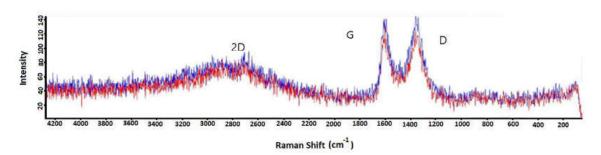
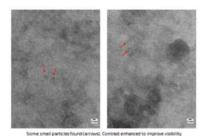


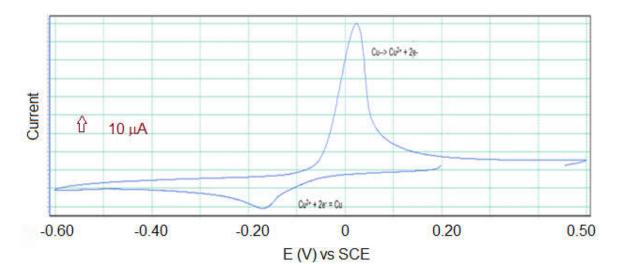
Supplementary Materials: Electrodeposition from a Graphene Bath: A Sustainable Copper Composite Alloy in a Graphene Matrix


Hayley Richardson, Charles Bopp, Bao Ha, Reeba Thomas and Kalathur S.V. Santhanam *

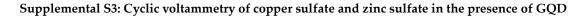
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY 14623, USA; hrk3290@rit.edu (H.R.); cbs9344@rit.edu (C.B.); bha9120@rit.edu (B.H.); rthomas@saunders.rit.edu (R.T.) * Correspondence: ksssch@rit.edu

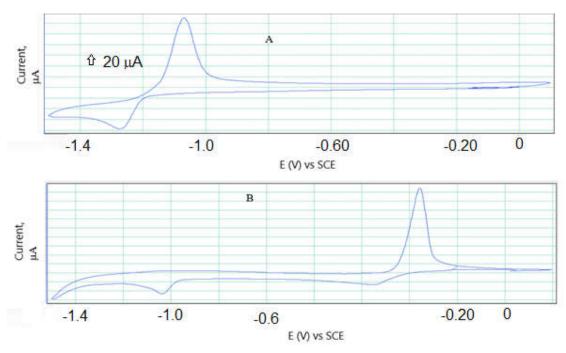

Supplement S1: Graphene quantum dots and Raman Spectrum

Sample analyzed by Raman, TEM and UV-Vis Spectroscopy and Florescence spectroscopy.



Raman spectrum of GQD placed on a substrate for recording. Blue and green represent two different runs of the same sample.




GQD sample under TEM for size Scale 5 nm

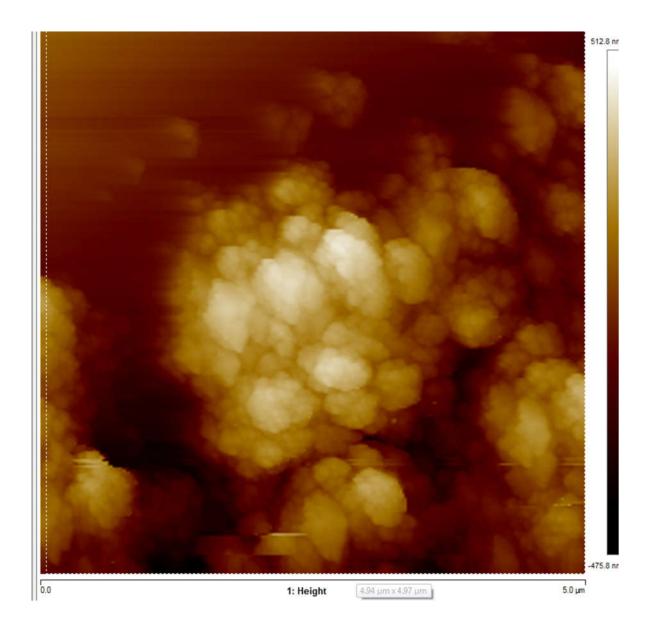
Supplemental S2: Cyclic Voltammetry of Copper Sulfate

Cyclic voltammetry of 5 mM Copper sulfate in $0.1\,M\,K_2SO_4$ with glassy carbon working electrode. Sweep rate 20 mV/s

Upper curve: Cyclic voltammetry of 5 mM zinc sulfate in 0.1 M K₂SO₄ at glassy carbon working electrode. Sweep rate: 20 mV/s

Lower curve: Cyclic voltammetry of 5 mM zinc sulfate and 5 mM copper sulfate in 0.1 M K₂SO₄ containing 1ml GQD at glassy carbon working electrode. Sweep rate: 20 mV/s

Supplemental S4: Excel Files of Current-Time Transients Sheet 10


Excel file giving Potential-step electrolysis results Sheet 10. Other sheets in excel show our different efforts to understand the mechanism.

Quantitativ	e Result						
Analyte	Result			Std.Dev.	Calc.Proc	Line	Intensity
С	97.082	%		[97.721]	Quan-FP	C Ka	0.0008
Cu	2.884	%		[0.015]	Quan-FP	CuKa	3.5037
Zn	0.034	%		[0.002]	Quan-FP	ZnKa	0.0572
Profile							
[cps/uA]	с		[cps/uA] Cu		[cps/uA] Zn		
			0.5	CuKa		0.5	
0.06				3		1.	
			0.4			0.4	
]							
0.04			0.3			0.3	
1							
	_		0.2			0.2	
0.02				- 11			
1			0.1-			0.1-	
1	∧ c Ka	7			Λ		
0.00	0.5	1.0	0.0	7.5 8.0	8.5 9.0[keV]	0.0	8.5 9.0 9.5 [keV]
0.0	0.5	1.0 [keV]	1.5 0.0	8.5 9.0[keV]	0.0	0.0 9.0 9.3 [keV]

Supplement S5: XRF Recording of the Electrodeposited Composite

Roughness						
				512.8 m -475.8 m	Results Image Rew Mean Image Standard Deviation Image Standard Deviation Image Standard Deviation Image Surface Area Image Resolution Image Resolution Image Resolution Image Ray Image Ray Image Ray Image Ray Image Ray Raw Mean Advance Area Projected Surface Area Projected Surface Area Sufface Area Projected Surface Area Sufface Area Projected Surface Area Sufface Area Ray Ophines Rmax Skewness Kutrois R2 R2 Count Preak Count Valley Count Max Peak ht (Rp) Average Max Depth (Rom) Average Max Depth (Rom) Line Density	1028.09 nm 0.6610 nm 143 nm 844 nm 33.1 µm ³ 23.4 % 143 nm 856 nm 1025 nm -0.512 nm 1025 nm -0.512 nm 143 nm 844 nm 22.9 µm ³ 24.8 µm ⁴ 24.8 µm ⁴ 24.8 µm ⁴ 24.8 µm ³ 24.8 µm ³ 24.8 µm ³ 24.8 µm ⁴ 25.6 % 143 nm 834 nm 0.556 2.86 % 0.00 nm 0.00 nm 0.00 nm 0.00 nm 0.00 µm
S Parameters Inputs Calculate S Parameters Stop Band Inputs Use Threshold Fight Feature Direction Number Histogram Bins X Aisis Boundary Particles Particle Filter Sigma Peak Inputs Peak threshold reference Pace	1: No Off 0.00000 nm Above 512 Absolute Yes No 1.00000 Off Zero	Height (<u>4,94 µm + 4,97 µ</u>	-	50 µm		

Supplement S6: AFM Images and Roughness Details

