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Abstract: In the design of parts consisting of long-fibre-reinforced Sheet Moulding Compounds
(SMC), the potential for the optimisation of processing parameters and geometrical design is limited
due to the high number of interdependent variables. One of the influences on fibre orientations
and therefore mechanical part performance is the initial filling state of the compression moulding
tool, which is defined by the geometry and positioning of the SMC preform. In the past, response
surface methodology and linear regression analysis were successfully used for a simulation-based
optimisation of rectangular preform size and position in regard to a part performance parameter.
However, the computational demand of these increase exponentially with an increase in the number
of design variables, such as in the case of more complex preform geometries. In this paper, these
restrictions are addressed with a novel approach for metamodelling the correlation of preform and the
resulting mechanical part performance. The approach is applied to predicting the maximum absolute
deflection of a plate geometry under bending load. For metamodelling, multiple neural networks (NN)
are trained on a dataset obtained by process and structural simulation. Based on the discretisation of
the plate geometry used in these simulation procedures, the binary initial filling states (completely
filled/empty) of each element are used as inputs of the NNs. Outputs of the NNs are combined
by ensemble modelling to form the metamodel. The metamodel allows an accurate prediction
of maximum deflection; subsequent validation of the metamodel shows differences in predicted
and simulated maximum deflection ranging from 0.26% to 2.67%. Subsequently, the metamodel is
evaluated using a mutation algorithm for finding a preform that reduces the maximum deflection.

Keywords: computational modelling; compression moulding; moulding compounds; optimisation

1. Introduction

Sheet Moulding Compounds (SMC) compression moulding is the largest market segment in the
processing of Glass Fibre-Reinforced Plastics (GFRP) in terms of production volume [1]. The benefits of
compression moulding include the economical production of near-net-shape components, minimising
the need for subsequent assembly steps. The deformation of the SMC preform during compression
moulding causes the formation of inhomogeneous and transient flow fields, which in turn cause a
change in the orientation of the contained fibres [2–8]. Mechanical properties of the resulting SMC
part are dominated by these fibre orientations, which therefore play an important role in the design of
SMC parts and setup of the compression moulding process such as definition preform position and
size [4,9–11].
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Martulli et al. reported a property difference between specimens cut from carbon fibre-reinforced
(53 wt %) vinylester-based SMC with a preferential orientation of 0◦ and 90◦ of 150% for tensile
stiffness, 260% for tensile strength, 120% for compressive stiffness, and 32% for compressive strength,
respectively [11]. For a polyester-based SMC with 30 wt % glass fibre content, Oldenbo et al. determined
a difference in tensile stiffness for preferential orientation of 0◦ and 90◦ upwards of 25% [10].

Fibre orientation can be predicted by the application of process simulation procedures, on which
extensive work has been conducted since the early 1980s [12–16]. Initially, these were based on 2D and
2.5D modelling approaches (the latter considering through-thickness variations in flow and material
properties). Lee, Folgar, and Tucker applied the generalised Hele–Shaw model for calculation of the
filling of thin-walled structures during the SMC compression moulding process; however, they did
initially not consider the influence of temperature on the SMC viscosity [15,17,18]. Barone and Caulk
performed experimental analysis on SMC flow and reported boundary effects such as slippage of
the SMC on the mould surface due to temperature influences, for which a model was subsequently
proposed [19,20].

In recent years, these methods were expanded by the development of simulation procedures
capable of 3D calculation, of which certain functionalities have been implemented in programs
such as Moldex3D and Moldflow [21,22]. Hohberg employed the Coupled Eulerian Lagrangian
framework within Abaqus for the calculation of SMC flow and flow-induced deformation of local
reinforcements [23]. A research group led by Osswald developed a direct fibre simulation procedure,
with which fibre bending and fibre–matrix separation can be calculated in long fibre-reinforced
polymers [21]. This was expanded on by Meyer et al. with a direct bundle simulation approach [24].

However, process simulation has remained computationally demanding and time-consuming [4,9,25].
This limits the potential in part or process optimisation, since finding the “optimal” solution usually
necessitates simulating a high number of variable variations, which is especially prevalent when varying
only one at a time [25–30]. In the field of SMC compression moulding, advanced optimisation procedures
have been presented, which are based on alternative approaches making use of approximations of the
complex interactions of influencing parameters (also called metamodels or surrogate models) [25,30,31].
Metamodels provide a “Model of the Model”, which may be used to replace computationally expensive
simulation models in a wide number of engineering disciplines and have also been used in SMC
modelling and process optimisation [25,30,32–34]. Huang et al. used a mesoscale metamodelling
approach to accurately predict the stiffness matrices of chopped carbon fibre SMC from the fibre
orientation tensor using individual Kriging models for each element of the stiffness matrix [34]. Sabiston
et al. presented a neural networks (NN)-based procedure for the prediction of preform position and
geometry-dependent fibre orientations in a SMC seat back component. With this approach, near
instantaneous prediction of fibre orientation is achieved, the caveat being that a high number of data
points (3000) is required for training the NN [8].

For determination of the optimal SMC peform placement for a hood scoop part, Ankenman,
Bisgaard, and Osswald proposed an iterative optimisation approach based on evaluating simulation
results with the response surface methodology [25]. The optimisation had two goals, being to minimise
the “fill time tolerance” (standard deviation of the time necessary for filling all nodes of the discretised
part geometry, thus describing the filling uniformity) and the uniformness of fibre orientation. However,
this procedure necessitated significant human interaction in iteratively defining and evaluating different
experimental setups. This was later expanded on by Twu and Lee, who automated the procedure by
applying linear regression analysis. However, they noted that this methodology (as well as statistical
regression methods or various mathematical approximation theories in general) had major drawbacks,
as the number of necessary simulations would increase exponentially with the number of design
variables [35]. Alternatively, they proposed employing neural networks (NN), which they subsequently
applied in increasing the curing homogeneity of an SMC part with varying thickness by optimising the
heating channel location inside the mould [30]. Initially, a start-up search is employed (necessitating
19 curing simulations). The parameter variations and simulation results are used for initial training
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of a feed-forward NN (FF-NN). Subsequently, the FF-NN is iteratively evaluated and retrained by
supplementary curing simulation, finding the optimal design in less than 60 simulations (in comparison
with the statistical approach necessitating 729 simulations when using a 3-level quadratic model
without domain search) [30].

Alternatively, Kim, Lee, Han, and Vautrin used a genetic algorithm for optimising the preform size
and placement. The goal of the optimisation was to minimise the maximum deflection of a symmetric
car hood and an arbitrary non-symmetric geometry that resembles a fender [31].

Most of the optimisation procedures mentioned apply initial evaluations of the significance of
design factors, excluding non-significant factors, to make the design cases more manageable [25,30].
Additionally, problem-dependent constraint handling techniques are used to rule out non-feasible
solutions (e.g., limiting the ranges of the design factors to physical limits such as the mould dimensions).
For curing homogeneity optimisation, Twu and Lee applied metamodelling to four design factors [30].
Ankenman, Bisgaard, and Osswald limited the number of design factors to three (charge size,
length-to-width ratio, and position relative to one mould edge), while Kim, Lee, Han, and Vautrin
employed the penalty function method and a repair algorithm in the handling of four design variables
(size and position of the preform in x and y direction) [25,31].

Thus, promising approaches have been shown addressing the presented challenges, in which a
wide range of metamodelling procedures are successfully used. However, to the best of the authors’
knowledge, no metamodelling procedures that expand on the geometrical freedom of the preform
(e.g., non-rectangular preforms) have been presented in the field of SMC processing.

Therefore, the focus of the presented study is the implementation of a metamodelling approach
without inherent geometry restrictions, for which an ensemble metamodel comprising multiple FF-NN
is proposed. The procedure directly makes use of the spatial geometry discretisation used in 2D and
2.5D process simulation for the description of the part and preform geometry and approximation of
the correlation of the preform and resulting mechanical properties. The metamodel is subsequently
used in a procedure for the optimisation of the SMC preform. As the design goal, minimisation of the
maximum absolute deflection of a plate geometry under bending load is pursued.

Sampling for FF-NN training is conducted by evaluating rectangular preform geometries (which in
sum span the totality of the part surface) and the resulting maximum absolute deflection using a coupled
process and structural simulation. In the following subsection, methods used for the metamodelling of
preform and part behaviour and subsequent metamodel-based preform optimisation are presented.

The presented procedures were implemented in MATLAB R2020a, Mathworks, Natick, MA, USA,
when not stated otherwise.

2. Materials and Methods

The procedures were applied to a plate geometry exhibiting a cantilever load case, which is shown
in Figure 1a. The goal of the optimisation of the preform was the minimisation of plate deflection.
As this paper concentrates on procedure development, this fairly simple geometry is chosen.J. Compos. Sci. 2020, 4, x 4 of 19 
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Figure 1. Minimisation of the plate’s maximum absolute deflection: Plate geometry, boundary 
conditions, and applied load (a). Discretisation of plate geometry with 1200 S3 elements (b). 

2.1. Explicit Modelling 

Calculation of the fibre orientation probability distribution function (FOD) 𝜓(𝑝) resulting from 
SMC flow during compression moulding was conducted using Express 6.0, M-Base Engineering + 
Software GmbH, Aachen, Germany. This software was developed in close collaboration with the 
Institute for Plastics Processing (IKV) (Aachen, Germany) and it has been used for a 2.5D process 
simulation of thermoplastic and thermoset compression moulding alike [36–38]. It is based on the 
control volume approach as described by Osswald, which has been shown to accurately predict the 
filling pattern in compression moulding of thin geometries under the assumption of planar flow [12]. 
The governing equations implemented in the software and used in this paper are described briefly. 
The material data used are shown in Section 2.2. 

To predict the static pressure distribution p within the mould cavity during the compression 
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the thickness of the plate geometry and being stacked on top of each other), for which the momentary 
temperature change due to conductive heat transfer is considered individually. 

From the layer-wise average velocities, fibre orientations are determined for each layer. Jeffery 
developed a procedure that enables the prediction of change in orientation of a single ellipsoidal 
particle due to the flow of a surrounding fluid [39]. For the calculation of the FOD of fibre-reinforced 
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including fibre–matrix interaction), which has resulted in the development of new models such as 

Figure 1. Minimisation of the plate’s maximum absolute deflection: Plate geometry, boundary
conditions, and applied load (a). Discretisation of plate geometry with 1200 S3 elements (b).
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Discretisation of the geometry into a structured shell mesh was conducted in Abaqus 2020,
Dassault Systèmes, Vélizy-Villacoublay, France, using 1200 S3 elements (Figure 1b). This shell element
type was chosen based on compatibility with the process simulation procedure, and subsequently,
it was also used in structural simulation and metamodelling.

2.1. Explicit Modelling

Calculation of the fibre orientation probability distribution function (FOD) ψ(p) resulting from
SMC flow during compression moulding was conducted using Express 6.0, M-Base Engineering +

Software GmbH, Aachen, Germany. This software was developed in close collaboration with the
Institute for Plastics Processing (IKV) (Aachen, Germany) and it has been used for a 2.5D process
simulation of thermoplastic and thermoset compression moulding alike [36–38]. It is based on the
control volume approach as described by Osswald, which has been shown to accurately predict the
filling pattern in compression moulding of thin geometries under the assumption of planar flow [12].
The governing equations implemented in the software and used in this paper are described briefly.
The material data used are shown in Section 2.2.

To predict the static pressure distribution p within the mould cavity during the compression
moulding of SMC, Folgar and Tuckers’ application of the generalised Hele–Shaw model is
used [12,15,17]:

∂
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From the pressure distribution, gap-wise average velocities U and V are derived, from which the
fibre orientation probability distribution function (FOD) is subsequently calculated [12,15]:
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Anisotropy of temperature (and therefore viscosity) is taken into account by simultaneously
simulating the filling of the geometry with five shell geometries (assumed as each having one-fifth of
the thickness of the plate geometry and being stacked on top of each other), for which the momentary
temperature change due to conductive heat transfer is considered individually.

From the layer-wise average velocities, fibre orientations are determined for each layer. Jeffery
developed a procedure that enables the prediction of change in orientation of a single ellipsoidal
particle due to the flow of a surrounding fluid [39]. For the calculation of the FOD of fibre-reinforced
materials, Folgar and Tucker supplemented this model with a phenomenological diffusion term, with
which fibre–fibre interactions are taken into account by the fibre interaction coefficient CI [13]:
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In the past, extensive work has been conducted in enhancing this orientation model (e.g., by
including fibre–matrix interaction), which has resulted in the development of new models such as
Anisotropic Rotary Diffusion (ARD), Reduced Strain Closure (RSC), ARD-RSC, and an improved ARD
model combined with the Retarding Principal Rate model (iARD-RPR) [40–45].
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In this work, the Folgar–Tucker model is used as recent investigations conducted by Li, Chen et al.
continue to show good agreement with the experimentally determined material properties of SMC and
the model having been used in prior work on SMC part thickness optimisation by Kim et al. [22,46].

FOD were transferred to MATLAB for calculation of the mechanical properties of each element in
each layer. The mechanical properties are calculated by methods described by Advani and Tucker, which
are suitable for use in thin-walled compression moulding (thus assuming planar fibre orientation) and
subsequently implemented and validated by Oldembo et al. for SMC materials [5,10]. The calculation
of mechanical properties is divided into three successive steps. Initially, the fourth-order stiffness
tensor Cii (Voigt notation) is calculated under an assumption of unidirectional fibre orientation in the
SMC using the governing equations of Halpin and Tsai [47]. Fibre orientation tensors of second order
ai j and fourth order ai jkl are subsequently derived from the FODs [5,48]:

ai j =

∮
pip jψ(p)dp (6)

ai jkl =

∮
pip jpkplψ(p)dp. (7)

Then, the FOD-dependent stiffness tensors T of each element are calculated by orientation tensor
averaging [5]. Scalars Bi are derived from the unidirectional stiffness tensor (governing equations in
Appendix A), where δ is the Kronecker-delta [5]:

Ti jkl = B1
(
ai jkl

)
+ B2

(
ai jδkl + aklδi j

)
+ B3

(
aikδ jl + ailδ jk + a jlδik + a jkδil

)
+ B4

(
δi jδkl

)
+ B5

(
δikδ jl + δilδ jk

)
(8)

For final simulation of part deformation behaviour, the resulting stiffness tensor components were
exported to an Abaqus 2020 input-file (.inp) as individually defined materials for each element (thus
creating 6000 individual materials) using an automated script. The 5 layers were treated as plies of a
composite shell section, which was also created using the script. As fibre orientations are provided in
local coordinate systems in the control volume approach, these were also supplied to the .inp file for
each element [12].

2.2. Metamodelling

As has been shown in the introduction, a range of different metamodelling procedures such as
kriging and NN have been implemented in the field of SMC processing and SMC material description,
each exhibiting individual problem-dependent benefits and drawbacks [8,34]. Jin et al. and Simpson
et al. evaluated a range of metamodelling procedures, with Simpson et al. recommending the use
of NN when dealing with highly nonlinear or large problems containing many parameters, which
(as will be shown) is the case in the proposed procedure [30,32,49]. Furthermore, the use of FF-NN
has been shown by Twu and Lee et al. to be beneficial in comparison to alternative approaches for
metamodelling in the field of SMC optimisation; thus, this approach is used [30]. The cited work
is greatly recommended for a more in-depth description of general procedures in setting up and
training FF-NN.

Contrary to prior papers presented in the introduction, which use a small number of non-binary
input variables, the initial filling state of each element (which may be completely filled or unfilled,
thus, binary) is proposed for defining the geometry and position of the preform and for use as input
variables (thus, 1200 binary input variables are used in total). However, this results in a high number
of network connections, even without considering the further setup of the FF-NN. Training an FF-NN
with a high number of connections may lead to a loss in accuracy for out-of-sample data commonly
known as overfitting [50]. This is especially prone when using a limited sample size as is the case in
simulation-based optimisation of the SMC process [51].

Using a large number of binary input variables is a known procedure in the field of Optical
Character Recognition (OCR), in which neural networks are used to detect printed or handwritten
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letters in black and white images [49,52,53]. Cybenko and Hornik et al. have shown that an FF-NN
with a single hidden layer can, when using sigmoid transfer functions, describe a continuous function
to an arbitrary degree of accuracy [30,54,55]. However, the necessary number of nodes in the hidden
layer and sample sizes have been part of an intensive debate. While general procedures for finding the
most optimal parameters (commonly known as hyperparameters) for an FF-NN, such as the robust
design methodology proposed by Taguchi, have been used, these parameters are usually set based on
experience and trial and error procedures [56,57].

Furthermore, larger sample sizes are preferred, and in the field of OCR of handwriting, extensive
databases have been formed [53]. However, sample size is limited in the discussed application on
compression moulding due to the calculation effort and general practicability. Therefore, overfitting
is assumed as given and may occur regardless of the chosen number of neurons in the hidden layer.
However, there are metamodelling approaches that mitigate the effects of overfitting, which will be
shown to be successful. Hastie et al. propose the use of ensemble modelling approaches, in which the
outputs of multiple FF-NN with identical architecture (but which may each exhibit a different form of
overfitting e.g., due to differences in training procedures) are combined to increase the accuracy of
the model as a whole [51,58]. In this paper, bootstrap aggregation (“bagging”) is implemented, and
the mean of the outputs of 100 FF-NN trained with random starting weights is used to predict the
maximum absolute deflection of the plate. Thus, only a limited number of neurons are used, and the
focus is set on showing the general applicability of this procedure and its accuracy in prediction.

In total, 36 samples consisting of a unique rectangular preform geometry and position and
affiliated maximum absolute deflection were created by simulation procedures shown in Section 2.1
for training of the FF-NN (see Figure 2 for a representation of the preform samples). Definition of the
samples was based on the following principles:

• Each element should be included in a similar number of samples
• Preform geometries and positions typically used in processing are included
• Preforms have to cover at least 5% of the mould surface
• Preforms maximising flow lengths in the x and y-direction are included
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Thus, limiting the samples to only a single geometry was chosen for reasons of consistency.
Including alternative geometries based on these principles may be beneficial for increasing the accuracy
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of the trained FF-NN. However, this would necessarily increase the number of samples, and including
all elements in the sample set may not be always possible (e.g., inclusion of corner elements when
using round preform geometries).

The material and processing parameters applied are shown in Tables 1 and 2 and Figure 3. Material
data correspond with SMC0400 of Menzolit Srl., Turate, Italy [59].

Table 1. Material parameters of SMC0400 [59].

Parameter Values

Thermal conductivity 0.555 W/(mK)
Heat transfer coefficient (Tool/SMC) 2000 W/(m2K)

Fibre weight fraction 30%
Fibre interaction coefficient CI 0.070

Elastic modulus fibre 73,000 N/mm2

Elastic modulus matrix 6250 N/mm2

Poisson ratio fibre 0.220
Poisson ratio matrix 0.250

Fibre aspect ratio (length/diameter) 3000
Initial fibre orientation isotropic

Table 2. Process settings [59]. SMC: Sheet Moulding Compounds.

Parameter Values

Initial SMC temperature 30 ◦C
Temperature upper mould cavity 150 ◦C
Temperature lower mould cavity 145 ◦C

Delay time 45 s
Initial compression speed 10 mm/s
Max. compression force 1000 kNJ. Compos. Sci. 2020, 4, x 8 of 19 
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Training of the FF-NN is conducted using the “fitnet” function implemented in the MATLAB Deep
Learning Toolbox by Levenberg–Marquardt backpropagation, as this has been shown to be the fastest
method in training the FF-NN [60–62]. FF-NN architecture and training parameters are summarised in
Table 3. For a complete description of Levenberg–Marquardt backpropagation, refer to the cited paper
by Hagan and Menhaj [60].

For initial validation of the metamodel, a comparison of the maximum deflection predicted
by the metamodel and calculation by FEM for three preforms not used in FF-NN training
(Figure 4) are compared. Further validation is conducted on preform geometries obtained using the
optimisation procedure.
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Table 3. Architecture of the neural networks (NN) and training parameters.

Variable Value

Inputs 1200 (binary initial filling states of each element. 1:
completely filled and 0: empty)

Outputs 1 (maximum absolute deflection under static load in mm)
Hidden layers 1

Neurons in hidden layer 6
Connection type Fully connected

Training type Levenberg–Marquardt
Transfer function input layer to hidden layer Hyperbolic tangent sigmoid

Transfer function hidden layer to output Linear
Loss function Mean squared error

Training epochs (maximum) 1000
Drop-out none

J. Compos. Sci. 2020, 4, x 8 of 19 
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2.3. Optimisation

The optimisation of a performance metric of an SMC-based component can be defined as a
multivariable optimisation problem (MVO). The mathematical description of an MVO is [63–65]:

min( f (x)), x ∈ S (9)

where f : Rn
→ R is the objective function and x = (x1, x2, . . . , xn)

T is the decision vector belonging to
the nonempty feasible region S ⊂ Rn [63]. In this case, maximum deflection of the plate in z-direction
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Dz is treated as the objective function, which is defined by the maximum absolute deflection of all
nodes N observed in this direction (compare Figure 5; notation derived from Islam et al.) [66]:

f (x) = max
∣∣∣(Dz)i

∣∣∣, i = 1, 2, 3, . . .N. (10)
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The components of the decision vector shown in Table 4 correspond with the input variables of
the metamodel described previously (initial filling state of each element, which can only be completely
filled or empty).

Table 4. Description of the design variables.

Design Variable Definition Unit Lower Bound Upper Bound

x1 Initial filling state of element 1 - 0 1
x2 Initial filling state of element 2 - 0 1

x1,200 Initial filling state of element 1200 - 0 1

A challenge in solving MVO is detecting the global minimum of f , for which evolutionary
algorithms (EA) such as genetic algorithms (GA) have been used successfully [67–69]. These algorithms
may include multiple different operators such as crossover and mutation. Here, a non-standard
mutation procedure is implemented, which is based on evaluation of the metamodel (Section 2.2).

The setup of the developed optimisation routine is shown in Figure 6. Using an iterative method
presented in the following, a preform geometry and position that minimises the objective function
is sought.

(1) Mutation of preform and evaluation of objective function:

Starting elements (which can be a single element or a group of adjacent elements) are mutated
iteratively by applying the eight subsequent procedures summarised in Table 5. During these
procedures, the preform geometry is increased (or decreased) by the R adjacent, randomly chosen
elements (R initially being one) in the specified direction. Decrease procedures are initialised after the
minimum preform size (5% of the part surface area coverage) is reached.

After each procedure, the resulting plate deformation of the new preform geometry is evaluated
using the metamodel. Mutation is retained if a decrease of the objective function is predicted.
To decrease the likelihood in reaching a local minimum (thus not being the most optimal, global
solution for the optimisation), R is increased to three if no decrease in deflection is reached during 10
iterations. The mutation is terminated after a total of 125 iterations.
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Table 5. Mutation procedures conducted in each optimisation iteration.

Mutation Procedure Relative Area Change Change Direction

1 Increase by R Elements Positive x-direction
2 Increase by R Elements Negative x-direction
3 Increase by R Elements Positive y-direction
4 Increase by R Elements Negative y-direction
5 Decrease by R Elements Positive x-direction
6 Decrease by R Elements Negative x-direction
7 Decrease by R Elements Positive y-direction
8 Decrease by R Elements Negative y-direction

(2) Evaluation of boundary conditions:

In prior conducted studies, problem-dependent constraints and constraint handling techniques
had to be implemented [25,31]. As the description of the preform in the presented approach is based
on the discretisation of the geometry also used in process and structural simulation, typical constraints
such as limiting the preform to the inside of the mould are not necessary.

Two problem-independent constraints (e.g., independent of the part geometry) are implemented,
with which the typical processing defects and limitations of the compression moulding process
are addressed:

(a) After each iteration, the mutated preform is automatically checked for the absence of enclosed,
empty elements, which can lead to part defects such as air pockets [70]. If this was detected
during preform optimisation, mutation was limited to the first four procedures until the enclosed
elements were eliminated.

(b) Preform size needs to exceed at least 5% of the part surface area, thus limiting the height of
the preform.

As starting elements, five evenly spaced elements contained inside the FF-NN training sample
preform resulting in the smallest maximum deflection are used, as an optimal solution is presumed in
this area (see Figure 2 and Figure 9). One of the following two results are expected after successfully
running the optimisation procedure:

• Training sample preform is global optima: Training sample is reached regardless of starting element
• Training sample is local optima: Alternative preform is determined, which results in lower

maximum plate deflection. This may vary depending on the starting element.
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3. Results and Discussion

3.1. Metamodel Validation

In Figure 7, maximum absolute deflections attained by the metamodel and FEM for the validation
geometries are compared. Standard deviations and outliers of the 100 individual FF-NN outputs
of which the metamodel is composed are also shown. Maximum plate deflections predicted by
the metamodel differ by 2.67% (validation geometry 1), 0.26% (validation geometry 2), and 0.82%
(validation geometry 3) from values obtained by FEM, respectively. Therefore, plate deflections are
predicted accurately by the metamodel.
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As expected, the individual FF-NN included in the metamodel exhibit a high spread in outputs,
exceeding 50% of the metamodel output value (e.g., total spread in predicted deflections for validation
geometry 3: 48.47 mm), which is attributed to overfitting during the training process (see Section 2.2).
No significant influence of the preform position on the spread of the individual FF-NN outputs can be
detected. Potentials for decrease in spread include increasing the sample set size and implementing
NN validation procedures; however, these would significantly increase the computational effort.

To further evaluate the decrease in plate deflection from 85.32 mm to 81.29 mm which results
from decreasing the charge distance from the clamping location, fibre orientations are compared. Fibre
orientation tensor component axx, which is visualised in Figure 8, describes the probability of fibre
orientation in the x-axis direction [5]. For a decrease in the charge distance from clamping location
results, a decrease of this tensor component in the left half of the plate is observed, which reduces the
local flexural modulus and therefore the overall bending stiffness of the plate [71]. Although validation
geometries used are symmetric relative to the principal axis of the plate, fibre orientations calculated by
FEM are not symmetric relative to this axis, which may result from the non-symmetry and coarseness
of the mesh used [72].
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3.2. Preform Optimisation

The starting elements of the performed preform optimisations and resulting preform geometries
are shown in Figure 9. Preform geometries resulting from adjacent starting points show a similarity in
size and geometry; however, these are not identical in any case. Convergence of the objective function
is presented in Figure 10. However, it has to be clear that the early generations do not represent
valid solutions, as the minimum preform size (Section 2.3, constraint 2b) is only reached during the
final generations.
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Although 125 iterations were conducted in each case, no decrease in the objective function value or
further change in preform geometry is detected for any starting element from 25 generations onwards.
The run time was under five minutes respectively. One can see a high decrease in maximum deflection
during the initial iterations, with the tapering off of the attained decrease going further. The minima of
the objective function range from 75.3 (Starting element 4) to 81.3 mm (Starting element 1) (Figure 9).
Similar to the validation geometries, comparison of the metamodel output with FEM results again
confirm accurate prediction by the metamodel, with deviations ranging from 0.46% (Starting element 4)
to 2.14% (Starting element 1) (Figure 11).
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As different preforms are achieved depending on the starting element and only one global minima
is presumed to exist, optimised preforms represent the local minima of the MVO. Further comparison
of the obtained values for the objective function (Starting element 5) with maximum deflection of
the sample from which the starting elements were initially taken (Figure 2) show that the algorithm
was not capable in reaching this more optimal solution (in comparison, the highest deflection of all
the samples was 114.9 mm). This sample is in contact with the full length of the left plate edge,
representing the highest achievable flow length while fulfilling the minimum mould coverage defined
in the optimisation. While reaching the geometry of the mentioned sample may be possible when
strongly increasing the number of conducted iterations, the function of the optimisation algorithm is
restricted while approaching it due to it having the minimum mould coverage (5%) for conducting
a valid mutation step. The sharp edges of the optimised geometries are a result of the use of S3
elements, and these could be combatted by increasing the element count, adding additional constraints
to the optimisation procedure, or using alternative process simulation approaches. Additionally, an
additional constraint for avoiding two preforms from forming should be implemented (as is the case in
preform (b)), as these may lead to weld lines and should be avoided.

4. Conclusions

The development and refinement of metamodelling (or surrogate modelling) approaches is a
beneficial step in expanding the capabilities in simulation-based SMC compression moulding process
optimisation and reducing computational demand.

In this paper, an ensemble metamodelling approach is proposed, in which the spatial discretisation
necessary for process and structural simulation is exploited. Hereby, the initial filling states of each
element are used as input variables for the metamodel. To mitigate the effects of overfitting, an ensemble
modelling approach is used in which the mean outputs of 100 FF-NN is used as output of the metamodel.
Training of the FF-NN is conducted on datasets obtained by process and structural simulation with
random starting weights. Contrary to metamodelling approaches successfully implemented in the
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past, this approach enables defining the preform without inherent geometry restrictions, as viable
geometries are only dependent on the discretisation itself.

The approach is used to predict the preform geometry and position-dependent maximum
deflection of a plate geometry under cantilever bending load. Maximum absolute deflection can be
accurately predicted by the metamodel, with deviations between metamodel prediction and FEM
validation ranging from 0.26% to 2.67%.

The usability of the metamodel in a subsequently conducted preform optimisation routine can
be shown, but it is believed to be limited by the closeness of local optima to each other and chosen
boundary conditions for mould coverage. For purpose of procedure development, a fairly simple plate
geometry was chosen, limiting the potential in finding non-obvious solutions.

Further work will focus on the evaluation of alternative optimisation routines, which make use of
the prediction accuracy of this metamodelling approach more efficiently. These could be derived from
methodologies found in topology optimisation. One method that could be applicable to the metamodel
is Solid Isotropic Material with Penalisation (SIMP), which was initially proposed by Bendsoe and
Kikuchi [73]. An additional focus will be the application to parts with higher geometric complexity
and alternative load cases, for which the potential of deriving non-apparent preform geometries and
positions and thus potential for industrial applicability is higher. Subsequently, comparison with
experimentally obtained part behaviour will be conducted.
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Appendix A

Calculation of scalars Bi for calculation of orientation tensor averaged stiffness tensor from
unidirectional stiffness tensor Cii (written in compacted notion) [11]:

B1 = C11 + C22 − 2C12 − 4C66 (A1)

B2 = C12 −C23 (A2)

B3 = C66 +
1
2
(C23 −C22) (A3)

B4 = C23 (A4)

B5 =
1
2
(C22 −C23) (A5)
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