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Abstract: Since the finite element analysis of deformations for plates made of functionally graded
materials cannot be carried out with the use of commercial FE packages, aconsistent method of
analytical analysis is proposed in the paper. The method of the analysis is based on the application
of the weighted residuals and the Bubnov–Galerkin method. The 2D formulation of moderately
thick plates is adopted herein for classical and transverse shear deformation plate models (first
and third order). Plate deformations subjected to uniform normalpressure and free vibrations are
considered. The validity of the analytical model was verified by the comparison of results with FE
analysis for isotropic plates. Two correction multipliers were proposed in order to take into account
the unsymmetric composition of functionally graded porous plate walls.
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1. Introduction

Triangular plates are widely used in different applications in many industrial and
engineering fields (e.g., mechanical, aerospace, automotive, etc.). In many cases, the
rapid and efficient evaluation of the deformations, the natural vibration frequencies, and
associated mode shapes is fundamental in their design.

Due to more complicated forms of triangles and/or polygons (various partial restric-
tions along the edges that should be included in a significant group of practical problems)
the classical methods of solutions for boundary value problems of rectangular plates or
shells cannot be applied and transferred easily in order to conduct the analysis for trian-
gular plated structures. Approximate analytical methods present adifficulty regardingthe
construction of simple and adequate approximation functions that can be applied to the
entire domain of the plate (since the mathematical structure of the boundary conditions
becomes complex and the generation of approximating functions becomes very difficult).

In addition, it is also important to note that porous functionally graded materials
(FGM) are characterized by a smooth variation of the properties from the bottom to the top
surface. The classical commercial finite element codes (e.g., Abaqus, Ansys) do not possess
the appropriate type of finite elements that can be adopted to the analysis of structures
made of functionally graded materials.

The mentioned limitations of the present analysis are demonstrated in the review
papers [1,2]. For triangular plates, an excellent source of reference are the works of
Leissa [3–6].

The methods of computations of deformations and natural frequencies are classical
and similar to those presented in the pioneering works of Leissa [3–6]. More information is
demonstrated in Section 3.

The fundamental innovations and significanceof the present work areas follows:

• To illustrate that for FGM triangular plates derived with the use of classical Love-
Kirchhoff plate theory (CPT), the influence of material properties can be expressed by
two multipliers (M and M̂) similarly as it was verified for FGM rectangular plates (see
Muc, Flis [2,7]);
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• The validity of the method of computations used herein was verified for isotropic
structures only (Section 4) since in the open literature I could not find the results for
triangular plates made of functionally graded materials.

However, it should be pointed out that the identical remarks cannot be easily trans-
ferred for plates made of unidirectional laminates or plates reinforced with nanostructures
(Muc, Muc-Wierzgoń [8]) and similarly for spherical FG shells (Flis, Muc [9]).

2. Formulation of the Problem

Let us consider deformations of triangular plates shown in Figure 1.The plate is
made of porous FGM, having either a symmetric (Figure 2a,b) or an unsymmetric pores
configuration(Figure 2c)
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Figure 1. Geometry of the analyzed normalized right plates.
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Figure 2. Plate wall construction for the uniform thickness t(x,y,z) = t: (a) uniform distribution of pores, (b) symmetric
distribution, and (c) unsymmetric distributions.

2.1. Kinematic Relations

The 3-D displacements Ũi(x, y, z) (i = 1,2,3) at any point of the plate in the x, y, and z
directions (see also Figure 1), respectively, are expressed in the following form:

Ũ1(x, y, z) = u(x, y)− z
∂w
∂x

+ F(z)ψ1(x, y)

Ũ2(x, y, z) = v(x, y)− z
∂w
∂y

+ F(z)ψ2(x, y) (1)

Ũ3(x, y, z) = w(x, y)
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where u, v, w are the displacements of a generic point on the reference mid-surface, ψ1, ψ2
are the rotations of normal to the mid-surface about the y- and x-axes, respectively. The
explicit form of the function F(z) is presented in Table 1.

Table 1. Variants of plate theories.

Classical Plate
Theory (CPT)

First Order Shear
Deformation Theory

(FSDT)

Higher Order Shear
Deformation Theory
(HSDT)—Reddy [10]

Higher Order Shear
Deformation Theory

(HSDT)—Hosseini-Hashemi [11]

F(z) 0 z; the second term in
Equation(1) is eliminated z

(
1− 4

3
z2

t2

)
z exp

(
− 2z2

t2

)
Where t denotes the total plate thickness.

The distributions of the transverse shear corrections functions F(z) used in the litera-
ture [10–13] are demonstrated for first and third order transverse shear deformation theory.
Let us note that for HSDT there is no need to use shear correction factors since the form of
the functions leads to the parabolic distributions of transverse shear stresses. The above
relations are valid for moderately thick FG plates (i.e., as the thickness, t, to the length of
the plate ratio is equal to 0.05–0.1). For thick FG plates it is necessary to take into account
deformations of the normal to the plate mid-surface—see [2].

Based on the above expressions, the total, linear 3-D strain tensor can be written as
follows:

εij(x, y, z) =
1
2

(
∂Ũi
∂xj

+
∂Ũj

∂xi

)
, x1 = x, x2 = y, x3 = z, i, j = 1, 2, 3 (2)

2.2. Constitutive Equations and Variational Formulation

Eliminating from the considerations the normal strains ε33(x,y,z) and stresses σ33(x,y,z),
the constitutive stress-strain relations can be expressed in the following way (the Kelvin-
Voigt notation) [14]:

σi(x,y,z) = Cijεj(x,y,z), i,j = 1,2, . . . 5 (3)

where,

[C] =
E(z)

1− ν2


1 ν 0 0 0
ν 1 0 0 0
0 0 0.5(1− ν) 0 0
0 0 0 0.5(1− ν) 0
0 0 0 0 0.5(1− ν)

, (4)

Young’s modulus, E, varies through thickness direction z and Poission’s ratio, is
assumed as constant (see Leissa [15]).

The control of global properties (for instance, density ρ and elastic modulus E vari-
ations) are described by the identical function P(z) characterizing the pore distributions
(Figure 2):

P(z)/Pb = [(Pt/Pb − 1) f (z) + 1](1− ϕ(z)) (5)

f (z) =
(

z
t
+

1
2

)n
,

Type 1: ϕ(z) = cp cos
(

πz
t
)
, Type 2: ϕ(z) = cp cos

[
π
2
( z

t + 0.5
)]

, Type 3:
ϕ(z) = cp cos

[
π
2
( z

t − 0.5
)]

where the symbols t and b refer to the material properties on the top and bottom sur-
faces, n is the power index, ϕ(z) is the distribution of porosity along the thickness direction
z, and cp denotes the chosen variation of porosity.
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2.3. Governing Relations

Governing relations are derived with the method discussed by Muc [16]. For 3D
structures, let us consider the following functional:

H =

τ2∫
τ1

(K−Π)dΩdτ = 0 (6)

where: K denotes the total kinetic energy, Π is the total potential energy and τ means the
physical time. The total kinetic energy can be written in the following form:

K =
1
2

∫
Ω

ρ(z)
dŨi
dτ

dŨi
dτ

dΩ (7)

and the total potential energy is defined as follows:

Π(Ũi) =
∫

Ω
WdΩ−

∫
ST

pŨ3dS = Πint −
∫

ST

pŨ3dS (8)

where W is the potential of internal forces (the strain energy density function):

W =
1
2

σαβεαβ =
1
2
(σ11ε11 + σ22ε22 + σ33ε33) + σ12ε12 + σ13ε13 + σ23ε23 (9)

Ω defines the volume occupied by the deformable body. p is the uniform normal
pressure in the global reference system. ST is the portion of the surface on which the
pressure is specified. ρ(z) is the density distribution defined with the use of the relation (5).

According to the classical macro-mechanical approach for composite structures (the
homogenization of ply properties), each component of the functional in Equation (8) is
evaluated as the sum of contributions from FG material.

Through integrating along the plate thickness z the stiffness matrix components are
defined as follows:

[A] =
t/2∫
−t/2

[C]dz, [B] =
t/2∫
−t/2

[C]zdz, [D] =
t/2∫
−t/2

[C]z2dz, [F] =
t/2∫
−t/2

[C]z3dz, [H] =
t/2∫
−t/2

[C]z4d, z,

[I] =
t/2∫
−t/2

[C]z5dz, [J] =
t/2∫
−t/2

[C] z6dz
(10)

The terms [F], [H], [I], [J] characterize the influence of the higher order transverse
shear deformation theories. The material data in the matrix [C] refer to the principal
material coordinates.

Using Hamilton’s Principle

τ2∫
τ1

δ(K−Π) = 0 (11)

one can derive the fundamental system of equations describing the deformations of the
plate.

Let us notice that the above operations can be carried out in a symbolic way search-
ing for the possible variations of unknown functions u, v, w, ψ1, ψ2 with the aid of the
operation “Variational Calculus” that can be found in the package Mathematica (the single
command Euler Equations). Finally, the variations of the Hamilton functional (11) leads to
five differential equations. The first two characterize the in-plane effects and are functions
of in-plane displacements u and v. The next three describe bending effects and are directly
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connected with the description of the bending and free vibrations effects. The final system
of equations is expressed in the following way:

Lij


u
v
w
ψ1
ψ2

 =


0
0

pw− ρ̂ω2w
0
0

, i, j = 1, 2, . . . , 5ρ̂ =

t/2∫
−t/2

ρ(z)dz (12)

The symbols Lij denote linear differential operators obtained with the use of the
Mathematica package. For FSDT, the explicit form of the operators is presented in Ref. [16].

Two of the frequencies being the solution of free vibrations relations are much higher
than the third one. They are referred toas the motion of thickness-shear and thickness-
twist, respectively. The primarily lateral mode corresponds to the lowest mode. Therefore,
simplified frequency equations which neglect the effects of the rotatory inertia are written
in Equation (12).

3. Method of the Solution

In the literature various numerical methods were combined for predicting the be-
haviors of FGM plates. A broad review of them is presented (e.g., in Refs [17,18]). The
authors of Refs [17,18] proposed novel numerical methods for the analysis of FGM and
piezoelectric FGM structure (square plates, skew plates, and toruses).

In the present paper the system of differential Equation (12) is considered as the set of
linear equations with five unknowns (u, v, w, ψ1, ψ2) and constants Lij. Using the classical
Kramer method forsolving linear equations, the system of Equation (12) is reduced to one
linear differential variable with respect to normal deflection w. The broader discussion of
those problems is presented by Muc, Flis [19]. Since for HSDT and FSDT the final form of
the above relation is too complex, we demonstrate the result for CPT:

∇4w = −pM−ω2M̂,∇4 = ∇2∇2,∇2 =
∂2

∂x2 +
∂2

∂y2 M =
A

−B2 + AD
, M̂ = ρ̂M (13)

For thin-walled plates, the influence of material properties is described by two pa-
rameters, with M and M̂ being the function of the material properties on top and bottom
surfaces, power index n, the distribution of porosity along the thickness direction ϕ(z) and
the chosen variation of porosity cp (see Equation (5)). The variations of the multipliers with
the parameters characterizing the porosity are illustrated in Figure 3.

As it may be seen in Figure 3a–d the influence of porosity is similar for different
parameters cp and the Pt/Pb ratio. Thisdemonstrates that the description of the coupling
effects via the correction factors M and M̂ is general.

For uniform or symmetric distribution of pores (Figure 2a,b B = 0) the relation (13)is
reduced to the case of isotropic structures. Let us note that equating M to 1/D0 Equation
(13) is equivalent to the formulation of isotropic plates. Thus, computing numerically
with the help of finite elements deformations or eigenvalues of polygons with the bending
stiffness D0 one can evaluate the appropriate values for structures with non-zero values of
the B matrix components.
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Figure 3. Distributions of correction multipliers and three types of porosity distributions. (a) Pressure multiplier M−cp = 0.2.
(b) Pressure multiplier M−cp = 0.5. (c) natural frequencies multiplier M̂−cp = 0.2. (d) Natural frequencies multiplier
M̂ −cp = 0.5.

Different approximation techniques exist that areused to solve deformations of plates
(see Leissa [3]) due to the complex form of governing equations in the form of Equation (13)
(valid for FG CPT) or much more complicated for FSDT. For HSDT FG plates, the method
of weighted residuals is adopted. The basic idea of the method of the weighted residuals is
to use a trial function with a set of unknown parameters to approximate the solution:

w(x, y) =
S

∑
s=1

rsΦs(x, y) (14)

The trial function is evaluated using the polynomial expansion:

Φ(x, y) =
M

∑
m=0

N

∑
n=0

amnxnym (15)

Having solved all the boundary conditions, we obtainthe values of the coefficients aij.
Substituting the values of the coefficients in the general polynomial, we end up with trial
function (14). The residual function R is determined as:

R(x, y) = ∇4w(x, y) + pM + ω2M̂ for CPT or more complicated for FSDT and TSDT (16)
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For the residual function (16) the coefficients ri in Equation (14) are derived with the
use of the Bubnov-Galerkin method.

4. Numerical Example

Let us consider a triangular plate clamped on all sides. For such boundary conditions,
the expansion (15) is symmetric with respect to the line y = x and m and n should start
from 2.

For plates made of FGM the pressure multiplier M (Figure 3a) reduces the value of the
maximal displacement as the thickness t/L ratio increases. The reduction factor is higher
for HSDT and it increases with more accurate approximations of deformations.

Let us note that the first mode of natural vibrations is identical to these plotted in
Figures 4 and 5 (see Equation (13)). The comparison of natural modes is presented in
Figure 6. The results are almost identical for those derived for isotropic plates.
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The natural frequency reduction factor is a function of the coefficient n and natural
frequencies can be higher or lower than for isotropic plates (Figure 3b) similarly as for
rectangular plates [2,7].

The validity of the analytical model was compared with the FE analysis for isotropic
plates. The triangular plate deflections and natural vibrations can be evaluated with the
use of finite element package NISA II in Table 2. Two types of finite elements were used,
namely NKTP 20 (three kinematic variables) for thin-walledstructures (CPT) and NKTP 32
(five kinematic variables (FSDT and TSDT)). The agreement of results between analytical
and FE analysis is very good. For moderately thick plates (t/L ≤ 0.1), the influence of
transverse shear effects is less significant (see also Figure 6).

Table 2. Comparison of analytical and FE results for different 2D models of triangular clamped isotropic plates (t/L = 0.1,
Dt/p = 1, ρt/Dt = 1).

2D Model
Normal Dimensionless Maximal Displacement–

wmaxEtt3/[12p(1−ν2)]
Dimensionless Eigenfrequency ω2

√
ρt/Dt–First

Mode

Analytical FE (Nisa II) Analytical FE (Nisa II)

CPT 9.516 × 10−5 9.744 × 10−5

NKTP 20
89.4 95.4

NKTP 20

FSDT 9.464 × 10−5 9.681 × 10−5

NKTP32
86.3 93.2

NKTP 32

TSDT 9.412 × 10−5 9.594 × 10−5

NKTP32
85.1 90.4

NKTP 32

Both the results shown in Table 2 and in Figure 7 demonstrate that transverse shear
effects reduce the values of maximal deformations and natural frequencies. It is in a good
agreement (qualitative not quantitative) with the results obtained in refs [17,20].
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deformations.

5. Concluding Remarks

In the present paper, triangular moderately thick plates made of functionally graded
porous materials are considered. The proposed model is based on three variants of 2D
approximations of plate deformations (i.e., classical theory, first order shear theory, and
third order shear theory). The problem deals with deformations and free vibration analysis.
It is solved with the use of the weighting residuals and the Bubnov-Galerkin method. The
validity and correctness of the results are verified by the comparison with the FE results
derived with the use of NISA II package for isotropic structures.

The asymmetry of material characteristics of FG materials can be taken into account
by the proposed two multiplication factors evaluated for classical plate theories.
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