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Abstract: The influence assessment of carbon nanotubes (CNTs) agglomeration on CNT-reinforced
composite (CNTRC) thick plates’ behavior is the main aim of the present work. CNTs are known
to agglomerate into clusters even for relatively low volume fractions, which imposes the need to
characterize the effects this may introduce in structures behavior, also knowing that recent works
have concluded that neglecting agglomeration phenomenon may lead to an overestimation of the
mechanical properties of nanocomposites. Hence, it matters to understand how the arising of these
clusters may affect the static and free vibrational behaviors of low side-to-thickness nanocomposite
plates. To this purpose, the nanocomposite plate properties’ estimation is performed by using the
two-parameter model of agglomeration based on the Eshelby–Mori–Tanaka approach, while for
behavioral analyses one considers a Higher-order Shear Deformation Theory (HSDT) based on the
displacement field of Kant, implemented through the finite element method. The analyses developed
consider a set of parametric studies involving the assessment of the influence of side-to-side ratios,
side-to-thickness ratios, boundary conditions, and CNTs’ distributions along the thickness. The
results obtained allow concluding that the transverse deflections and fundamental frequencies of
these structures are significantly influenced by the CNTs’ agglomeration.

Keywords: CNTs agglomeration; nanocomposites; Eshelby–Mori–Tanaka approach; functionally
graded materials; higher-order shear deformation theory; static analyses; free vibrations analyses

1. Introduction

Carbon nanotubes (CNTs) have excellent mechanical, thermal, and electrical proper-
ties, besides their high aspect ratio and large surface area, which make them a desirable
material in many engineering applications [1–3]. In this work the CNTs are addressed as a
reinforcing phase of a polymeric matrix.

Assessing the material properties of a CNTRC is of utmost importance, however
using the traditional homogenization schemes for particle-reinforced composites might
lead to an over estimation of the material properties, since CNTs tend to bundle together
forming inclusions within polymeric matrices, which affects the mechanical properties of
the resulting CNTRC, usually in a non-desirable manner. This phenomenon occurs due to
their high aspect ratio, van der Waals forces and their low bending stiffness values [4–7].

To overcome this problem of overestimating the mechanical properties, Shi et al. [8]
proposed a theoretical two-parameter agglomeration model using an Eshelby–Mori–Tanaka
homogenization scheme. This model is appropriate for modelling the material properties
of randomly oriented CNTs within a matrix, based on an equivalent CNT fiber.

The concept of an equivalent long fiber for modelling the properties of the carbon
nanotube was developed by Shokrieh [9,10] using the finite element method (FEM) to
model the CNT, its interphase region and surrounding resin, treating the interphase region
as van der Walls interactions. The equivalent fiber consists in a solid cylindrical nano-fiber
and its interphase resin.
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Since the proposal of the two-parameter model of agglomeration, a few authors have
been exploring this concept of CNTRC properties estimation in late years. Kamarian
et al. [11] studied a functionally-graded CNTRC (FG-CNTRC) Timoshenko beam resting
on a Paskternak foundation demonstrating that its dynamic behavior is highly influenced
by CNTs agglomeration, using the generalized differential quadrature method (GDQ) to
formulate the dynamic problem. Another study of the same author [12] revealed the high
influence of the agglomeration effect on the natural frequency of CNTRC conical shells
using again the GDQ method to solve the governing equations of motion.

Tornabene et al. [13] studied the dynamic behavior of FG-CNTRC doubly-curved
shells under the influence of CNTs agglomeration, developing parametric studies involv-
ing the CNT volume fraction, agglomeration parameters, and CNTs distribution across
the thickness direction to characterize the influence of agglomerated CNTs in the natural
frequencies of these structures. Another study developed by the same author [14] ad-
dressed the response of CNT-reinforced plates and shells under a static loading and CNTs
agglomeration using Carrera Unified Formulation, having this study revealed that the
stresses and the strains of these structures were highly affected by the agglomeration effect.

Banić et al. [15] studied the influence of the agglomeration effect on the natural
frequencies of CNTRC laminated plates and shells considering an elastic foundation based
on the Winkler–Pasternak theory. They concluded that the natural frequencies are highly
affected by CNTs agglomeration, with this aspect becoming more evident for higher values
of CNTs mass fraction.

Daghigh et al. [16] used the Eringen’s nonlocal elasticity theory to study the bending
and buckling response of CNTRC plates resting on a Pasternak elastic foundation under
the influence of CNTs agglomeration. They concluded that using an elastic foundation
reduced the effect of agglomeration. Previously to this study, the same author had led
another study regarding the CNTs agglomeration effect [17] on the dynamic behavior
of temperature and size dependent CNTRC plates resting on a viscoelastic foundation
using the Pasternak model, where they concluded that ignoring the agglomeration effect
might lead to an overestimation of the material properties and the usage of the viscoelastic
foundation led to an increase of the natural frequency of the structure.

Yousefi et al. [18] used a combination of the Eshelby–Mori–Tanaka homogenization
scheme along with the Hahn’s homogenization technique, and by means of parametric
studies they evaluated the influence of CNT agglomeration along with other parameters on
the free vibration characteristics of CNT/polymer/fiber laminated truncated conical shells
surrounded by an elastic foundation. They confirmed that natural frequencies decreased
with the increase of CNTs in agglomerated regions.

The agglomeration effect of continuously graded single-walled CNTs (SWCNTs) on
the vibration behavior of a SWCNTs/fiber/polymer/metal laminated cylindrical shell was
assessed by Ghasemi et al. [19], by means of parametric studies, evaluating the CNTs’ ag-
glomeration and distribution, mass and volume fraction of the fibers, boundary conditions
and lay-up configurations. They concluded that CNT agglomeration significantly affects
the natural frequencies and that the symmetric agglomerated CNTs distributions yield
higher frequencies.

Kolahchi et al. [20] studied the dynamic response of cylindrical shells submerged in
an incompressible fluid subjected to earthquake, thermal, and moisture loads. Several
parametric studies were carried out accounting the influences of the fluid, boundary condi-
tion, thermal load, moisture changes, structural damping parameter, length to thickness
aspect ratio, CNTs volume fraction, and agglomeration state on the dynamic deflections
of the structure. The results revealed that when considering the agglomeration effect the
deflections increased.

Hassanzadeh-Aghdam et al. [21] investigated the creep response of polymer nanocom-
posites reinforced with randomly dispersed CNTs through the modelling of a microme-
chanical model and its comparison with experimental results, which were in excellent
agreement. CNTs’ agglomeration as well as the CNT/polymer interphase, were considered
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in these studies, and it was shown that CNT’s agglomeration dramatically influences and
degrades the creep resistance of CNT-reinforced polymers.

On the field of smart structures, Bished et al. [22] addressed wave propagation in CN-
TRC cylindrical shells with piezoelectric effect under the influence of CNTs agglomeration,
and developed and analytical model capable of finding the effects of CNTs agglomeration
on wave propagation characteristics in applications of energy harvesting and structural
health monitoring.

Continuing with the advances in CNT-reinforced piezoelectric materials,
Krishnaswamy et al. [23] studied piezoelectric matrix inclusion composites using lead-
free ceramic, and developed a modelling paradigm to improve the piezoelectric effect by
means of optimal polycrystallinity and improved matrices in the considered piezoelectric
inclusions. CNTs were included within the matrices with the objective of improving the
piezoelectric response. Although CNT agglomeration has been shown as undesirable by
many studies, here they have shown that under certain circumstances these inclusions can
lead to an enhancement of the piezoelectric effect.

Moradi-Dastjerdi et al. [24] bonded the upper and the lower surfaces of CNTRC
porous plate with piezoceramics and studied the deflection and the stress responses under
static mechanical and electrical solicitations. They concluded that introducing CNTs in the
middle lamina had a positive effect in the deflections of the nanocomposite plate, however
only up to a certain CNTs volume fraction due to CNTs agglomeration effect.

A recent review article reinforced that this agglomeration effect directly affects CNTRC
thermal, electrical, and mechanical properties. It is also mentioned that there are already a
few effective CNT dispersion methods that may contribute to reduce the clustering, but
re-agglomeration is still common with the increase of contamination of the material [25].

In a previous work, the present authors [26] developed parametric studies on the
natural frequencies and modes’ shapes of thin and moderately thick FG-CNTRC square
and rectangular plates under the influence of CNTs agglomeration using a first-order shear
deformation theory (FSDT) to formulate the governing equations of motion of the problem.
It was concluded that the agglomeration negatively affects the natural frequencies of these
structures, but also influence certain modes’ shapes for a few CNTs distributions.

The CNTs have entered the fields of engineering due to their superior physical proper-
ties. However, they tend to bundle together negatively affecting their mechanical properties
and not taking into account this agglomeration effect might lead to an overestimation of
its properties, even for relatively low volume fractions [27], as already highlighted by the
several studies mentioned above. In this work one assesses the static and free vibration
behaviors of thick FG-CNTRC quadrilateral-shaped plates, using for this purpose a Higher-
order Shear Deformation Theory (HSDT) model. The influence of the CNT agglomeration
in these nanocomposite plates namely the deterioration effect it has on the mechanical
behavior of these structures is addressed in order to prevent overestimated numerically
predicted responses. The influence of the CNT’s distributions through these thick struc-
tures thickness is also addressed considering the potential relevance they may provide to
the plates’ response.

2. Materials and Methods

This section aims to do a brief description of the models, techniques, and method-
ologies used in the present work. This section is divided in two main sub-sections, a
first one where the two-parameter agglomeration model using the Eshelby–Mori–Tanaka
approach is used for properties’ prediction purpose and the second one devoted to the
model development based on a HSDT theory.

2.1. Two Parameter Agglomeration Model Based on the Eshelby–Mori–Tanaka Approach

As mentioned in the introduction, CNTs have a tendency to agglomerate together
forming clusters in the polymeric matrices because of their high aspect ratio, van der Waals
forces interaction, and low bending stiffness [4,5,27].
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For the present study, the property estimation is based on the two-parameter ag-
glomeration model based on the Eshelby–Mori–Tanaka approach described for the first
time by Shi et al. [8], which is based on an equivalent fiber concept. The equivalent fiber
properties may be determined using a multiscale finite element method (FEM) analysis or
by molecular dynamics’ (MD) simulations. These FEM or MD simulations will yield the
properties of the composite. 

ELEF = ELC
VEF
− EMVM

VEF
1

ETEF
= 1

ETCVEF
− VM

EMVEF
1

GEF
= 1

GCVEF
− VM

GMVEF

νEF = νC
VEF
− νMVM

VEF

(1)

The properties can be determined using the Rule of Mixtures (ROM), presented in
Equation (1), where ELEF, ETEF, GEF, and νEF are the longitudinal elastic modulus, trans-
verse elastic modulus, transverse shear modulus and the Poisson’s ratio of the equivalent
fiber. The constants ELC, ETC, GC, and νC are respectively the longitudinal elastic modulus,
transverse elastic modulus, transverse shear modulus and the Poisson’s ratio of the com-
posite determined using FEM or MD, and finally, EM, GM, and νM are the elastic modulus,
the shear modulus and the Poisson’s ration of the matrix. The volume fraction of the matrix
and equivalent fiber are denoted by VM and VEF, respectively.

The virtual equivalent fiber consists of a straight CNT embedded in a polymeric resin
and its interphase [9]. For the present study, a SWCNT is considered with a chiral index of
(10,10) and its equivalent fiber is defined by a solid cylinder with 1.424 nm of diameter [11].
The properties of this equivalent fiber are listed in the Table 1.

Table 1. Properties of the equivalent fiber considered [11].

Properties Value

Longitudinal elastic modulus (GPa) 649.12

Transverse elastic modulus (GPa) 11.27

Transverse shear modulus (GPa) 5.13

Poisson’s ratio 0.284

Density (kg/m3) 1400

The agglomeration model based on the Eshelby–Mori–Tanaka homogenization scheme
considers that the CNTs are randomly dispersed along the matrix, but some of them are
known to be bundled together forming clusters. Those clusters or inclusions are modelled
according to the Eshelby inclusion model, considering these inclusions will assume a
spherical shape [11], as schematically represented in Figure 1.

The detailed description of the present two-parameter model of agglomeration can be
found in the reference article written by Shi et al. [8].

The total CNT volume fraction in the representative volume element (RVE) is denotes
by Vr and is divided in the volume fraction of CNTs inside the inclusions Vinclusion

r and in
the CNTs volume fraction outside the inclusions and dispersed in the matrix Vm

r , thus one
can express the total CNT volume fraction in the RVE according to

Vr = Vinclusion
r + Vm

r (2)

The agglomeration state is described according to two parameters, µ which is the
volume fraction of inclusions (Vinclusion) considering the volume V of the RVE, and η which
is the volume ratio between of the volume of CNTs that are within the inclusions and the
total volume of CNTs in the RVE.
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Figure 1. Representation of the Eshelby inclusion model with spherical carbon nanotubes (CNTs)
spherical inclusions.

When µ = 1 or µ = η the CNTs are uniformly distributed along the matrix. When
µ decreases; the level of agglomeration in the CNTRC becomes more severe. When
η = 1, all CNTs in the CNTRC are located within inclusions which is a state of complete
agglomeration; however, it is more common to incur in a partial agglomeration situation [8],
where both parameters characterize the agglomerated state. If η > µ and for high values of
η, the CNTs’ distribution throughout the matrix is more heterogeneous.

µ =
Vinclusion

V
, η =

Vinclusion
r

Vr
(3)

Although the CNTs are assumed to be transversely isotropic, given the nanoscale of
these particles and considering that they are randomly distributed throughout the matrix,
as well as within the spherical inclusions, one can consider that the CNTRC behaves as
an isotropic material inside and outside the inclusions. The subscript r stands for the
reinforcing phase and the subscript m stands for the matrix phase. Generally, the average
volume fraction of CNTs fr in the material is expressed by

fr =
Vr

V
(4)

This homogenization scheme uses the Hill’s elastic moduli nr, lr, kr, mr, and pr of the
equivalent fiber for property estimation. The Hill’s elastic moduli of the equivalent fiber
can be determined using the values of the inverse of the compliance matrix, given by [11]:

Cr =



nr lr lr 0 0 0
lr kr + mr kr −mr 0 0 0
lr kr −mr kr + mr 0 0 0
0 0 0 pr 0 0
0 0 0 0 mr 0
0 0 0 0 0 pr

 =



1
EL

− νTL
ET

− νZL
EZ

0 0 0
− νLT

EL
1

ET
− νZT

EZ
0 0 0

− νLZ
EL

− νTZ
ET

1
EZ

0 0 0
0 0 0 1

GTZ
0 0

0 0 0 0 1
GTZ

0
0 0 0 0 0 1

GLT



−1

(5)

The EL, ET , EZ, GLT , GTZ, GTZ, and νLT are the equivalent fiber properties. In the
next step, the effective bulk modulus inside Kin and outside Kout the inclusions, as well as
the shear elastic modulus inside Gin and outside Gout the inclusions, will be determined
according to:

Kin = Km +
frη(δr − 3Kmαr)

3(µ− frη + frηαr)
(6)

Kout = Km +
fr(1− η)(δr − 3Kmαr)

3[1− µ− fr(1− η) + fr(1− η)αr]
(7)
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Gin = Gm +
frη(ηr − 2Gmβr)

2(µ− frη + frηβr)
(8)

Gout = Gm +
fr(1− η)(ηr − 2Gmβr)

2[1− µ− fr(1− η) + fr(1− η)βr]
(9)

where

αr =
3(Km + Gm) + kr − lr

3(Km + kr)
(10)

βr =
1
5

{
4Gm + 2kr + lr

3(Gm + kr)
+

4Gm

Gm + pr
+

2[Gm(3Km + Gm) + Gm(3Km + 7Gm)]

Gm(3Km + Gm) + mr(3Km + 7Gm)

}
(11)

δr =
1
3

[
nr + 2lr +

(2kr + lr)(3Km + 2Gm − lr)
Gm + kr

]
(12)

ηr =
1
5

[
2
3
(nr − lr) +

8Gm pr

Gm + pr
+

8mrGm(3Km + 4Gm)

3Km(Gm + pr) + Gm(7mr + Gm)
+

2(kr − lr)(2Gm + lr)
3(Gm + kr)

]
(13)

Km and Gm are the bulk modulus and the shear modulus of the matrix phase, respectively.
Finally, the effective mechanical properties of the CNTRC are expressed according to

K = Kout

1 +
µ
(

Kin
Kout
− 1
)

1 + α(1− µ)
(

Kin
Kout
− 1
)
 (14)

G = Gout

1 +
µ
(

Gin
Gout
− 1
)

1 + β(1− µ)
(

Gin
Gout
− 1
)
 (15)

where K is the effective bulk modulus and G is the effective shear modulus of the CNTRC
material, and the νout (Possoin’s ratio outside the inclusions), α and β are given by

νout =
(3Kout − 2Gout)

2(3Kout + 2Gout)
(16)

α =
1 + νout

3(1− νout)
(17)

β =
2(4− 5νout)

15(1− νout)
(18)

The effective Young’s modulus and Poisson’s ratio of the CNTRC are given according to

E =
9KG

3K + G
(19)

ν =
3K− 2G
6K + 2G

(20)

The mass density of the CNTRC ρ is calculated using the Voigt’s rule of mixtures, [28,29],
where ρm is the mass density and fm = 1− fr is the volume fraction of the matrix phase:

ρ = frρr + fmρm (21)

In the present study, different CNT volume fraction distributions along the thickness
were considered. The functions that model the considered distributions are presented in
the Table 2, where UD stands for uniformly distributed, SFG stands for symmetrically
functionally graded, and finally, USFG stands for unsymmetrically functionally graded
and obeys to a power law of reinforcement distribution. In the present study, the exponent
of the USFG distribution is assumed the values of p = {1, 1.5, 2, 3}.
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Table 2. Carbon nanotubes (CNTs) volume fraction distributions considered.

CNTs Distributions

uniformly distributed (UD) fr = f ∗r
symmetrically functionally graded (SFG) fr =

4·|z|
h f ∗r

unsymmetrically functionally graded (USFG) fr = 2· f ∗r
(

1
2 −

z
h

)p

The coordinate in the thickness direction varies within the interval
[
− h

2 , h
2

]
, where h

is the thickness of the plate and f ∗r is expressed by

f ∗r =
wr

wr +
(

ρr
ρm

)
−
(

ρr
ρm

)
wr

(22)

where wr is the mass fraction of the CNTs. For the distributions considered, the CNT
volume fraction varies across thickness according to the graphical representation of the
Figure 2. Observing the graphical representation, it becomes clear that when p > 1, the
CNT total volume in the CNTRC will be less when comparing to the other distributions.
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2.2. Static and Free Vibration Analyses of Thick Plates

This work aims to characterize the static and free vibration behaviors of square
and rectangular thick plates reinforced with agglomerated CNTs in a polymeric matrix.
Finite element models were developed using a higher-order theory based on the HSDT of
Kant [30,31]. The plate model with generic dimensions is presented in the Figure 3.

Three different boundary conditions were considered, as illustrated in the Figure 4,
where C stands for clamped, F stands for free, H stands for hinged and S for supported.
The difference between the hinged and the supported condition is in the constriction of
the translational degrees of freedom u0 and v0, where for the hinged condition they are
restricted and for the supported condition they are not, and for the sake of simplicity the
(a) case will be denoted as simply-supported (SSSS).
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Figure 4. Boundary conditions representations: (a) SSSS, (b) CFCC, (c) CSCC.

The aspect ratio between the length of the x-edge and the thickness of the plate
is considered to be Lx

h = 5, and the relations between the x and y edges’ lengths are
Lx
Ly

= {1, 2, 3}.

2.2.1. Constitutive Equations

The present HSDT has the following displacement field, and is based on the HSDT
of Kant [30,31]:

u(x, y, z) = u0(x, y, t) + zθx(x, y, t) + z3θ∗x(x, y, t)
v(x, y, z) = v0(x, y, t) + zθy(x, y, t) + z3θ∗y(x, y, t)

w(x, y, z, t) = w0(x, y, t)
(23)

where θx and θy are the first order rotations, θ∗x and θ∗y are the third order rotations, and
the u0, v0 and w0 are the mid-surface displacements in the (x, y, z) directions, respectively,
and t denotes time. Note that the original Kant theory does not consider the translational
displacements u0 and v0, and the displacement w(x,y,z,t) is not necessarily constant along
the thickness. The superscript 0 is used to refer to the mid-surface of the plate. The present
displacement field presents a greater similarity with the version proposed by Pandya and
Kant [31], which does not consider the w(x, y, z, t) variable through-thickness.

The vector of the degrees of freedom {u} in the present work is defined as

{u} =
{

w0 θx θy θ∗x θ∗y u0 v0
}T

(24)
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The strains of the present HSDT are obtained by considering the elasticity kinematical
relations for small deformations [32,33]:


εxx
εyy
γxy
γyz
γxz

 =



∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x
∂y
∂z +

∂w
∂y

∂u
∂z + ∂w

∂x


(25)

where εxx, εyy, and γxy are the in-plane normal and shear strain components, γyz and γxz
are the transverse shear strain components, which for the present HSDT yields, [31,33]:

{ε} =


εxx
εyy
γxy

 =


∂u0

∂x
∂v0

∂y
∂u0

∂y + ∂v0

∂x

+ z


∂θx
∂x
∂θy
∂y

∂θx
∂y +

∂θy
∂x

+ z3


∂θ∗x
∂x
∂θ∗y
∂y

∂θ∗x
∂y +

∂θ∗y
∂x

,

{γ} =
{

γyz
γxz

}
=

{
∂w0

∂y + θy
∂w0

∂x + θx

}
+ 3z2

{
θ∗x
θ∗y

} (26)

Considering the present CNTRC material behaves as an isotropic material and the higher
order theory used, the strain field is related to the stresses by the constitutive equation:

{σ} = [Q]{ε}
σxx
σyy
τxy
τyz
τxz

 =


Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55




εxx
εyy
γxy
γyz
γxz


(27)

being the elastic stiffness coefficients associated to [Q] given as

Q11 = Q22 = E
1−ν2

Q12 = νE
1−ν2

Q44 = Q55 = Q66 = G
(28)

where E, v and G are the Young’s modulus, the Poisson’s ratio, and the transverse shear
modulus, respectively, of the CNTRC.

2.2.2. Hamilton’s Principle

The Hamilton’s principle can be generally stated for a time interval between t0 and
t1 as [29]:

δ

t1∫
t0

((T −U) + W)dt = 0 (29)

with T standing for the kinetic energy, U for the elastic strain energy, and W for the work
performed by applied forces, generically described according to

T = 1
2

∫
V ρ
( .

u2
+

.
v2

+
.

w2
)

dV

U = 1
2

∫
V

(
{ε}T{σ}+ {γ}T{τ}

)
dV

W =
∫

A{q}
T ·{u} dA

(30)

in which, ρ is the mass density of the material,
.
u,

.
v, and

.
w are the velocities, and {q} is the

load vector.
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Considering the aim of performing static analyses, the equilibrium equation obtained
after a few mathematical manipulations, for the whole discretized domain, is given as

[K]{u} − { f } = 0 (31)

where {u} is the displacement vector, [K] is the global stiffness matrix and { f } is the load
vector. The global stiffness matrix can be seen as constituted by a set of contributed matrices
concerning different effects, namely, [Kbb]

e, [Kbb∗ ]
e, [Kb∗b]

e, [Kb∗b∗ ]
e, [Kmm]

e, [Kss]
e, [Ks∗s]

e,
[Kss∗ ]

e, and [Ks∗s∗ ]
e which stand for the stiffness matrices with the first order bending-

bending terms, first order bending and higher-order bending terms, higher-order bending
and first order bending terms, higher-order bending-bending terms, membrane-membrane
terms, first order shear-shear terms, higher-order shear and first order shear terms, first
order shear and higher-order shear terms, and higher-order shear-shear terms, respectively.

[K] =
N

∑
e=1

(
[Kbb]

e + [Kbb∗ ]
e + [Kb∗b]

e + [Kb∗b∗ ]
e + [Kmm]

e + [Kss]
e + [Ks∗s]

e + [Kss∗ ]
e + [Ks∗s∗ ]

e) (32)

The index e refers to a given element and N is the total number of elements, in
which the structure domain is sub-divided. These matrices are calculated according to the
following expressions, where (ξ, η) are the local coordinates within each element [31,34]:

[Kbb]
e =

1∫
−1

1∫
−1

[Bb]
T
e [D]i,j=1,2,6[Bb]edet([Je]) dξdη (33)

[Kmm]
e =

1∫
−1

1∫
−1

[Bm]
T
e [A]i,j=1,2,6[Bm]edet([Je]) dξdη (34)

[Kb∗b]
e =

1∫
−1

1∫
−1

[Bb∗ ]
T
e [F]i,j=1,2,6[Bb]edet([Je]) dξdη (35)

[Kbb∗ ]
e =

1∫
−1

1∫
−1

[Bb]
T
e [F]i,j=1,2,6[Bb∗ ]edet([Je]) dξdη (36)

[Kb∗b∗ ]
e =

1∫
−1

1∫
−1

[Bb∗ ]
T
e [H][Bb∗ ]edet([Je]) dξdη (37)

[Kss]
e =

1∫
−1

1∫
−1

[Bs]
T
e [A]i,j=4,5[Bs]edet([Je]) dξdη (38)

[Ks∗s]
e =

1∫
−1

1∫
−1

[Bs∗ ]
T
e [D]i,j=4,5[Bs]edet([Je]) dξdη (39)

[Kss∗ ]
e =

1∫
−1

1∫
−1

[Bs]
T
e [D]i,j=4,5[Bs∗ ]edet([Je]) dξdη (40)

[Ks∗s∗ ]
e =

1∫
−1

1∫
−1

[Bs∗ ]
T
e [F]i,j=4,5[Bs∗ ]edet([Je]) dξdη (41)
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Similarly to the global stiffness matrix, the load vector { f } is obtained calculating the
load contribution on each element, where {N} is the vector containing the interpolating
functions of the element e [33]:

{ f }e =

1∫
−1

1∫
−1

{N(ξ, η)}T ·{q}·det([Je])dξdη (42)

where [A], [D], [F], and [H] are the extensional stiffness, first order bending stiffness, the
first and higher-order bending coupling stiffness and the higher-order stiffness matrices,
and their components are calculated according to

Aij =

h
2∫

− h
2

Qijdz i, j = 1, . . . , 6 (43)

Dij =

h
2∫

− h
2

z2·Qijdz i, j = 1, . . . , 6 (44)

Fij =

h
2∫

− h
2

z4·Qijdz i, j = 1, . . . , 6 (45)

Hij =

h
2∫

− h
2

z6·Qijdz i, j = 1, 2, 6 (46)

where h is the thickness of the nanocomposite plate [30]. The [Bb]e, [Bm]e, [Bb∗ ]e, [Bs]e,
and [Bs∗ ]e are the strain-displacement coupling matrices of first order bending, membrane,
higher-order bending, first order shear and higher-order shear, respectively, of each element.
These matrices are determined for a given element e according to the following expressions,
where n represents the total number of nodes in the element [30,33,34]:

[Bb]e =

 0 . . . 0 ∂N1
∂x . . . ∂Nn

∂x 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 ∂N1

∂y . . . ∂Nn
∂y 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

0 . . . 0 ∂N1
∂y . . . ∂Nn

∂y
∂N1
∂x . . . ∂Nn

∂x 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

 (47)

[Bm]e =

 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 ∂N1
∂x . . . ∂Nn

∂x 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 ∂N1

∂y . . . ∂Nn
∂y

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 ∂N1
∂y . . . ∂Nn

∂y
∂N1
∂x . . . ∂Nn

∂x

 (48)

[Bb∗ ]e =

 0 . . . 0 0 . . . 0 0 . . . 0 ∂N1
∂x . . . ∂Nn

∂x 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 ∂N1

∂y . . . ∂Nn
∂y 0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0 ∂N1
∂y . . . ∂Nn

∂y
∂N1
∂x . . . ∂Nn

∂x 0 . . . 0 0 . . . 0

 (49)

[Bs]e =

[
∂N1
∂x . . . ∂Nn

∂x N1 . . . Nn 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
∂N1
∂y . . . ∂Nn

∂y 0 . . . 0 N1 . . . Nn 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

]
(50)

[Bs∗ ]e =

[
0 . . . 0 0 . . . 0 0 . . . 0 N1 . . . Nn 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 N1 . . . Nn 0 . . . 0 0 . . . 0

]
(51)
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The {N} vector of the shape functions of the Lagrange elements considered in this
work is given in the next equation, for the bi-linear element Q4 in the left-hand side and
for the bi-quadratic element Q9 in the right-hand side [32,33]:


N1
N2
N3
N4

 =


1
4 (1− ξ)(1− η)
1
4 (1 + ξ)(1− η)
1
4 (1 + ξ)(1 + η)
1
4 (1− ξ)(1 + η)

;



N1
N2
N3
N4
N5
N6
N7
N8
N9


=



1
4
(
ξ2 − ξ

)(
η2 − η

)
1
4
(
ξ2 + ξ

)(
η2 − η

)
1
4
(
ξ2 + ξ

)(
η2 + η

)
1
4
(
ξ2 − ξ

)(
η2 + η

)
1
2
(
1− ξ2)(η2 − η

)
1
2
(
ξ2 + ξ

)(
1− η2)

1
2
(
1− ξ2)(η2 + η

)
1
2
(
ξ2 − ξ

)(
1− η2)(

1− ξ2)(1− η2)


(52)

The Jacobian matrix that relates the local coordinates (ξ, η) with the global coordinates
(x, y) for a given element e, is expressed as

[Je] =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
(53)

This work also considers the characterization of the fundamental frequencies of these
plates, hence considering Hamilton principle and again by carrying out some mathematical
manipulations one yields for the whole discretized domain [29,32,33]:(

[K]−ω2
i [M]

)
{ui} = 0 (54)

in which, [K] is the global stiffness matrix previously characterized, [M] is the global mass
matrix, ωi are the natural frequencies and {ui} correspond to the mode shapes’ vector
associated to the natural frequencies. For the present study, only the fundamental frequency
will be considered, which is the smallest value of ωi.

The global mass matrix is obtained by assembling the mass matrices of all the elements
within the discretized domain, according to

[M] =
N

∑
e=1

[M]e (55)

where [M]e is the mass matrix of a given element e, and according to the present HSDT
approach, is it divided into five different contributions, each one associated with a different
degree of freedom given as

[Mw0 ]e =

1∫
−1

1∫
−1

{N(ξ, η)}T I0{N(ξ, η)}det([Je]) dξdη (56)

[Mθx ]e =

1∫
−1

1∫
−1

{N(ξ, η)}T I2{N(ξ, η)}det([Je]) dξdη (57)

[
Mθ∗x

]
e =

1∫
−1

1∫
−1

{N(ξ, η)}T I4{N(ξ, η)}det([Je]) dξdη (58)

[Mu0 ]e = [Mv0 ]e = [Mw0 ]e;
[

Mθy

]
e
= [Mθx ]e;

[
Mθ∗y

]
e
=
[
Mθ∗x

]
e (59)
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where I0, I2, and I4 are the inertias associated with the translational, first order and higher-
order rotational degrees of freedom, respectively. These inertias are calculated according to
the following equation, where ρc is the mass density of the CNTRC plate [33]:

(I0, I2, I4) =

h
2∫

− h
2

(
1, z2, z4

)
·ρc dz (60)

3. Results

This section is sub-divided into three sub-sections. The first sub-section is dedicated
to the verification studies of the developed and implemented model. In the second sub-
section, a set of parametric studies on static analyses of agglomerated FG-CNT plates are
presented. Those plates’ homogenized properties were obtained through the two-parameter
agglomeration model using the Eshelby–Mori–Tanaka approach. The last sub-section is
dedicated to complimentary parametric studies, this way related to the free vibration
analysis of the previous sub-section plates.

3.1. Verification Studies

These first studies aim the verification of the implemented models to ensure the
accuracy of the results obtained for the plates under the CNTs’ agglomeration effects. The
present two-parameter model of agglomeration was validated in a previous study [26].

3.1.1. On the Use of HSDT for Static Analysis of a Square Plate

For the static studies developed in this work, the stiffness matrices [K] were calculated
considering selective numeric integration considering the Gauss–Legendre product rules.

For the present verification studies, several finite element meshes were considered for
convergence verification in the plate FEM models. These meshes are listed in the Table 3
and their respective number of degrees of freedom, for the Q4 and the Q9 element.

Table 3. Finite element method (FEM) meshes for convergence verification and their respective
degrees of freedom.

Number of DOF

Mesh 5 × 5 10 × 10 15 × 15 20 × 20 25 × 25
Q4 252 847 1792 3087 4732
Q9 847 3087 6727 11,767 18,207

Considering a transverse normal loading to the mid-surface of the plate, for the static
verification studies, two different boundary conditions and two different aspect ratios for
a square plate, were tested. The maximum dimensionless displacement was evaluated
according to the element type and mesh size.

For the boundary conditions, it was considered a CCCC plate and a simply-supported
(SSSS) plate. For these two different boundary conditions the L/h relation were considered
to be equal to 5 and 10.

The dimensionless value of the maximum displacement is given according to

W =

∣∣∣∣w( Lx

2
,

Ly

2

)∣∣∣∣· D
q·L4 (61)

where D is the bending stiffness given by D = E·h3

12·(1−ν2)
, L is the plate width and length

(Lx = Ly = L), q is the distributed load along the surface, and E and ν are the Young’s
modulus and Poisson’s ratio, respectively of the material, being the material considered to
be isotropic and the Poisson’s ratio assumed to be ν = 0.3.



J. Compos. Sci. 2021, 5, 41 14 of 32

The results obtained were tested against the solutions calculated by Kant et al. [30] and
are presented in Table 4 for the CCCC plate and in Table 5 for the SSSS plate. The values
presented between parentheses are the deviations between the present and the reference
values calculated using the following expression:

dev(%) =
W re f −W present

W re f
·100 (62)

Table 4. Displacement convergence analysis for the CCCC plate with two cases of aspect ratio.

Mesh
L/h = 5 L/h = 10

Q4 Q9 Kant et al.
[30] Q4 Q9 Kant et al.

[30]

5 × 5 0.001916
(9.17)

0.002155
(−2.14)

0.00211

0.001275
(12.67)

0.001504
(−2.98)

0.00146

10 × 10 0.002154
(−2.10)

0.002154
(−2.07)

0.001495
(−2.40)

0.001502
(−2.89)

15 × 15 0.002127
(−0.81)

0.002153
(−2.06)

0.001478
(−1.20)

0.001502
(−2.87)

20 × 20 0.002154
(−2.07)

0.002153
(−2.06)

0.001500
(−2.76)

0.001502
(−2.87)

25 × 25 0.002144
(−1.61)

0.002153
(−2.05)

0.001493
(−2.27)

0.001502
(−2.87)

Table 5. Displacement convergence analysis for the SSSS plate with two cases of aspect ratio.

Mesh
L/h = 5 L/h = 10

Q4 Q9 Kant et al.
[30] Q4 Q9 Kant et al.

[30]

5 × 5 0.004482
(6.83)

0.004904
(−1.96)

0.00481

0.003852
(9.58)

0.004274
(−0.33)

0.00426

10 × 10 0.004903
(−1.94)

0.004904
(−1.96)

0.004263
(−0.07)

0.004273
(−0.31)

15 × 15 0.004856
(−0.95)

0.004903
(−1.93)

0.004226
(0.80)

0.004273
(−0.31)

20 × 20 0.004903
(−1.93)

0.004903
(−1.93)

0.004270
(−0.24)

0.004273
(−0.30)

25 × 25 0.004886
(−1.58)

0.004903
(−1.93)

0.004256
(0.10)

0.004273
(0.30)

Considering the results obtained, one can say that the solutions are in a good agree-
ment [30]. It is not clear which element provides the most accurate results, since the Q4
element provides the lower deviations for particular meshes. However the Q9 element
presents a better convergence behavior.

3.1.2. On the Use of HSDT for Free Vibration of a Square Plate

This validation study was carried out on the free vibration behavior of an isotropic
square plate with two different boundary conditions, SSSS and CFCC. For the SSSS plate,
the results of the fundamental frequency were tested against the solutions obtained by
Chen et al. [35] and Mallikarjuna and Kant [36] which consider HSDTs although different
from the present one.

For the CFCC plate, the results of the first natural frequency were compared with
the solutions obtained by Dawe and Roufaeil [37] considering a first-order shear deforma-
tion theory.

Considering the same FEM meshes presented in Table 3 and knowing that the devia-
tions between the obtained results and other authors’ results are calculated according to
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the expression defined in Equation (63), changing only the variable from W to λ, which is
the non-dimensionlized fundamental frequency.

The dimensionless frequencies are given according to the following expressions, the
first stands for the study of the SSSS plate and the second for the CFCC plate.

λSSSS = ω·h·
√

ρ

G
; λCFCC = ω·L·

√
ρ

G
(63)

where ω is the fundamental frequency, G is the shear elastic modulus, and ρ is the mass
density of the material. This study was carried out using the same plate geometry and
material, as in the static validation study, with the exception to the aspect ratio L/h, in
which for this dynamic verification was merely considered as being equal to 10.

The results presented for the SSSS plate natural frequency are listed in the Table 6,
and present good agreement with the reference authors for both element types. In terms of
convergence, the Q9 element is faster for the same number of DOFs since the Q4 10 × 10
and the Q9 5 × 5 present the same number of DOFs, and the result with the Q9 are much
closed to the other authors’ solutions.

Table 6. Natural frequency convergence study using the Q4 and the Q9 element for the SSSS plate.

Mesh
Q4 Q9 (a) Ref.

[35]
(b) Ref.

[36]λ Dev (a) Dev (b) λ Dev (a) Dev (b)

5 × 5 0.12495 −34.35 −34.50 0.09310 −0.11 −0.22

0.093 0.0929
10 × 10 0.10151 −9.15 −9.27 0.09296 0.05 −0.06
15 × 15 0.09681 −4.10 −4.21 0.09295 0.06 −0.05
20 × 20 0.09513 −2.29 −2.40 0.09294 0.06 −0.05
25 × 25 0.09435 −1.45 −1.56 0.09294 0.06 −0.05

For the CFCC plate, the natural frequencies are listed in the Table 7. In this case the
obtained deviations higher, however still under acceptable values given the differences in
the DOFs considered in both theories. In terms of convergence, the element Q9 once again
seems to converge much faster when comparing with the Q4 element.

Table 7. Natural frequency convergence study using the Q4 and the Q9 element for the CFCC plate.

Mesh
Q4 Q9

Ref. [37]
λ Dev (%) λ Dev (%)

5 × 5 1.6806 −54.32 1.0952 −0.57

1.089
10 × 10 1.2507 −14.85 1.0769 1.11
15 × 15 1.1563 −6.18 1.0753 1.26
20 × 20 1.1214 −2.98 1.0750 1.29
25 × 25 1.1049 −1.46 1.0748 1.30

In the following sections and for the static analyses, the results obtained by Q4 model
consider a 25 × 25 mesh; however, for the static results presented using the Q9 element, the
respective mesh is 20 × 20, given the higher number of DOFs assigned to the 25 × 25 mesh.
As a less refined mesh with the Q9 element also provides good results, this constitutes a
string reason to consider such discretization.

For the free vibration problem, the meshes Q4 20× 20 and Q9 15× 15 were considered
given the higher complexity of the eigenvalue problem solution, and since these coarser
meshes presented good results as well.

3.2. Static Analysis of CNT Agglomerated Rectangular Plates According to HSDT

In the following studies the material properties considered for the equivalent fiber are
listed in the Table 1 and for the value of f ∗r a value of 0.075 was chosen, since it was found
that for this concentration of CNTs, a large amount are located in inclusions [27]. For the
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polymeric matrix the mechanical properties considered are Em = 2.1 GPa, νm = 0.34 and
ρm = 1150 kg/m3 [11,38].

In terms of agglomeration, six cases were considered. The first is related to the absence
of agglomeration where the agglomeration parameters µ = η, the second, third, and fourth
are states of complete agglomeration where η = 1 and µ = {0.25, 0.5, 0.75}, and at last,
the fifth and sixth states are of partial agglomeration where µ = 0.5 and η = {0.25, 0.75},
which represent more common situations [8].

The load case presented considers a uniformly distributed load q transversely normal
to the mid-surface of the plate. The results for the maximum displacement of the plate are
presented in a non-dimensionalized form according to the following equation:

W = min
(

w0(x, y)
)
· Dm

q·L2
x·L2

y
(64)

where Dm is the bending stiffness of a plate made purely of the matrix phase given by
Dm = Em ·h3

12·(1−ν2
m)

. The uniformly distributed load q was assumed to be applied in the

opposite direction of the z-axis, to find the maximum absolute value of w(x, y), a function
for finding minimum value was applied to the developed codes.

The results are presented in tabled form and divided in three sets of results, where
each set is dedicated to an Lx

Ly
condition, with three tables each, and each table corresponds

to a different boundary condition.
The first set of results to be addressed is when Lx = Ly. The results for the SSSS

boundary condition are presented in the Table 8. Both results of the element Q4 and the
element Q9 are in good agreement for the selected meshes.

Table 8. Maximum dimensionless vertical displacement for the SSSS boundary condition when Lx = Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00135 0.00318 0.00228 0.00172 0.00142 0.00146
SFG 0.00112 0.00317 0.00221 0.00158 0.00118 0.00123

USFG (p = 1) 0.00132 0.00338 0.00250 0.00186 0.00140 0.00145
USFG (p = 1.5) 0.00148 0.00354 0.00269 0.00204 0.00156 0.00162
USFG (p = 2) 0.00161 0.00365 0.00282 0.00217 0.00170 0.00175
USFG (p = 3) 0.00183 0.00378 0.00300 0.00237 0.00192 0.00197

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00135 0.00319 0.00228 0.00173 0.00142 0.00147
SFG 0.00112 0.00318 0.00222 0.00158 0.00119 0.00123

USFG (p = 1) 0.00133 0.00339 0.00251 0.00186 0.00140 0.00146
USFG (p = 1.5) 0.00149 0.00355 0.00270 0.00204 0.00157 0.00162
USFG (p = 2) 0.00162 0.00366 0.00283 0.00218 0.00170 0.00176
USFG (p = 3) 0.00184 0.00380 0.00301 0.00238 0.00192 0.00198

When considering no agglomeration effect, in terms of the CNTs volume fraction
distribution, the minimum values of displacement are obtained for the SFG distribution
that ensures a higher concentration of CNTs in high bending stress areas, which results
in stiffer plates. When considering UD and USFG (p = 1), the USFG (p = 1) seems to be
slightly stiffer, but their behaviors are similar in terms of maximum displacement. For the
other cases of the USFG distribution, one can see that the higher the value of the exponent
p, the higher the maximum displacement, this happens due to less CNTs volume fraction
across the thickness of the plate.

For all of the agglomeration situations considered and CNTs volume fraction distribu-
tions, the displacements are always higher under the influence of agglomeration.
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For complete agglomerated situations, where all the CNTs are located in inclusions, for
the case where the distribution is more heterogeneous (η = 1, µ = 0.25), the UD distribution
provides almost the same displacement as the SFG distribution, being the distribution that
suffers the least weakening effect due to the agglomeration.

For partial agglomerated states, the displacements increased for all distributions but
there is no evident record of a more weakened CNTs volume fraction distribution.

For the USFG distributions with p > 1, the higher the value of p the lower the total
volume fraction of CNTs across the thickness of the plate, thus resulting in less stiff
structures and higher values of displacement.

For the CFCC boundary condition, the results are listed in the Table 9. The results
obtained with both element Q4 and Q9 are in good agreement. The displacements obtained
with this boundary condition are lower than the ones calculated for the SSSS plate, as
expected. The lowest displacements are obtained for the SFG distribution, followed by the
USFG (p = 1) and the UD distributions in the absence of agglomeration.

Table 9. Maximum dimensionless vertical displacement for the CFCC boundary condition when Lx = Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00129 0.00302 0.00215 0.00164 0.00136 0.00140
SFG 0.00118 0.00306 0.00217 0.00160 0.00124 0.00129

USFG (p = 1) 0.00127 0.00319 0.00234 0.00174 0.00133 0.00139
USFG (p = 1.5) 0.00144 0.00333 0.00253 0.00193 0.00152 0.00157
USFG (p = 2) 0.00160 0.00345 0.00267 0.00208 0.00167 0.00172
USFG (p = 3) 0.00186 0.00360 0.00289 0.00233 0.00193 0.00199

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00130 0.00304 0.00217 0.00165 0.00136 0.00141
SFG 0.00119 0.00308 0.00219 0.00161 0.00125 0.00130

USFG (p = 1) 0.00128 0.00321 0.00236 0.00176 0.00134 0.00140
USFG (p = 1.5) 0.00145 0.00336 0.00255 0.00195 0.00153 0.00158
USFG (p = 2) 0.00161 0.00347 0.00269 0.00210 0.00168 0.00174
USFG (p = 3) 0.00187 0.00363 0.00290 0.00235 0.00194 0.00200

Globally for this case, the agglomeration effect weakens the plate since its displacement
increases independently of the distribution considered or the severity of the agglomeration.

When considering the complete agglomerated cases, the SFG and the USFG (p = 1)
are clearly weaker than the UD distribution, in which for the first and the second severest
cases of complete agglomeration the UD distribution presents lower displacements than
the SFG distribution. However, for the states of partial agglomeration this tendency is not
observable.

For the USFG distributions with p > 1, the higher the value of p, the highest the
displacements are, as stated before.

For the Lx = Ly plate with the CSCC boundary condition, the results are presented in
the Table 10. The results obtained with both element Q4 and Q9 are in good agreement. The
displacements obtained with this boundary condition are lower than the displacements
obtained for the SSSS and the CFCC plates. Once again, the SFG distribution shows the
lower values of displacement, followed by the USFG (p = 1) and the UD distributions in
the absence of agglomeration.
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Table 10. Maximum dimensionless vertical displacement for the CSCC boundary condition when Lx = Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00071 0.00168 0.00120 0.00091 0.00075 0.00078
SFG 0.00067 0.00171 0.00122 0.00090 0.00070 0.00073

USFG (p = 1) 0.00070 0.00177 0.00131 0.00097 0.00074 0.00077
USFG (p = 1.5) 0.00080 0.00185 0.00141 0.00108 0.00085 0.00087
USFG (p = 2) 0.00089 0.00191 0.00149 0.00116 0.00093 0.00096
USFG (p = 3) 0.00104 0.00200 0.00161 0.00130 0.00108 0.00111

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00072 0.00169 0.00121 0.00091 0.00075 0.00078
SFG 0.00067 0.00171 0.00123 0.00091 0.00070 0.00073

USFG (p = 1) 0.00071 0.00178 0.00131 0.00097 0.00074 0.00077
USFG (p = 1.5) 0.00081 0.00186 0.00141 0.00108 0.00085 0.00088
USFG (p = 2) 0.00089 0.00192 0.00149 0.00117 0.00094 0.00096
USFG (p = 3) 0.00104 0.00201 0.00162 0.00131 0.00109 0.00111

For any of the agglomerated states considered, the CNTs agglomeration revealed a
weakening effect in these structures. In terms of complete and partial agglomeration, the
weakening effect is similar to what was observed for the CFCC boundary condition.

Globally for the square plate, it is possible to conclude that the CNTs agglomeration
has a negative impact on the stiffness of the structure, where its vertical displacements
tend to increase with the increase of the severity of the agglomeration. However, it was
possible to observe that for complete agglomeration states, some of the CNTs’ volume
fraction distributions are more weakened than others.

The second set of results to be addressed is when Lx = 2 Ly. The results for the SSSS
boundary condition are listed in the Table 11. The results obtained with the element Q4
and the element Q9 are in good agreement for the present case.

Table 11. Maximum dimensionless vertical displacement for the SSSS boundary condition when Lx = 2 Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00106 0.00250 0.00179 0.00135 0.00112 0.00115
SFG 0.00099 0.00254 0.00182 0.00134 0.00105 0.00108

USFG (p = 1) 0.00100 0.00255 0.00182 0.00135 0.00105 0.00108
USFG (p = 1.5) 0.00119 0.00275 0.00209 0.00160 0.00125 0.00130
USFG (p = 2) 0.00132 0.00284 0.00221 0.00173 0.00138 0.00143
USFG (p = 3) 0.00154 0.00297 0.00239 0.00194 0.00161 0.00165

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00106 0.00250 0.00179 0.00136 0.00112 0.00115
SFG 0.00100 0.00255 0.00182 0.00135 0.00105 0.00108

USFG (p = 1) 0.00105 0.00264 0.00195 0.00145 0.00110 0.00115
USFG (p = 1.5) 0.00119 0.00276 0.00210 0.00160 0.00126 0.00130
USFG (p = 2) 0.00132 0.00285 0.00222 0.00173 0.00139 0.00143
USFG (p = 3) 0.00155 0.00298 0.00240 0.00194 0.00161 0.00165

In the absence of CNTs agglomeration, in terms of the CNTs volume fraction distri-
bution, the lowest values of displacement were obtained with the SFG distribution. The
USFG (p = 1) maximum vertical displacement is lower than the one obtained with the
UD distribution. For this rectangular plate, the other cases of the USFG distribution also
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show less favorable values of displacement, due to less CNTs volume fraction across the
thickness of the plate.

Once again, the agglomeration effect affects negatively the displacements for every
CNTs distribution independently of the agglomeration severity.

When in complete agglomerated situations, for the two cases where the distribution
is more heterogeneous, the UD distribution provides a better behavior than the SFG
distribution, being the distribution that suffers the least weakening effect when comparing
to the other distributions. For partial agglomerated states, the displacements increased for
all distributions but there is no evident record of a more weakened CNTs volume fraction
distribution.

For the USFG distributions with p > 1, one verifies a poorer behavior with higher
values of displacement.

For the CFCC boundary condition with Lx = 2Ly, the results are listed in the Table 12.
The results obtained with both element Q4 and Q9 are in good agreement. The displace-
ments obtained with this boundary condition are lower than the ones calculated for the
SSSS plate. The lowest displacements are obtained for the USFG (p = 1) distribution,
followed by the UD and the SFG distributions in the absence of agglomeration.

Table 12. Maximum dimensionless vertical displacement for the CFCC boundary condition when Lx = 2 Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00062 0.00144 0.00103 0.00078 0.00065 0.00067
SFG 0.00067 0.00151 0.00111 0.00086 0.00070 0.00072

USFG (p = 1) 0.00061 0.00150 0.00110 0.00082 0.00064 0.00067
USFG (p = 1.5) 0.00072 0.00157 0.00119 0.00093 0.00076 0.00077
USFG (p = 2) 0.00081 0.00163 0.00127 0.00102 0.00085 0.00087
USFG (p = 3) 0.00099 0.00172 0.00141 0.00118 0.00101 0.00104

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00062 0.00145 0.00104 0.00079 0.00065 0.00067
SFG 0.00067 0.00151 0.00112 0.00086 0.00070 0.00072

USFG (p = 1) 0.00061 0.00151 0.00110 0.00083 0.00065 0.00067
USFG (p = 1.5) 0.00072 0.00158 0.00120 0.00093 0.00076 0.00078
USFG (p = 2) 0.00082 0.00164 0.00128 0.00102 0.00085 0.00088
USFG (p = 3) 0.00099 0.00173 0.00142 0.00119 0.00102 0.00105

Despite the agglomeration state, the CNTs agglomeration weakens the rectangular plate
since its displacement increases for every CNTs volume fraction distributions considered.

When considering the complete agglomerated cases, the SFG and the USFG (p = 1)
are clearly more weakened than the UD distribution, in which for every case of complete
agglomeration, the UD distribution presents lower displacements than the USFG (p = 1)
and SFG distributions. However, for the states of partial agglomeration this tendency of
more severe weakening for a certain distribution is not observable.

For the USFG distributions with p > 1, the higher the value of p, the highest the
displacements are, as already-mentioned.

For the Lx = 2Ly plate with the CSCC boundary condition, the results are listed in the
Table 13. The results obtained with both element Q4 and Q9 are in good agreement. The
displacements obtained with this boundary condition are lower than the displacements
obtained for the SSSS and the CFCC plates with the same Lx

Ly
relation. Similarly to the CFCC

boundary condition, the USFG (p = 1) distribution shows the lowest values of displacement,
followed by the UD and the SFG distributions in the absence of agglomeration.
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Table 13. Maximum dimensionless vertical displacement for the CSCC boundary condition Lx = 2 Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00057 0.00132 0.00095 0.00072 0.00059 0.00061
SFG 0.00061 0.00138 0.00103 0.00079 0.00064 0.00066

USFG (p = 1) 0.00056 0.00138 0.00101 0.00075 0.00059 0.00061
USFG (p = 1.5) 0.00066 0.00144 0.00109 0.00085 0.00069 0.00071
USFG (p = 2) 0.00075 0.00149 0.00117 0.00094 0.00078 0.00080
USFG (p = 3) 0.00091 0.00158 0.00130 0.00109 0.00093 0.00095

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00057 0.00133 0.00095 0.00072 0.00060 0.00061
SFG 0.00062 0.00139 0.00103 0.00079 0.00064 0.00066

USFG (p = 1) 0.00056 0.00138 0.00101 0.00076 0.00059 0.00061
USFG (p = 1.5) 0.00066 0.00144 0.00110 0.00085 0.00070 0.00071
USFG (p = 2) 0.00075 0.00149 0.00117 0.00094 0.00078 0.00080
USFG (p = 3) 0.00091 0.00158 0.00130 0.00109 0.00093 0.00096

For any of the agglomerated states considered, the CNTs agglomeration revealed
a weaking effect in these structures’ vertical displacements. In terms of complete and
partial agglomeration, the weakening effect is similar to what was observed for the CFCC
boundary condition.

Globally for the rectangular plate with Lx = 2 Ly, it is possible to conclude that
the CNTs agglomeration has a negative impact in the stiffness of the structure, where its
vertical displacements tend to increase with the increase of the severity of the agglomeration.
However, it was possible to observe that for complete agglomeration states, some of the
CNTs’ volume fraction distributions are more weakened than others.

For this rectangular plate, for the boundary conditions of CFCC and CSCC the lowest
values of vertical displacement were obtained for the USFG (p = 1) distribution, when
without or partial CNTs agglomeration. For the square plate, the SFG distribution demon-
strated a better behavior for these situations of CNTs agglomeration. This shows that
from the CNTs volume fraction distribution considered, with the distribution with the best
performance is not independent of the geometry of the plate.

The last set of results to be addressed is when Lx = 3 Ly. The results for the SSSS
boundary condition are presented in the Table 14. The results obtained with the element
Q4 and the element Q9 are in good agreement for the present case.

In the absence of CNTs agglomeration, the lowest values of displacement were ob-
tained with the USFG (p = 1) distribution. The UD maximum vertical displacement is lower
than the one obtained with the SFG distribution. For this rectangular plate, the other cases
of the USFG distribution also show less favorable values of displacement, due to lower
values of CNTs volume fraction across the thickness of the plate.

As above-mentioned, the agglomeration effect negatively affects the displacements
for every CNTs distribution independently of the agglomeration severity.

When in complete agglomerated situations, the UD distribution provides a better
behavior than the USFG (p = 1) distribution, being the distribution that suffers the least
weakening effect when comparing to the other distributions. For partial agglomerated
states, the displacements increased for all distributions but there is no evident record of a
more weakened CNTs volume fraction distribution.

Once again, when p > 1 in the USFG distributions, the higher the value of p, the higher
vertical displacements observed.

For the CFCC plate the results are presented in the Table 15. Despite the agglomera-
tion state, the CNTs agglomeration weakens the rectangular plate since its displacement
increases for every CNTs volume fraction distributions considered.
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Table 14. Maximum dimensionless vertical displacement for the SSSS boundary condition when Lx = 3 Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00077 0.00180 0.00129 0.00098 0.00081 0.00083
SFG 0.00079 0.00186 0.00137 0.00104 0.00083 0.00086

USFG (p = 1) 0.00076 0.00189 0.00138 0.00103 0.00080 0.00083
USFG (p = 1.5) 0.00088 0.00197 0.00150 0.00116 0.00093 0.00095
USFG (p = 2) 0.00099 0.00204 0.00159 0.00126 0.00104 0.00107
USFG (p = 3) 0.00119 0.00215 0.00175 0.00145 0.00123 0.00126

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00077 0.00181 0.00129 0.00098 0.00081 0.00084
SFG 0.00080 0.00187 0.00137 0.00104 0.00083 0.00086

USFG (p = 1) 0.00076 0.00189 0.00139 0.00104 0.00080 0.00083
USFG (p = 1.5) 0.00088 0.00198 0.00150 0.00116 0.00093 0.00096
USFG (p = 2) 0.00099 0.00204 0.00160 0.00127 0.00104 0.00107
USFG (p = 3) 0.00119 0.00215 0.00175 0.00145 0.00123 0.00126

Table 15. Maximum dimensionless vertical displacement for the CFCC boundary condition when Lx = 3 Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00049 0.00114 0.00081 0.00062 0.00051 0.00053
SFG 0.00055 0.00120 0.00090 0.00070 0.00058 0.00059

USFG (p = 1) 0.00048 0.00118 0.00086 0.00065 0.00051 0.00053
USFG (p = 1.5) 0.00057 0.00123 0.00094 0.00073 0.00061 0.00062
USFG (p = 2) 0.00066 0.00128 0.00100 0.00081 0.00068 0.00070
USFG (p = 3) 0.00081 0.00136 0.00112 0.00095 0.00082 0.00084

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00049 0.00115 0.00082 0.00062 0.00052 0.00053
SFG 0.00055 0.00121 0.00090 0.00070 0.00058 0.00060

USFG (p = 1) 0.00049 0.00119 0.00086 0.00065 0.00051 0.00053
USFG (p = 1.5) 0.00058 0.00124 0.00094 0.00074 0.00061 0.00062
USFG (p = 2) 0.00066 0.00128 0.00101 0.00081 0.00069 0.00070
USFG (p = 3) 0.00081 0.00137 0.00113 0.00096 0.00083 0.00085

When considering the complete agglomerated cases, the SFG and the USFG (p = 1) are
more weakened than the UD distribution, in which for every case of complete agglomer-
ation, the UD distribution presents lower displacements than the USFG (p = 1) and SFG
distributions. However, for the states of partial agglomeration, the CNTs volume fractions
considered seem to be evenly weakened.

For this rectangular plate and boundary condition, the vertical displacement results
obtained with the USFG (p = 1.5) are closer to the results of obtained with the SFG distri-
bution. Despite the SFG had demonstrated the worst behavior in this case, besides USFG
p > 1, this is an indication that using the appropriate CNTs volume fraction distribution
across the thickness with less total volume of CNTs might be more important than a higher
amount of CNTs with a distribution function not so favorable.

For the Lx = 3Ly plate with the CSCC boundary condition, the results are listed in the
Table 16. The results obtained with both element Q4 and Q9 are in good agreement. The
displacements obtained with this boundary condition are lower than the displacements
obtained for the SSSS and the CFCC plates with the same Lx

Ly
relation. Once again, the



J. Compos. Sci. 2021, 5, 41 22 of 32

USFG (p = 1) distribution shows the lower values of displacement, followed by the UD and
the SFG distributions in the absence of agglomeration.

Table 16. Maximum dimensionless vertical displacement for the CSCC boundary condition when Lx = 3 Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00047 0.00110 0.00078 0.00060 0.00049 0.00051
SFG 0.00053 0.00116 0.00087 0.00068 0.00056 0.00057

USFG (p = 1) 0.00046 0.00113 0.00083 0.00062 0.00049 0.00051
USFG (p = 1.5) 0.00055 0.00118 0.00090 0.00070 0.00059 0.00059
USFG (p = 2) 0.00063 0.00123 0.00097 0.00078 0.00066 0.00068
USFG (p = 3) 0.00078 0.00131 0.00108 0.00092 0.00079 0.00081

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.00047 0.00110 0.00078 0.00060 0.00049 0.00051
SFG 0.00053 0.00116 0.00087 0.00068 0.00056 0.00057

USFG (p = 1) 0.00047 0.00114 0.00083 0.00062 0.00049 0.00051
USFG (p = 1.5) 0.00055 0.00119 0.00090 0.00071 0.00059 0.00060
USFG (p = 2) 0.00063 0.00123 0.00097 0.00078 0.00066 0.00068
USFG (p = 3) 0.00078 0.00131 0.00109 0.00092 0.00079 0.00081

For any of the agglomerated states considered, the CNTs agglomeration revealed a
weakening effect in these structures’ vertical displacements. In terms of complete and
partial agglomeration, the weakening effect was similar to what was observed for the other
boundary conditions.

For this boundary condition, closer values between the displacements obtained with
the USFG (p = 1.5) and with the SFG distribution were found, enhancing the importance of
the CNTs volume fraction distribution over the total volume of reinforcement.

For the rectangular plate with Lx = 3 Ly, one can conclude that the CNTs agglom-
eration has a negative impact in the stiffness of the structure, having higher values of
displacement with the increase of the severity of the agglomeration. However, it was
possible to observe that for complete agglomeration states, some of the CNTs’ volume
fraction distributions are more weakened than others.

For this rectangular plate, the lowest values of vertical displacement were obtained
for the USFG (p = 1) distribution, when without or partial CNTs agglomeration, as stated
in the previous rectangular plate (Lx = 2 Ly), for the square plate the SFG distribution
demonstrated a lower displacements, for this cases of agglomeration.

When considering the CFCC and the CSCC boundary conditions, values of the dis-
placements using the USFG (p = 1.5) were very close to the values obtained with the SFG
distribution. The first having lower CNTs total volume when comparing to the last, this
demonstrates the importance of the CNTs volume fraction distribution choice over the total
volume of reinforcement for some cases.

3.3. Free Vibration Analysis of a CNT Agglomerated Rectangular Plates According to HSDT

For the free vibration analysis in these CNTRC plates with aspect ratio Lx
h = 5, with

three different Lx
Ly

edge relations and three different boundary conditions, their first natural
frequency was evaluated for the agglomeration situations considered in the static studies
for the same CNTs volume fraction distributions considered.

The same CNT equivalent fiber and polymeric matrix were considered. The dimen-
sionless frequencies to be presented, are obtained using the following expression:

λ = ω·
Lx·Ly

h
·
√

ρm

Em
(65)
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where ω is the first natural frequency, ρm and Em are the mass density the Young’s modulus
of the matrix material, respectively.

The results of the free vibration analysis are presented the same order as for the results
presented in the static analysis. The first set of results presented consider Lx = Ly.

For the results of the SSSS boundary condition presented in the Table 17, one can state
that both results obtained with the Q4 and Q9 element are in good agreement. As expected
for the free vibration behavior, in the absence of agglomeration is where one finds the
higher first natural frequencies for each CNTs volume fraction distribution [26].

Table 17. Fundamental frequency for different states of agglomeration and CNTs distributions with a SSSS boundary and
Lx = Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.905287 0.593463 0.702757 0.805593 0.883841 0.870582
SFG 0.920345 0.582047 0.686379 0.795454 0.900175 0.884743

USFG (p = 1) 0.914229 0.572031 0.667840 0.776669 0.892219 0.874625
USFG (p = 1.5) 0.863023 0.561553 0.647569 0.743988 0.843513 0.828430
USFG (p = 2) 0.823656 0.554945 0.633122 0.719238 0.806283 0.793079
USFG (p = 3) 0.765018 0.544905 0.610306 0.681079 0.751432 0.740899

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.905278 0.593457 0.702751 0.805586 0.883833 0.870574
SFG 0.919733 0.582040 0.686368 0.795057 0.899592 0.884189

USFG (p = 1) 0.914221 0.572026 0.667834 0.776663 0.892211 0.874616
USFG (p = 1.5) 0.863014 0.561548 0.647564 0.743981 0.843504 0.828421
USFG (p = 2) 0.823645 0.554940 0.633117 0.719230 0.806272 0.793069
USFG (p = 3) 0.764700 0.544900 0.610299 0.681069 0.751419 0.740887

Making the no agglomeration situation as an initial reference, the SFG CNTs distri-
bution shows the best behavior due to its high concentration of CNTs in high bending
stress areas, followed by the USFG when p = 1 and the UD distributions. The other USFG
distributions with p > 1, show poorer behavior, decreasing their first natural frequency
with the increase of p. This is due to the total volume of CNTs decreasing with the increase
of this exponent.

For partially agglomerated situations, which are more common forms of agglomera-
tion, the natural frequencies decreased for all CNTs volume fraction distributions, when
comparing to the non-agglomerated states, but did not decrease as for the complete agglom-
eration of CNTs. The best behavior is observed for the SFG distribution, followed by the
USFG (p = 1) and the UD CNTs volume fraction distributions, the other USFG distributions
with p > 1, showed poorer behavior with tendency to the decrease of the natural frequency
with the increase of p, as observed for the non-agglomerated situations.

However, for completely agglomerated situations, the SFG distribution does not show
the best behavior, and it tends to worsen for more heterogeneous CNTs dispersions across
the matrix (lower values of µ), and the UD distribution that without agglomeration showed
the poorest behavior between SFG and USFG (p = 1), for complete agglomeration is the
CNTs volume fraction distribution with the highest fist natural frequencies. The other
USFG distributions with p > 1, also show lower natural frequencies when compared to the
non-agglomerated state.

The results for the CFCC boundary condition are listed in the Table 18. One can
observe that both results obtained with the Q4 and the Q9 elements are in good agreement.
For the first natural frequency results in a non-agglomerated state, one can observe that
once again the SFG distribution presents the best behavior, followed by the USFG (p = 1)
and the UD distributions, with USFG with p > 1 showing poorer behaviors.
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Table 18. Fundamental frequency for different states of agglomeration and CNTs distributions with a CFCC boundary and
Lx = Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.90618 0.59402 0.70341 0.80636 0.88470 0.87143
SFG 0.92129 0.58246 0.68635 0.79543 0.90105 0.88549

USFG (p = 1) 0.91510 0.57261 0.66852 0.77745 0.89306 0.87546
USFG (p = 1.5) 0.86365 0.56213 0.64822 0.74469 0.84305 0.82903
USFG (p = 2) 0.82389 0.55551 0.63373 0.71981 0.80653 0.79339
USFG (p = 3) 0.76470 0.54544 0.61078 0.68127 0.75154 0.74082

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.90608 0.59396 0.70334 0.80627 0.88461 0.87134
SFG 0.92052 0.58237 0.68615 0.79502 0.90033 0.88481

USFG (p = 1) 0.91501 0.57256 0.66847 0.77739 0.89296 0.87537
USFG (p = 1.5) 0.86351 0.56208 0.64817 0.74461 0.84279 0.82890
USFG (p = 2) 0.82369 0.55547 0.63367 0.71971 0.80635 0.79322
USFG (p = 3) 0.76440 0.54538 0.61070 0.68112 0.75126 0.74056

Generally, one can say that besides the obvious differences in the values of the natural
frequencies between the SSSS and CFCC condition due to the constraints themselves, where
higher natural frequencies are obtained for CFCC, in terms of influence of the agglomeration
in the natural frequencies change, for this boundary condition the situation is similar. For
all situations of agglomeration considered, the agglomeration effect worsens the dynamic
behavior for all distributions when comparing to a non-agglomerated situation, and for the
particular case of complete agglomeration the natural frequencies for the UD distribution
surpasses the natural frequencies of the SFG and the USFG when p = 1.

The results for the CSCC boundary condition are listed in the Table 19. One can
observe that both results obtained with the Q4 and the Q9 elements are in good agreement.
One can observe that once again the SFG distribution presents the best free vibration
behavior in agglomeration absence, followed by the USFG (p = 1) and the UD distributions,
with USFG with p > 1 showing the poorest behaviors.

Table 19. Fundamental frequency for different states of agglomeration and CNTs distributions with a CSCC boundary and
Lx = Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.90790 0.59515 0.70474 0.80789 0.88638 0.87309
SFG 0.92949 0.58409 0.68944 0.80083 0.90888 0.89303

USFG (p = 1) 0.91693 0.57354 0.66953 0.77870 0.89484 0.87717
USFG (p = 1.5) 0.86602 0.56301 0.64925 0.74612 0.84586 0.83121
USFG (p = 2) 0.82697 0.55640 0.63488 0.72156 0.80946 0.79614
USFG (p = 3) 0.76904 0.54644 0.61229 0.68378 0.75578 0.74474

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.90788 0.59513 0.70473 0.80787 0.88636 0.87306
SFG 0.92824 0.58407 0.68936 0.80047 0.90772 0.89200

USFG (p = 1) 0.91691 0.57353 0.66952 0.77868 0.89481 0.87714
USFG (p = 1.5) 0.86598 0.56300 0.64924 0.74610 0.84579 0.83118
USFG (p = 2) 0.82691 0.55639 0.63486 0.72153 0.80940 0.79609
USFG (p = 3) 0.76885 0.54642 0.61227 0.68373 0.75572 0.74467
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For this boundary condition, the highest natural frequencies were observed when
comparing to the other two situations. Although in terms of the influence of the agglom-
eration in the natural frequencies, for this boundary condition behavior observed is the
same. For all situations of agglomeration considered, the agglomeration effect lowers the
natural frequencies of the structure for every distribution considered, when comparing to a
non-agglomerated situation. Moreover, for the case of complete agglomeration states, the
highest natural frequencies are obtained with the UD distribution, surpassing the natural
frequencies of the CNTs volume fraction distributions SFG and the USFG when p = 1.

For the first set of results, one can say that independently of the boundary condition
considered, the agglomeration effect negatively affects the plates with the CNTs volume
fraction distributions considered. The SFG distribution showed higher natural frequencies
in agglomeration absence and for partial agglomeration situations, however for the com-
plete agglomeration cases the UD distribution showed the best free vibrational behavior.

For the USFG distributions with p > 1, the free vibrational behavior gets poorer with
the increase of the exponent p.

The second set of results presented consider Lx = 2 Ly. The results of this rectangular
plate with SSSS boundary condition are listed in the Table 20, one can say that both results
obtained with the Q4 and Q9 element are in good agreement. As expected, the best free
vibration behavior is obtained in the absence of agglomeration.

Table 20. Fundamental frequency for different states of agglomeration and CNTs distributions with a SSSS boundary and
Lx = 2Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.45264 0.29673 0.35138 0.40280 0.44192 0.43529
SFG 0.46265 0.29102 0.34319 0.39833 0.45236 0.44437

USFG (p = 1) 0.45711 0.28602 0.33392 0.38833 0.44611 0.43731
USFG (p = 1.5) 0.43151 0.28078 0.32378 0.37199 0.42176 0.41421
USFG (p = 2) 0.41183 0.27747 0.31656 0.35962 0.40314 0.39654
USFG (p = 3) 0.38268 0.27245 0.30515 0.34054 0.37572 0.37045

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.45264 0.29673 0.35138 0.40279 0.44192 0.43529
SFG 0.46263 0.29102 0.34318 0.39832 0.45235 0.44436

USFG (p = 1) 0.45711 0.28601 0.33392 0.38833 0.44611 0.43731
USFG (p = 1.5) 0.43151 0.28077 0.32378 0.37199 0.42175 0.41421
USFG (p = 2) 0.41182 0.27747 0.31656 0.35962 0.40314 0.39653
USFG (p = 3) 0.38268 0.27245 0.30515 0.34053 0.37571 0.37044

Taking the no agglomeration situation as reference, the SFG CNTs distribution shows
the best behavior due to its high concentration of CNTs in high bending stress areas,
followed by the USFG when p = 1 and the UD distributions. The other USFG distributions
with p > 1, show worse free vibrational behavior, since its total volume of CNTs decreases
with the increase of this exponent, as observed in the first set of results. In general,
one can say that the agglomeration effect decreases the natural frequencies for every
distribution considered.

For complete agglomeration, it is observed that the natural frequencies obtained with
the UD distribution surpass the natural frequencies obtained with the SFG and the USFG
(p = 1) distributions. This enhancement of the UD distribution in complete agglomeration
is clearer for more heterogeneous CNTs dispersions across the matrix (lower values of µ).
This behavior was also observed for the square plate (the first set of results).
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For the partially agglomerated situations considered, the natural frequencies obtained
decreased when comparing with the non-agglomerated state; however, no change in the
CNTs volume fraction distributions performance was observed when comparing each other.

The results for the CFCC boundary condition with Lx = 2Ly are listed in the Table 21.
One can observe that both results obtained with the Q4 and the Q9 elements are in good
agreement. For the first natural frequency results in a non-agglomerated state, one can
observe that once again the SFG distribution presents the best behavior, followed by the
USFG (p = 1) and the UD distributions, with USFG with p > 1 showing poorer behaviors.

Table 21. Fundamental frequency for different states of agglomeration and CNTs distributions with a CFCC boundary and
Lx = 2Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.45791 0.30017 0.35544 0.40746 0.44705 0.44035
SFG 0.47200 0.29500 0.34880 0.40578 0.46141 0.45322

USFG (p = 1) 0.46253 0.28915 0.33747 0.39255 0.45138 0.44244
USFG (p = 1.5) 0.43726 0.28381 0.32728 0.37632 0.42642 0.41959
USFG (p = 2) 0.41789 0.28048 0.32015 0.36417 0.40901 0.40222
USFG (p = 3) 0.38908 0.27557 0.30905 0.34553 0.38254 0.37679

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.45781 0.30010 0.35536 0.40737 0.44695 0.44025
SFG 0.47128 0.29490 0.34860 0.40540 0.46073 0.45259

USFG (p = 1) 0.46242 0.28909 0.33741 0.39248 0.45127 0.44233
USFG (p = 1.5) 0.43711 0.28375 0.32722 0.37623 0.42614 0.41946
USFG (p = 2) 0.41770 0.28043 0.32008 0.36407 0.40883 0.40205
USFG (p = 3) 0.38879 0.27550 0.30896 0.34538 0.38229 0.37656

One can say that besides the in the natural frequencies between the SSSS and CFCC
conditions due to the constraints themselves, where higher natural frequencies are obtained
for CFCC, in terms of influence of the agglomeration effect in the natural frequencies, for
the CFCC boundary condition the agglomeration effect affects the natural frequencies
of the plate in the same way, the same behavior was observed for the first set of results.
For all situations of agglomeration considered, the agglomeration effect negatively affects
the dynamic behavior for all distributions when comparing to a non-agglomerated situa-
tion. When in a situation of complete agglomeration, the UD distribution demonstrates a
superior free vibrational behavior, surpassing the SFG and the USFG when p = 1.

The results for the CSCC boundary condition are presented in the Table 22. One can
observe that both results obtained with the Q4 and the Q9 elements are in good agreement.
One can observe that once again the SFG distribution presents the best free vibration
behavior in agglomeration absence, followed by the USFG (p = 1) and the UD distributions,
with USFG with p > 1 showing the poorest behaviors.

For this boundary condition, the highest natural frequencies were obtained when
comparing with the other two situations. However, in terms of the agglomeration effect in
the free vibrational behavior for this boundary condition, the observed behavior is similar
to the previous situations. For the states of agglomeration considered, the agglomeration
negatively affects the natural frequencies of the structure for every distribution considered,
when comparing to a non-agglomerated situation. For complete agglomerated states, the
highest natural frequencies are obtained with the UD distribution once again.

For the second set of results, one concludes that independently of the boundary
conditions, the agglomeration of CNTs throughout the matrix negatively affects the plates’
free vibrational behavior for the CNTs distributions considered. The SFG distribution
showed a better performance in agglomeration absence and for partial agglomeration
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situations, however for the complete agglomeration cases the UD distribution showed the
best free vibrational behavior.

Table 22. Fundamental frequency for different states of agglomeration and CNTs distributions with a CSCC boundary and
Lx = 2Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.45944 0.30117 0.35663 0.40882 0.44854 0.44182
SFG 0.48237 0.29645 0.35167 0.41132 0.47117 0.46236

USFG (p = 1) 0.46414 0.28999 0.33837 0.39366 0.45295 0.44395
USFG (p = 1.5) 0.43936 0.28459 0.32820 0.37759 0.42919 0.42152
USFG (p = 2) 0.42068 0.28127 0.32117 0.36573 0.41166 0.40469
USFG (p = 3) 0.39331 0.27645 0.31039 0.34780 0.38617 0.38029

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.45942 0.30116 0.35662 0.40881 0.44853 0.44180
SFG 0.48209 0.29644 0.35164 0.41126 0.47092 0.46216

USFG (p = 1) 0.46412 0.28997 0.33836 0.39365 0.45294 0.44393
USFG (p = 1.5) 0.43934 0.28458 0.32819 0.37758 0.42917 0.42150
USFG (p = 2) 0.42066 0.28126 0.32116 0.36571 0.41164 0.40467
USFG (p = 3) 0.39327 0.27644 0.31038 0.34778 0.38614 0.38026

Once again, when considering the USFG distribution with p > 1, the free vibrational
behavior of the plate is less favorable with the increase of the exponent p.

The last set of results presented for is for a rectangular plate with Lx = 3 Ly. The
results for this plate with a SSSS boundary condition are listed in the Table 23. One can
observe that both results obtained with the Q4 and Q9 element are in good agreement.
As already mentioned before, the best free vibration behavior is obtained in the absence
of agglomeration.

Table 23. Fundamental frequency for different states of agglomeration and CNTs distributions with a SSSS boundary and
Lx = 3Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.30176 0.19782 0.23425 0.26853 0.29461 0.29019
SFG 0.30843 0.19402 0.22879 0.26555 0.30157 0.29625

USFG (p = 1) 0.30474 0.19068 0.22261 0.25889 0.29741 0.29154
USFG (p = 1.5) 0.28767 0.18718 0.21586 0.24800 0.28117 0.27614
USFG (p = 2) 0.27455 0.18498 0.21104 0.23975 0.26876 0.26436
USFG (p = 3) 0.25512 0.18163 0.20344 0.22703 0.25048 0.24697

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.30176 0.19782 0.23425 0.26853 0.29461 0.29019
SFG 0.30842 0.19401 0.22879 0.26554 0.30157 0.29624

USFG (p = 1) 0.30474 0.19068 0.22261 0.25889 0.29740 0.29154
USFG (p = 1.5) 0.28767 0.18718 0.21585 0.24799 0.28117 0.27614
USFG (p = 2) 0.27455 0.18498 0.21104 0.23974 0.26876 0.26436
USFG (p = 3) 0.25512 0.18163 0.20343 0.22702 0.25047 0.24696

With the non-agglomerated situation as reference, the SFG distribution demonstrated
shows the best behavior, followed by the USFG when p = 1 and the UD distributions. As
for the other situations, the USFG distributions with p > 1, show worse performance since
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its total volume of CNTs within the plate, decreases with the increase of this exponent.
It is observable that the agglomeration effect decreases the natural frequencies for every
distribution considered, for both partial and complete agglomerated states.

Additionally, for complete agglomeration, it is observed that the natural frequencies
obtained with the UD distribution are higher than the natural frequencies obtained with
the SFG and the USFG (p = 1) distributions. The more heterogeneous the CNTs dispersion
in the matrix, the bigger the enhancement of the UD distribution when comparing to the
SFG and the USFG (p = 1). This behavior was also observed when Lx

Ly
= {1, 2}.

Similarly to the previous of results, for partially agglomerated states, the natural
frequencies obtained decreased when comparing with the results in agglomeration absence,
however no change in the CNTs volume fraction distributions performance was observed
when comparing each other.

The results for the CFCC boundary condition with Lx = 3Ly are presented in the
Table 24. It is possible to observe that both results obtained with the Q4 and the Q9 elements
are in good agreement. For the first natural frequency results in a non-agglomerated state,
one can see that the SFG distribution maintains the best behavior when comparing with
the other distributions.

Table 24. Fundamental frequency for different states of agglomeration and CNTs distributions with a CFCC boundary and
Lx = 3Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.30996 0.20318 0.24059 0.27580 0.30261 0.29807
SFG 0.32498 0.20024 0.23773 0.27787 0.31749 0.31166

USFG (p = 1) 0.31317 0.19557 0.22815 0.26547 0.30561 0.29952
USFG (p = 1.5) 0.29665 0.19191 0.22131 0.25473 0.28889 0.28454
USFG (p = 2) 0.28412 0.18967 0.21663 0.24686 0.27802 0.27330
USFG (p = 3) 0.26553 0.18648 0.20952 0.23491 0.26118 0.25703

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.30979 0.20307 0.24046 0.27566 0.30244 0.29791
SFG 0.32401 0.20009 0.23744 0.27733 0.31658 0.31081

USFG (p = 1) 0.31299 0.19547 0.22805 0.26534 0.30544 0.29935
USFG (p = 1.5) 0.29643 0.19182 0.22121 0.25460 0.28846 0.28434
USFG (p = 2) 0.28384 0.18958 0.21652 0.24670 0.27775 0.27305
USFG (p = 3) 0.26511 0.18638 0.20938 0.23468 0.26085 0.25669

Independently of the differences in the results between the natural frequencies of the
SSSS and CFCC conditions due to the constraints, in which the best vibrational behavior
obtained for CFCC, the agglomeration effect affects negatively the natural frequencies for
both boundary conditions, as previously mentioned for the other sets of results.

When in a situation of complete agglomeration, the UD distribution demonstrates the
best free vibrational behavior, surpassing the SFG and the USFG when p = 1. However,
when in a partial state of agglomeration, the SFG distributions shows the highest natural
frequencies, followed by the USFG (p = 1) and the UD distributions.

The results for the CSCC boundary condition are showed in the Table 25. One can say
that both results obtained with the Q4 and the Q9 elements are in good agreement. Once
again, the SFG distribution presents the higher natural frequencies in agglomeration absence.
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Table 25. Fundamental frequency for different states of agglomeration and CNTs distributions with a CSCC boundary and
Lx = 3Ly.

Q4

Distribution
No

Agglomeration Complete Agglomeration Partial Agglomeration

η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.31151 0.20420 0.24181 0.27720 0.30413 0.29956
SFG 0.33604 0.20173 0.24067 0.28356 0.32787 0.32129

USFG (p = 1) 0.31481 0.19642 0.22908 0.26660 0.30722 0.30106
USFG (p = 1.5) 0.29879 0.19271 0.22225 0.25604 0.29193 0.28651
USFG (p = 2) 0.28696 0.19047 0.21768 0.24845 0.28072 0.27582
USFG (p = 3) 0.26984 0.18739 0.21089 0.23723 0.26471 0.26049

Q9
η = µ η = 1, µ = 0.25 η = 1, µ = 0.5 η = 1, µ = 0.75 η = 0.25, µ = 0.5 η = 0.75, µ = 0.5

UD 0.31149 0.20419 0.24179 0.27718 0.30411 0.29955
SFG 0.33596 0.20171 0.24064 0.28352 0.32780 0.32122

USFG (p = 1) 0.31479 0.19641 0.22906 0.26659 0.30720 0.30104
USFG (p = 1.5) 0.29877 0.19270 0.22224 0.25602 0.29190 0.28649
USFG (p = 2) 0.28694 0.19046 0.21766 0.24843 0.28070 0.27580
USFG (p = 3) 0.26981 0.18738 0.21088 0.23721 0.26469 0.26047

For this boundary condition, higher natural frequencies were obtained when compar-
ing with the other two situations.

In this case, the CNTs agglomeration affects the free vibrational behavior in a similar
way as for the previous studies. For the agglomeration states considered, the agglomeration
effect negatively affects the natural frequencies of the structure for every distribution
considered, when comparing to a non-agglomerated situation.

In complete agglomerated situations, the highest natural frequencies are obtained
with the UD distribution, however for partially agglomerated situations, the distribution
with the best behavior is the SFG distribution.

For the last set of results, it is possible to conclude that the agglomeration of CNTs
throughout the matrix negatively affects the free vibrational behavior of this plate for all
CNTs volume fraction distributions considered.

The SFG distribution demonstrates a better performance in agglomeration absence or
in the presence of partial agglomeration; however for the complete agglomeration cases
the UD distribution showed the best free vibrational behavior.

For the USFG distribution with p > 1, the natural frequencies of the plate tend to
decrease with the increase of the exponent p, for all cases considered.

4. Discussion

Considering all studies developed in this work in the quadrilateral plates, one can say
that the results obtained with the Q4 and the Q9 elements are in good agreement.

With respect to the static studies developed one can say that the agglomeration effect
negatively affects displacements in the considered plate structures independently of the
CNTs volume fraction distributions considered. For the relations Lx/Ly considered, one
can conclude:

• For the square plate, when without the agglomeration effect or in a partially ag-
glomerated state, the symmetric distribution SFG demonstrated the lower deflections.
However, when in complete agglomerated states, the FG-CNTRC nanoplate suffers a
huge weakening effect, and the distribution that in general presents the less stiffness
loss is the UD.

• For the first rectangular plate Lx = 2Ly, here, the change of the plate geometry
also changed the distribution with the lowest values of displacement to the USFG
(p = 1), except for the SSSS situation. Once again, when in complete agglomeration the
distribution with the best performance is the UD.
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• For the second rectangular plate Lx = 3Ly, similarly to the previous case, the CNTs
distribution with the best performance was the USFG (p = 1), but here again in
complete agglomeration the distribution that suffers the least weakening effect due
to agglomeration is the UD distribution. In this case, it has also observed that the
values of vertical displacement obtained with the USFG (p = 1.5) get really close to the
ones obtained with the SFG with the CFCC and CSCC boundary conditions, having
less CNT total volume, this enhances the importance of choosing an appropriate
CNTs volume fraction distribution over more total CNT volume fraction with a
distribution with a poorer behavior under certain circumstances when dimensioning
an CNTR structure.

With respect to the free vibration analysis developed one can say that the agglomera-
tion effect negatively affects fundamental frequencies in the considered plate structures
independently of the CNTs volume fraction distributions considered. For the relations
Lx/Ly considered, one can conclude:

• For the three Lx/Ly relations considered, in absence of the agglomeration effect the
SFG distribution presented the highest fundamental frequencies.

• When in partial agglomeration, the values of the fundamental frequencies were re-
duced for every distribution considered; however, it is not clear if there is a distribution
that is more weakened by the agglomeration effect under these circumstances.

• Similarly, to the static analysis, when in the presence of complete agglomeration, the UD
distribution presented in general a better behavior and higher fundamental frequencies.

• One other parallel between the studies, when Lx = 3Ly the fundamental frequencies
obtained with the USFG (p = 1.5) become closer to the results obtained with the UD and
the USFG (p = 1) distributions in agglomeration absence and in partial agglomeration,
for the CFCC and CSCC boundary conditions.

Globally, one can conclude that not considering the agglomeration effect of CNTs
may lead to an overestimation of the material properties of FG-CNTRC thick square and
rectangular plates, since CNTs tend to agglomerate for relatively low volume fractions.

In complete agglomeration states these structures suffer a huge weakening effect,
although partially agglomerated states are the most common.

Not just the agglomeration effect, but also the CNTs distribution along the thickness
direction, constitutes a fundamental factor in dimensioning this type of structures. This
study highlighted the importance of designed distributions of the CNTs reinforcement
across the thickness over the CNTs volume fraction for the values of the deflections under
certain circumstances.

5. Conclusions

As a summary of the work developed, it can be concluded that the agglomeration
effect deteriorates the mechanical behavior of the analyzed structures, independently of
the CNTs volume fraction distribution and on the Lx/Ly side ratio.

For partially agglomerated states, the agglomeration similarly affects the plates’ re-
sponse regardless of the CNTs volume fraction distributions and side-ratio considered.
However, for complete agglomerated states, the agglomeration effect has a higher im-
pact in the mechanical behavior of the plates depending on their CNTs volume fraction
distribution and Lx/Ly ratio.

The work also highlights the importance of the CNTs’ volume fraction distributions
over CNTs’ volume fraction when dimensioning thick CNT-reinforced nanocomposite plates,
taking into account these inclusions’ agglomeration, noting that designed distributions of
the CNTs reinforcement across the thickness can provide a relevant design parameter.
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