of new, bimetallic, composite
and functional nanocatalysts are embedded or immobilized on the porous silica nano
and microparticles to efficiently catalyze various reactions. The research in this field will
proceed in future along following main directions.

Development of functional silica-based porous particles embedded with various
catalyst nanoparticles where synergic effects of the various organic functional groups
grafted on the supports and the catalyst will assist the chemical transformations.

Further development and optimization of single step or in situ (or minimum steps)
methods for the functionalization of the silica-based porous supports as well as synthesis
and immobilization of the catalysts.

Development of the large-scale production methods for already reported various
composite nanoparticles (catalyst) embedded in porous silica particles.
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