
Article

Peridynamic Mindlin Plate Formulation for
Functionally Graded Materials

Zhenghao Yang , Erkan Oterkus * and Selda Oterkus

PeriDynamics Research Centre, Department of Naval Architecture, Ocean and Marine Engineering,
University of Strathclyde, 100 Montrose Street, Glasgow G4 0LZ, UK; zhenghao.yang@strath.ac.uk (Z.Y.);
selda.oterkus@strath.ac.uk (S.O.)
* Correspondence: erkan.oterkus@strath.ac.uk; Tel.: +44-141-548-3876

Received: 1 June 2020; Accepted: 16 June 2020; Published: 19 June 2020
����������
�������

Abstract: In this study, a new peridynamic Mindlin plate formulation is presented which is suitable for
the analysis of functionally graded materials. The governing equations of peridynamic formulation
are obtained by using Euler-Lagrange equations in conjunction with Taylor’s expansion. To validate
the new formulation, three different numerical benchmark problems are considered for a Mindlin
plate subjected to simply supported, fully clamped and mixed (clamped-simply supported) boundary
conditions. Peridynamic results are compared against results from finite element analysis and a good
agreement is observed between the two methods.

Keywords: peridynamics; Mindlin plate; functionally graded materials; non-local; transverse
shear deformation

1. Introduction

As the manufacturing technology advances, it becomes possible to design materials that have
better properties with respect to traditional materials including metals and fibre-reinforced composite
materials. Usage of fibre-reinforced composite materials is increasing in different industries including
automotive, aerospace and marine fields. Although fibre-reinforced composite materials are light, have
good impact properties and corrosion resistance, they suffer from delamination damage occurring
between neighbouring plies which significantly reduces the load carrying capacities of these materials.
Delamination damage can be avoided by continuously varying material properties in the form of
functionally graded materials.

There are currently numerous studies in the literature focusing on plate formulations of functionally
graded materials. Amongst these Vel and Batra [1] provided three-dimensional exact solution for the
vibration of functionally graded rectangular plates. Shen [2] obtained nonlinear bending response
of functionally graded plates subjected to transverse loading by using Reddy’s higher order shear
deformation plate theory. Zenkour [3] presented generalised shear deformation theory for bending
analysis of functionally graded plates. Bian et. al. [4] derived analytical solutions for functionally
graded plates under cylindrical bending using first- and third-order shear deformation theories.
Carrera et. al. [5] investigated the effect of thickness stretching in functionally graded plates by
using Carrera’s Unified Formulation. Ferreira et. al. [6] used meshless method and third-order shear
deformation theory to analyse functionally graded plates. Kashtalyan [7] utilised Plevako general
solution of the equilibrium equations for inhomogeneous isotropic media to obtain three-dimensional
elasticity solution for functionally graded simply supported plates. Xiang and Kang [8] performed
bending analysis of functionally graded plates by using nth-order shear deformation theory and
meshless global collocation method based on the thin plate spline radial basis function.
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In this study, an alternative formulation is presented using peridynamics [9–29] to analyse
functionally graded plates based on Mindlin plate theory by taking into account transverse shear
deformation. Peridynamics (PD) is a new continuum mechanics formulation. PD equations are in
the form of integro-differential equations which do not contain spatial derivatives which makes it
convenient for analysing cracks. Moreover, it has a length scale parameter that can allow analysing
problems that cannot be represented by using classical formulations. On the other hand, partial
differential equations are used in Refs. [1–8] and they do not contain length scale parameters. Since its
introduction, there has been a rapid progress on peridynamics especially in the recent years. PD has
been used to analyse different material systems such as metals [30], composites [31], functionally
graded materials [32], concrete [33], graphene [34], etc. PD is not limited to elasticity, but can represent
plastic [35], viscoelastic [36] and viscoplastic [37] material behaviour. Moreover, in addition to structural
analysis, PD can also be used for the analysis of other fields including heat transfer [38], moisture
diffusion [39], porous flow [40], etc. Simplified structures such as beams, plates and shells can also be
represented in PD framework. Taylor and Steigmann [41] developed PD formulation for thin plates.
Non-ordinary state-based Euler beam [42] and Kirchhoff plate [43] formulations were presented by
O’Grady and Foster. To analyse relatively thick plates, Diyaroglu et. al. [44] introduced PD Timoshenko
and Mindlin plate formulations by taking into account transverse shear deformations. This study only
considers isotropic materials and Mindlin plate formulation is limited to a constant Poisson’s ratio
of 1/3. Chowdhury et al. [45] introduced PD formulation for linear elastic shells. Note that there are
fundamental differences between peridynamics and other non-local continuum mechanics approaches
such as Eringen’s non-local elasticity formulation. Please refer to Madenci and Oterkus [46] for more
information about the fundamentals of peridynamic theory. An extensive review of peridynamic
research is given in Javili et al. [47]. To obtain governing equations of peridynamic Mindlin plate
formulation for functionally graded materials Euler-Lagrange equations in conjunction with Taylor’s
expansion are utilised. The formulation does not have any limitation on material constants as in
bond-based peridynamics. To validate the current formulation, several benchmark problems are
considered and peridynamic results are compared against results from finite element analysis.

2. Classical Mindlin Plate Formulation

Mindlin plate formulation was developed to analyse relatively thick plates by taking into account
transverse shear deformations which is neglected in Kirchhoff plate theory suitable for thin plates.
According to Mindlin plate theory, the displacement of a material point can be expressed in terms of
displacement and rotation fields of the material points along the mid-plane (xy-plane)

u(x, y, z, t) = u(x, y, 0, t) + zθx(x, y, 0, t) (1a)

v(x, y, z, t) = v(x, y, 0, t) + zθy(x, y, 0, t) (1b)

w(x, y, z, t) = w(x, y, 0, t) (1c)

where θx(x, y, 0, t) and θy(x, y, 0, t) denote the rotation of the material points on the mid-plane about
positive y-direction and negative x-direction, respectively. Hereafter, u(x, y, 0, t), v(x, y, 0, t), w(x, y, 0, t),
θx(x, y, 0, t) and θy(x, y, 0, t) are written simply as u, v, w, θx and θy, respectively. The positive set of
the degrees-of-freedom is shown in Figure 1.
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Figure 1. The positive set of the degrees-of-freedom for Mindlin plate formulation. 
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Figure 1. The positive set of the degrees-of-freedom for Mindlin plate formulation.

Thus, the strain-displacement relationship can be written as

εxx =
∂u
∂x

+ z
∂θx

∂x
(2a)

εyy =
∂v
∂y

+ z
∂θy

∂y
(2b)

εxy = εyx =
1
2

[(
∂u
∂y

+
∂u
∂x

)
+ z

(
∂θx

∂y
+
∂θy

∂x

)]
(2c)

γxz = κs

(
θx +

∂w
∂x

)
(2d)

γyz = κs

(
θy +

∂w
∂y

)
(2e)

εzz = 0 (2f)

which can be also expressed in terms of indicial notation as

εIJ =
1
2

[(
∂uI

∂xJ
+
∂uJ

∂xI

)
+ z

(
∂θI

∂xJ
+
∂θJ

∂xI

)]
(3a)

γI3 = κs

(
θI +

∂w
∂xI

)
(3b)

where κs is introduced as shear coefficient. Note that the subscript indices, I, J, · · · = 1(= x), 2(= y),
and this convention will be applied throughout this study.

For planar isotropic materials, the stress–strain relationships can be written as:

σxx =
E(z)

1− ν(z)2

(
εxx + νεyy

)
(4a)

σyy =
E(z)

1− ν(z)2

(
εyy + νεxx

)
(4b)
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σxy =
E(z)

2(1 + ν(z))

(
εxy + εyx

)
(4c)

τxz = G(z)γxz (4d)

τyz = G(z)γyz (4e)

where G =
E(z)

2(1+ν(z)) is the shear modulus.
Note that the transverse normal stress, σzz, is considered to be small compared to in-plane stresses.

Thus, it is discarded from the stress components set and this simplifies the 3-dimensional Hooke’s law
and makes it a 2-dimensional plane-stress material constitutive law. The stress components can also be
expressed in indicial notation as:

σIJ = CIJKLεKL (5a)

τI3 = G(z)γI3 (5b)

where in-plane stiffness tensor can be defined as

CIJKL =
E(z)

1− ν(z)2

[
1− ν(z)

2

(
δILδJK + δIKδJL

)
+ ν(z)δIJδKL

]
(6)

The strain energy per unit area of the plate can be casted as:

W =

∫ h
2

−
h
2

1
2

(
σIJεIJ + τI3γI3

)
dz (7)

where h represents the thickness of the plate. Inserting Equations (3), (5) and (6) into (7) and rearranging
indices yields

W =
1
2

∫ h
2

−
h
2

 E(z)

1− ν(z)2

[
(1− ν(z))εIJεIJ + ν(z)εJJεII

]
+ G(z)γI3γI3

dz (8a)

or
W =

∫ h
2

−
h
2

G(z)
2 dz

(
∂uI
∂xJ

∂uI
∂xJ

+ ∂uI
∂xJ

∂uJ
∂xI

+ ∂uI
∂xI

∂uJ
∂xJ

)
+

∫ h
2

−
h
2

G(z)
2 z2dz

(
∂θI
∂xJ

∂θI
∂xJ

+ ∂θI
∂xJ

∂θJ
∂xI

+ ∂θI
∂xI

∂θJ
∂xJ

)
+

∫ h
2

−
h
2

G(z)zdz
(
∂uI
∂xJ

∂θI
∂xJ

+ ∂θI
∂xJ

∂uJ
∂xI

+ ∂uI
∂xI

∂θJ
∂xJ

)
+

(∫ h
2

−
h
2

G(z) 3ν(z)−1
2[1−ν(z)]dz∂uI

∂xI

∂uJ
∂xJ

+
∫ h

2

−
h
2

G(z) 3ν(z)−1
2[1−ν(z)]z

2dz∂θI
∂xI

∂θJ
∂xJ

+
∫ h

2

−
h
2

G(z) 3ν(z)−1
1−ν(z) zdz∂uI

∂xI

∂θJ
∂xJ

)
+

∫ h
2

−
h
2
κ2

s
G(z)

2 dz
(
θI +

∂w
∂xI

)(
θI +

∂w
∂xI

)

(8b)

3. Peridynamic Mindlin Plate Formulation

Peridynamics (PD) is a non-local continuum mechanics formulation. Therefore, material points
inside the solution domain can interact with each other material points in a non-local manner. The range
of non-local interactions is defined as ‘horizon’, H. The equations of motion of peridynamics can be
written as

ρ(x)
..
u(x, t) =

∫
H
(t− t′)dV′ + b(x, t) (9)
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or in discrete form for the material point k as

ρ(k)
..
u(k) =

N∑
j=1

(
t(k)( j) − t( j)(k)

)
V( j) + b(k) (10)

where t(k)( j) and t( j)(k) are the peridynamic force densities between two material points k and j as
shown in Figure 2 and N is the number of material points inside the horizon. Note that the PD
equations of motion given in Equations (9) and (10) have the same form as in classical continuum
mechanics except the integration or summation term.
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The PD equations of motion can be derived by utilising Euler-Lagrange’s equation:

d
dt

∂L
∂

.
u(k)
−

∂L
∂u(k)

= 0 (11)

where L = T −U is the Lagrangian. The kinetic energy per unit area, T, can be expressed as

T =
1
2

∫ h
2

−
h
2

ρ
.
u(x, y, z, t)·

.
u(x, y, z, t)dz (12)

where u is the generalised displacement vector, which in this study can be defined as

u =
(

u1 u2 θ1 θ2 w
)T

(13)

Substituting Equation (1) into Equation (12) results in

T = 1
2

∫ h
2

−
h
2
ρ
[( .

u2
1 +

.
u2

2

)
+ z2

( .
θ

2
1 +

.
θ

2
2

)
+ 2z

( .
u1

.
θ1 +

.
u2

.
θ2

)
+

.
w2

]
dz

= 1
2ρ

[
h
( .
u2

1 +
.
u2

2 +
.

w2)
+ h3

12

( .
θ

2
1 +

.
θ

2
2

)] (14)

The total kinetic energy of the body can be casted by integrating Equation (14) over the whole
mid-plane as

T =

∫
A

TdA =
1
2

∫
A
ρ

[
h3

12

( .
θ

2
1 +

.
θ

2
2

)
+ h

( .
u2

1 +
.
u2

2 +
.

w2)]dA (15a)
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which can be written in discretised form as

T =
∑
k

T(k)A(k) = 1
2
∑
k
ρ(k)

[
h3

12

( .
θ
(k)
1

)2
+ h3

12

( .
θ
(k)
2

)2

+h
((

.
u(k)

1

)2
+

(
.
u(k)

2

)2
+

.
w2
(k)

)]
A(k)

(15b)

where A(k) is the area that contains the material point k.
The PD strain energy density function has a non-local form such that the strain energy of a certain

material point k depends on both its displacement and all other material points in its family, which can
be expressed as

W(k) = W(k)

(
u(k), u(1k), u(2k), u(3k), · · ·

)
(16)

where u(k) is the displacement vector of material point k and u(ik) (i = 1, 2, 3, · · · ) is the displacement
vector of the ith material point within the horizon of the material point k.

Similar to Equation (15), the total potential energy stored in the body can be obtained by summing
potential energies of all material points including strain energy and energy due to external loads as

U =
∑

k

W(k)

(
u(k), u(1k), u(2k), u(3k), · · ·

)
A(k) −

∑
k

b(k)u(k)A(k) (17)

where b is the body force density vector, which in this study has the following components

b =
(

bu1 bu2 bθ1 bθ2 bz
)T

(18)

with bu, bθ and bz correspond to in-plane loads, moments and transverse body loads, respectively.
The first term of the Euler-Lagrange’s equation can be obtained by inserting Equations (15b) and

(17) into Equation (11) as

d
dt

∂L
∂

.
u(k)

=
d
dt

∂T
∂

.
u(k)

= ρ(k)



h
..
u(k)

1

h
..
u(k)

2
h3

12

..
θ
(k)
1

h3

12

..
θ
(k)
2

h
..
w(k)


A(k) (19)

Similarly, the second term of the Euler-Lagrange’s equation becomes

−
∂L
∂u(k)

= ∂U
∂u(k)

= ∂
∂u(k)

∑
n

W(n)

(
u(n), u(1n), u(2n), u(3n), · · ·

)
A(n)

−
∂

∂u(k)

∑
n

b(n)u(n)A(n)

=
∑
n

∂W(n)
∂u(k)

(
δnk + δnik

)
A(n)−

∑
n

b(n)δnkA(n)

=

∂W(k)
∂u(k)

A(k) +
∑
j

∂W( j)
∂u(k)

A( j)

−b(k)A(k)

(20)
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Inserting Equations (19) and (20) into the Euler-Lagrange’s equation yields:

ρ(k)



h
..
u(k)

1

h
..
u(k)

2
h3

12

..
θ
(k)
1

h3

12

..
θ
(k)
2

h
..
w(k)


A(k) = −



∂W(k)

∂u(k)1

A(k) +
∑
j

∂W( j)

∂u(k)1

A( j)

∂W(k)

∂u(k)2

A(k) +
∑
j

∂W( j)

∂u(k)2

A( j)

∂W(k)

∂θ
(k)
1

A(k) +
∑
j

∂W( j)

∂θ
(k)
1

A( j)

∂W(k)

∂θ
(k)
2

A(k) +
∑
j

∂W( j)

∂θ
(k)
2

A( j)

∂W(k)
∂W(k)

A(k) +
∑
j

∂W( j)
∂W(k)

A( j)



+



b(k)u1

b(k)u2

b(k)
θ1

b(k)
θ2

b(k)z


A(k) (21)

In order to write the non-local form of strain energy function of the material point k, Equation (8b),
it is necessary to transform all the local terms into an equivalent PD form by also considering PD
strain energy expression given in Equation (16). As derived in Appendix A, the strain energy density
function of the material point k and its family member j can be expressed as

W(k)

= 12
πδ3

∫ h
2

−
h
2

G(z)
2 dz

∑
i

[(
u(i

k)
I −u(k)I

)
n(i

k)(k)
I

]2

ξ
(ik)(k)

A(ik)

+
∫ h

2

−
h
2

G(z)
2 z2dz

∑
i

[(
θ
(ik)
I −θ

(k)
I

)
n(i

k)(k)
I

]2

ξ
(ik)(k)

A(ik)

+
∫ h

2

−
h
2

G(z)zdz
∑
i

(
u(i

k)
I −u(k)I

)(
θ
(ik)
J −θ

(k)
J

)
ξ
(ik)(k)

n(ik)(k)
I n(ik)(k)

J A(ik)


+ 3
πδ3

∫ h
2

−
h
2
κ2

s
G(z)

2 dz
∑
i

w
(ik)−w(k)+

θ
(k)
I +θ

(ik)
I

2 ξ
(ik)(k)n

(ik)(k)
I


2

ξ
(ik)(k)

A(ik)

+
(

2
πδ2

)2
∫ h

2

−
h
2

G(z) 3ν(z)−1
2[1−ν(z)]dz

∑
i

u(i
k)

I −u(k)I
ξ
(ik)(k)

n(ik)(k)
I A(ik)

2

+
∫ h

2

−
h
2

G(z) 3ν(z)−1
2[1−ν(z)]z

2dz

∑
i

θ
(ik)
I −θ

(k)
I

ξ
(ik)(k)

n(ik)(k)
I A(ik)

2

+
∫ h

2

−
h
2

G(z) 3ν(z)−1
1−ν(z) zdz

∑
i

u(i
k)

I −u(k)I
ξ
(ik)(k)

n(ik)(k)
I A(ik)

∑
i

θ
(ik)
J −θ

(k)
J

ξ
(ik)(k)

n(ik)(k)
J A(ik)



(22a)
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and
W( j)

= 12
πδ3

∫ h
2

−
h
2

G(z)
2 dz

∑
i

[(
u(i

j)
I −u( j)

I

)
n(i

j)( j)
I

]2

ξ
(i j)( j)

A(i j)

+
∫ h

2

−
h
2

G(z)
2 z2dz

∑
i

[(
θ
(i j)
I −θ

( j)
I

)
n(i

j)( j)
I

]2

ξ
(i j)( j)

A(i j)

+
∫ h

2

−
h
2

G(z)zdz
∑
i

(
u(i

j)
I −u( j)

I

)(
θ
(i j)
J −θ

( j)
J

)
ξ
(i j)( j)

n(i j)( j)
I n(i j)( j)

J A(i j)


+ 3
πδ3

∫ h
2

−
h
2
κ2

s
G(z)

2 dz
∑
i

w
(i j)
−w( j)+

θ
( j)
I +θ

(i j)
I

2 ξ
(i j)( j)

n(i
j)( j)

I


2

ξ
(i j)( j)

A(i j)

+
(

2
πδ2

)2
∫ h

2

−
h
2

G(z) 3ν(z)−1
2[1−ν(z)]dz

∑
i

u(i
j)

I −u( j)
I

ξ
(i j)( j)

n(i j)( j)
I A(i j)

2

+
∫ h

2

−
h
2

G(z) 3ν(z)−1
2[1−ν(z)]z

2dz

∑
i

θ
(i j)
I −θ

( j)
I

ξ
(i j)( j)

n(i j)( j)
I A(i j)

2

+
∫ h

2

−
h
2

G(z) 3ν(z)−1
1−ν(z) zdz

∑
i

u(i
j)

I −u( j)
I

ξ
(i j)( j)

n(i j)( j)
I A(i j)

∑
i

θ
(i j)
J −θ

( j)
J

ξ
(i j)( j)

n(i j)( j)
J A(i j)



(22b)

with n1 = cosϕ, n2 = sinϕ and ϕ is the orientation of the peridynamic interaction with respect to
horizontal x− axis.

Inserting Equations (22a) and (22b) into Equation (21) results in complete PD equations of motion
for functionally graded Mindlin plates as

ρ(k)h
..
u(k)

L

= 24
πδ3

∫ h
2

−
h
2

G(z)z2dz
∑
j

u( j)
I −u(k)I
ξ( j)(k)

n( j)(k)
I n( j)(k)

L A( j)

+
∫ h

2

−
h
2

G(z)zdz
∑
i

θ
(ik)
J −θ

(k)
J

ξ
(ik)(k)

n(ik)(k)
L n(ik)(k)

J A(ik)


+

(
2
πδ2

)2
∫ h

2

−
h
2

G(z) 3ν(z)−1
1−ν(z) dz

∑
j

n( j)(k)
L
ξ( j)(k)

∑
i

u(i
k)

I −u(k)I
ξ
(ik)(k)

n(ik)(k)
I A(ik)

+
∑
i

u(i
j)

I −u( j)
I

ξ
(i j)( j)

n(i j)( j)
I A(i j)

A( j)

+
∫ h

2

−
h
2

G(z) 3ν(z)−1
1−ν(z) zdz

∑
j

n( j)(k)
L
ξ( j)(k)

∑i θ
(ik)
J −θ

(k)
J

ξ
(ik)(k)

n(ik)(k)
J A(ik)

+
∑
i

θ
(i j)
J −θ

( j)
J

ξ
(i j)( j)

n(i j)( j)
I A(i j)

A( j)

]
+ b(k)uL

(23a)
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ρ(k)
h3

12

..
θ
(k)
L

= 24
πδ3

∫ h
2

−
h
2

G(z)z2dz
∑
j

θ
( j)
I −θ

(k)
I

ξ( j)(k)
n( j)(k)

I n( j)(k)
L A( j)

+
∫ h

2

−
h
2

G(z)zdz
∑
j

u( j)
I −u(k)I
ξ( j)(k)

n( j)(k)
I n( j)(k)

L A( j)


−

3
πδ3κ

2
s
∫ h

2

−
h
2

G(z)dz
∑
j

(
w( j) −w(k) +

θ
(k)
I +θ

( j)
I

2 ξ( j)(k)n
( j)(k)
I

)
n( j)(k)

L A( j)

+
(

2
πδ2

)2
∫ h

2

−
h
2

G(z) 3ν(z)−1
1−ν(z) z2dz

∑
j

n( j)(k)
L
ξ( j)(k)

∑
i

θ
(ik)
I −θ

(k)
I

ξ
(ik)(k)

n(ik)(k)
I A(ik)

+
∑
i

θ
(i j)
I −θ

( j)
I

ξ
(i j)( j)

n(i j)( j)
I A(i j)

A( j)

+
∫ h

2

−
h
2

G(z) 3ν(z)−1
1−ν(z) zdz

∑
j

n( j)(k)
L
ξ( j)(k)

∑
i

u(i
k)

I −u(k)I
ξ
(ik)(k)

n(ik)(k)
I A(ik)

+
∑
i

u(i
j)

I −u( j)
I

ξ
(i j)( j)

n(i j)( j)
I A(i j)

A( j)

]
+ b(k)

θL

(23b)

ρ(k)h
..
w(k) =

6
πδ3h

κ2
s

∫ h
2

−
h
2

G(z)dz
∑

i

w( j) −w(k)

ξ( j)(k)
+
θ
(k)
J + θ

( j)
J

2
n( j)(k)

J

V( j) + b(k)z (23c)

In particular, when Poisson’s ratio, ν(z) = 1
3 , Equation (23) can be reduced to PD bond-based

formulation as

ρ(k)h
..
u(k)

L = 24
πδ3

∫ h
2

−
h
2

G(z)dz
∑
j

u( j)
I −u(k)I
ξ( j)(k)

n( j)(k)
I n( j)(k)

L A( j)

+
∫ h

2

−
h
2

G(z)zdz
∑
i

(
θ
(ik)
J −θ

(k)
J

)
ξ
(ik)(k)

n(ik)(k)
L n(ik)(k)

J A(ik)

+ b(k)uL

(24a)

ρ(k)
h3

12

..
θ
(k)
L = 24

πδ3

∫ h
2

−
h
2

G(z)z2dz
∑
j

θ
( j)
I −θ

(k)
I

ξ( j)(k)
n( j)(k)

I n( j)(k)
L A( j)

+
∫ h

2

−
h
2

G(z)zdz
∑
j

u( j)
I −u(k)I
ξ( j)(k)

n( j)(k)
I n( j)(k)

L A( j)


−

3
πδ3κ

2
s
∫ h

2

−
h
2

G(z)dz
∑
j

(
w( j) −w(k)

+
θ
(k)
I +θ

( j)
I

2 ξ( j)(k)n
( j)(k)
I

)
n( j)(k)

L A( j) + b(k)
θL

(24b)

ρ(k)h
..
w(k) =

6
πδ3κ

2
s

∫ h
2

−
h
2

G(z)dz
∑

i

w( j) −w(k)

ξ( j)(k)
+
θ
(k)
J + θ

( j)
J

2
n( j)(k)

J

A( j) + b(k)z (24c)
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4. Numerical Results

To verify the validity of the PD formulation for functionally graded Mindlin plates, the PD
solutions are compared with the corresponding finite element (FE) analysis results. In this study,
the functionally graded material properties are chosen as Young’s Modulus, E(z) and shear modulus
G(z) and they are assumed to vary linearly through the thickness as

E(z) = (Et − Eb)
z
h
+

1
2
(Et + Eb) (GPa) (25a)

G(z) =
E(z)

2(1 + 0.3)
(25b)

ν(z) = 0.3 (25c)

where Et and Eb denote the Young’s modulus of the top and bottom surfaces of the plate, and h denotes
the total thickness of the plate. The shear correction coefficient is chosen as κ2

s = π2

12 .
In the following three numerical cases, a square plate with length and width of L = W = 1 m

and thickness of h = 0.15 m is considered. The plate is subjected to different boundary conditions.
The Young’s modulus of the top and bottom surface are chosen as Et = 200 GPa and Et = 100 GPa.

The PD models are discretized into one single row of material points through the thickness and
65× 65 material points throughout the xy plane. Thus, the distance between two adjacent material
points is ∆x = 1

65 m and the area attached on each material points is ∆A = ∆x2. A fictitious region
is introduced outside the edges as the external boundaries with a width of 6∆x to apply boundary
conditions as explained in Appendix B. The horizon size can be approximately chosen as δ = 3∆x.

The corresponding FE models are created in ANSYS by using SHELL181 elements with 50× 50
elements throughout the plate. In order to obtain the functionally graded character, the model is
divided into 50 layers with varying homogeneous material properties throughout the thickness.
The Young’s modulus varies gradually over the thickness from the first layer E1 = 101 GPa to the last
layer E50 = 199 GPa, as shown in Figure 3. The Poisson’s ratio, ν = 0.3, is applied in ANSYS.
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4.1. Simply Supported Functionally Graded Mindlin Plate

In the first example case, a simply supported functionally graded Mindlin plate subjected to a
distributed load of p = 100, 000 N/m through the central line is taken into consideration (see Figure 4).
For the PD model, the load is transformed into a body load of bz =

pW
65∆A = 6, 500, 000 N/m2 and it is

imposed on a row of material points through the central line of the plate as shown in Figure 5.
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Assuming the coordinate system is attached at the geometric centre of the plate, the following
boundary conditions are applied in ANSYS:

u
(
−

L
2

, y, 0
)
= u

(L
2

, y, 0
)
= u

(
x,−

W
2

, 0
)
= u

(
x,

W
2

, 0
)
= 0 (26a)

v
(
−

L
2

, y, 0
)
= v

(L
2

, y, 0
)
= v

(
x,−

W
2

, 0
)
= v

(
x,

W
2

, 0
)
= 0 (26b)

w
(
−

L
2

, y, 0
)
= w

(L
2

, y, 0
)
= w

(
x,−

W
2

, 0
)
= w

(
x,

W
2

, 0
)
= 0 (26c)

θy

(
−

L
2

, y, 0
)
= θy

(L
2

, y, 0
)
= 0 (26d)

θx

(
x,−

W
2

, 0
)
= θx

(
x,

W
2

, 0
)
= 0 (26e)

The PD results for in-plane and transverse displacements, and rotations are obtained and compared
with FEA results for the material points located along central x- and y- axes. As depicted in Figure 6,
PD and FEA results agree very well with each other.
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Figure 6. Comparison of PD and FEA results along the central x- and y-axes.

4.2. Fully Clamped Functionally Graded Mindlin Plate

In the second example case, the functionally graded Mindlin plate considered in the previous
example is subjected to fully clamped boundary condition (see Figure 7). In ANSYS, the clamped
boundary condition is achieved by constraining all degrees of freedom along the external boundaries.
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Figure 7. Fully clamped functionally graded Mindlin plate.

Based on the comparison between the PD and FEA results as shown in Figure 8, it can be concluded
that current PD formulation can also provide accurate results for fully clamped boundary condition.
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Figure 8. Comparison of PD and FEA results along the central x- and y-axes.

4.3. Functionally Graded Mindlin Plate Subjected to Mixed Boundary Conditions

The last numerical case aims to verify the current PD formulation for mixed boundary conditions,
i.e., clamped—simply supported. As shown in Figure 9, edges along the horizontal direction are
subjected to clamped boundary conditions whereas the remaining two edges are subjected to simply
supported boundary conditions.
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Figure 9. Functionally graded Mindlin plate subjected to mixed boundary conditions.

Assuming the coordinate system is attached at the geometric centre of the plate, the following
boundary conditions are applied in ANSYS:

u
(
−

L
2

, y, 0
)
= u

(L
2

, y, 0
)
= u

(
x,−

W
2

, 0
)
= u

(
x,

W
2

, 0
)
= 0 (27a)

v
(
−

L
2

, y, 0
)
= v

(L
2

, y, 0
)
= v

(
x,−

W
2

, 0
)
= v

(
x,

W
2

, 0
)
= 0 (27b)

w
(
−

L
2

, y, 0
)
= w

(L
2

, y, 0
)
= w

(
x,−

W
2

, 0
)
= w

(
x,

W
2

, 0
)
= 0 (27c)

θx

(
−

L
2

, y, 0
)
= θx

(L
2

, y, 0
)
= θx

(
x,−

W
2

, 0
)
= θx

(
x,

W
2

, 0
)
= 0 (27d)

θy

(
−

L
2

, y, 0
)
= θy

(L
2

, y, 0
)
= 0 (27e)

As depicted in Figure 10, also for this mixed-boundary conditions case, PD and FEM results agree
well with each other.
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5. Conclusions

In this study, a new peridynamic formulation was presented for functionally graded Mindlin
plates. The governing equations were obtained by using Euler-Lagrange equations. To validate
the formulation, three different benchmark problems were considered for simply supported, fully
clamped and mixed (clamped-simply supported) boundary conditions. Peridynamic results were
compared against finite element analysis results and a good agreement is observed for both in-plane
and transverse displacements, and rotations. Hence, it can be concluded that the present peridynamic
formulation can be a suitable alternative for the analysis of functionally graded Mindlin plates subjected
to different types of boundary conditions.
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Appendix A

As explained above, according to classical continuum mechanics, the strain energy per unit area
of functionally graded Mindlin plates can be written as

W =
∫ h

2

−
h
2

G(z)
2 dz

(
∂uI
∂xJ

∂uI
∂xJ

+ ∂uI
∂xJ

∂uJ
∂xI

+ ∂uI
∂xI

∂uJ
∂xJ

)
+

∫ h
2

−
h
2

G(z)
2 z2dz

(
∂θI
∂xJ

∂θI
∂xJ

+ ∂θI
∂xJ

∂θJ
∂xI

+ ∂θI
∂xI

∂θJ
∂xJ

)
+

∫ h
2

−
h
2

G(z)zdz
(
∂uI
∂xJ

∂θI
∂xJ

+ ∂θI
∂xJ

∂uJ
∂xI

+ ∂uI
∂xI

∂θJ
∂xJ

)
+

(∫ h
2

−
h
2

G(z) 3ν(z)−1
2[1−ν(z)]dz∂uI

∂xI

∂uJ
∂xJ

+
∫ h

2

−
h
2

G(z) 3ν(z)−1
2[1−ν(z)]z

2dz∂θI
∂xI

∂θJ
∂xJ

+
∫ h

2

−
h
2

G(z) 3ν(z)−1
1−ν(z) zdz∂uI

∂xI

∂θJ
∂xJ

)
+

∫ h
2

−
h
2
κ2

s
G(z)

2 dz
(
θI +

∂w
∂xI

)(
θI +

∂w
∂xI

)

(A1)

In order to obtain the strain energy function in PD form, it is necessary to transform each local term
in Equation (A1) into their equivalent non-local form. This can be achieved by using Taylor expansion.
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As shown in Figure A1, the in-plane displacement function u(x, y), can be Taylor expanded up to
1st order terms about point x:

uI(x + ξ) − uI(x) =
∂uI(x)
∂xJ

ξnJ (A2a)

uK(x + ξ) − uK(x) =
∂uK(x)
∂xL

ξnL (A2b)
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where ξ = |ξ|, and unit direction vector n is defined as

n =

{
n1

n2

}
=

{
cosϕ
sinϕ

}
(A3)

Multiplying Equation (A2a) with Equation (A2b) gives

[uI(x + ξ) − uI(x)][uK(x + ξ) − uK(x)]
ξ

=
∂uI(x)
∂xJ

∂uK(x)
∂xL

ξnJnL (A4)

Multiplying both sides of Equation (A4) twice by directional vector yields

[uI(x + ξ) − uI(x)][uK(x + ξ) − uK(x)]
ξ

nRnS =
∂uI(x)
∂xJ

∂uK(x)
∂xL

ξnJnLnRnS (A5)

Considering x as a fixed point, integrating both sides of Equation (A5) over a circular domain
with centre of x and radius of δ yields:∫ 2π

0

∫ δ
0

[uI(x+ξ)−uI(x)][uK(x+ξ)−uK(x)]
ξ nRnSξdξdϕ

=
∂uI(x)
∂xJ

∂uK(x)
∂xL

∫ 2π
0

∫ δ
0 ξnJnLnRnSξdξdϕ

=
∂uI(x)
∂xJ

∂uK(x)
∂xL

(
δJLδRS + δJRδLS + δJSδLR

)
πδ3

12

= πδ3

12

(
∂uI(x)
∂xJ

∂uK(x)
∂xJ

δRS +
∂uI(x)
∂xR

∂uK(x)
∂xS

+
∂uI(x)
∂xS

∂uK(x)
∂xR

) (A6)

Multiplying both sides of Equation (A6) by δRIδSK results in:∫ 2π
0

∫ δ
0

[uI(x+ξ)−uI(x)][uK(x+ξ)−uK(x)]
ξ nRnSδRIδSKξdξdϕ

= πδ3

12

(
∂uI(x)
∂xJ

∂uK(x)
∂xJ

δRS +
∂uI(x)
∂xR

∂uK(x)
∂xS

+
∂uI(x)
∂xS

∂uK(x)
∂xR

)
δRIδSK

(A7)

Rearranging the dummy indices gives:

∂uI(x)
∂xJ

∂uI(x)
∂xJ

+
∂uI(x)
∂xI

∂uJ(x)
∂xJ

+
∂uI(x)
∂xJ

∂uJ(x)
∂xI

= 12
πδ3

∫ 2π
0

∫ δ
0

[uI(x+ξ)−uI(x)][uJ(x+ξ)−uJ(x)]
ξ nInJξdξdϕ

(A8)

which can be written in the discretized form as

∂u(k)I
∂xJ

∂u(k)I
∂xJ

+
∂u(k)I
∂xI

∂u(k)J
∂xJ

+
∂u(k)I
∂xJ

∂u(k)J
∂xI

= 12
πδ3

∑
i

(
u(i

k)
I −u(k)I

)(
u(i

k)
J −u(k)J

)
ξ
(ik)(k)

n(ik)(k)
I n(ik)(k)

J A(ik)

(A9a)

If we make an analogy with Equation (A9a), following expressions can be obtained for the
rotation field:

∂θ
(k)
I

∂xJ

∂θ
(k)
I

∂xJ
+

∂θ
(k)
I

∂xI

∂θ
(k)
J

∂xJ
+

∂θ
(k)
I

∂xJ

∂θ
(k)
J

∂xI

= 12
πδ3

∑
i

(
θ
(ik)
I −θ

(k)
I

)(
θ
(ik)
J −θ

(k)
J

)
ξ
(ik)(k)

n(ik)(k)
I n(ik)(k)

J A(ik)

(A9b)
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and
∂u(k)I
∂xJ

∂θ
(k)
I

∂xJ
+

∂u(k)I
∂xI

∂θ
(k)
J

∂xJ
+

∂u(k)I
∂xJ

∂θ
(k)
J

∂xI

= 12
πδ3

∑
i

(
u(i

k)
I −u(k)I

)(
θ
(ik)
J −θ

(k)
J

)
ξ
(ik)(k)

n(ik)(k)
I n(ik)(k)

J A(ik)

(A9c)

Recalling Equation (A2):

uI(x + ξ) − uI(x) =
∂uI(x)
∂xJ

ξnJ (A10)

and multiplying Equation (A10) by a directional vector gives:

uI(x + ξ) − uI(x)
ξ

nK =
∂uI(x)
∂xJ

nJnK (A11)

Considering x as a fixed point, integrating both sides of Equation (A11) over a circular domain
with centre of x and radius of δ yields:∫ 2π

0

∫ δ
0

uI(x+ξ)−uI(x)
ξ nKξdξdϕ =

∂uI(x)
∂xJ

∫ 2π
0

∫ δ
0 nJnKξdξdϕ =

∂uI(x)
∂xJ

πδ2

2 δJK

=
∂uI(x)
∂xK

πδ2

2

(A12)

which results in
∂uI(x)
∂xK

=
2
πδ2

∫ 2π

0

∫ δ

0

uI(x + ξ) − uI(x)
ξ

nKξdξdϕ (A13)

Multiplying both sides of Equation (A13) by δIK gives

∂uI(x)
∂xI

=
2
πδ2

∫ 2π

0

∫ δ

0

uI(x + ξ) − uI(x)
ξ

nIξdξdϕ (A14)

Rewriting Equation (A14a) with a different index gives:

∂uJ(x)
∂xJ

=
2
πδ2

∫ 2π

0

∫ δ

0

uJ(x + ξ) − uJ(x)
ξ

nJξdξdϕ (A14b)

Multiplying Equation (A14a) with (A14b) yields:

∂uI(x)
∂xI

∂uJ(x)
∂xJ

=
(

2
πδ2

)2 ∫ 2π
0

∫ δ
0

uI(x+ξ)−uI(x)
ξ nIξdξdϕ

∫ 2π
0

∫ δ
0

uJ(x+ξ)−uJ(x)
ξ nJξdξdϕ

(A15)

which can be written in discretized form as

∂u(k)
I

∂xI

∂u(k)
J

∂xJ
=

( 2
πδ2

)2 ∑
i

u(ik)
I − u(k)

I
ξ(ik)(k)

n(ik)(k)
I A(ik)

∑
i

u(ik)
J − u(k)

J

ξ(ik)(k)
n(ik)(k)

J A(ik) (A16a)

Similarly, following expressions can also be obtained

∂θ
(k)
I

∂xI

∂θ
(k)
J

∂xJ
=

( 2
πδ2

)2 ∑
i

θ
(ik)
I − θ

(k)
I

ξ(ik)(k)
n(ik)(k)

I A(ik)

∑
i

θ
(ik)
J − θ

(k)
J

ξ(ik)(k)
n(ik)(k)

J A(ik) (A16b)

∂u(k)
I

∂xI

∂θ
(k)
J

∂xJ
=

( 2
πδ2

)2 ∑
i

u(ik)
I − u(k)

I
ξ(ik)(k)

n(ik)(k)
I A(ik)

∑
i

θ
(ik)
J − θ

(k)
J

ξ(ik)(k)
n(ik)(k)

J A(ik) (A16c)
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Similar to Equation (A2), the following relationship can be established for the transverse displacements:

w(x + ξ) −w(x) =
∂w(x)
∂xI

ξnI (A17)

The rotations of material point x can be estimated by calculating the average rotation of point x
and its family member point x + ξ as

θI(x + ξ) + θI(x)
2

= θI(x) (A18)

If Equation (A18) is multiplied by ξnI:

θI(x + ξ) + θI(x)
2

ξnI = θI(x)ξnI (A19)

and added with (A17) yields:

w(x + ξ) −w(x) +
θI(x + ξ) + θI(x)

2
ξnI =

∂w(x)
∂xI

ξnI + θI(x)ξnI (A20a)

Rewriting Equation (A20a) with a different index results in:

w(x + ξ) −w(x) +
θJ(x + ξ) + θJ(x)

2
ξnJ =

∂w(x)
∂xJ

ξnJ + θJ(x)ξnJ (A20b)

Multiplying Equation (A20a) with (A20b) and then dividing each term by ξ yields:

[
w(x+ξ)−w(x)+

θJ(x+ξ)+θJ(x)
2 ξnJ

][
w(x+ξ)−w(x)+

θI(x+ξ)+θI(x)
2 ξnI

]
ξ

=
(
∂w(x)
∂xI

+ θI(x)
)(
∂w(x)
∂xJ

+ θJ(x)
)
ξnInJ

(A21)

Considering x as a fixed point, integrating both sides of Equation (A21) over a circular domain
with centre of x and radius of δ results in

∫ 2π
0

∫ δ
0

[
w(x+ξ)−w(x)+

θJ(x+ξ)+θJ(x)
2 ξnJ

][
w(x+ξ)−w(x)+

θI(x+ξ)+θI(x)
2 ξnI

]
ξ ξdξdϕ

=
(
∂w(x)
∂xI

+ θI(x)
)(
∂w(x)
∂xJ

+ θJ(x)
) ∫ 2π

0

∫ δ
0 ξnInJdξdϕ

=
(
∂w(x)
∂xI

+ θI(x)
)(
∂w(x)
∂xJ

+ θJ(x)
)
πδ3

3 δIJ =
πδ2

3

(
∂w(x)
∂xI

+ θI(x)
)2

(A22a)

which gives(
∂w(x)
∂xI

+ θI(x)
)2

= 3
πδ2

∫ 2π
0

∫ δ
0

[
w(x+ξ)−w(x)+

θJ(x+ξ)+θJ(x)
2 ξnJ

][
w(x+ξ)−w(x)+

θI(x+ξ)+θI(x)
2 ξnI

]
ξ ξdξdξdξdϕ

(A22b)

Equation (A22b) can be written in discretized form as(
∂w(k)
∂xI

+ θ
(k)
I

)2

= 3
πδ3

∑
i

w
(ik)−w(k)+

θ
(k)
I +θ

(ik)
I

2 ξ
(ik)(k)n

(ik)(k)
I


w

(ik)−w(k)+
θ
(k)
J +θ

(ik)
J

2 ξ
(ik)(k)n

(ik)(k)
J


ξ
(ik)(k)

A(ik)

(A23)
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Finally, combining Equations (A9), (A16), (A23) and (A1) gives the strain energy density of the
material point k in PD form as

W(k)

= 12
πδ3

∫ h
2

−
h
2

G(z)
2 dz

∑
i

[(
u(i

k)
I −u(k)I

)
n(i

k)(k)
I

]2

ξ
(ik)(k)

A(ik)

+
∫ h

2

−
h
2

G(z)
2 z2dz

∑
i

[(
θ
(ik)
I −θ

(k)
I

)
n(i

k)(k)
I

]2

ξ
(ik)(k)

A(ik)

+
∫ h

2

−
h
2

G(z)zdz
∑
i

(
u(i

k)
I −u(k)I

)(
θ
(ik)
J −θ

(k)
J

)
ξ
(ik)(k)

(
n(ik)(k)

I n(ik)(k)
J A(ik)

)

+ 3
πδ3

∫ h
2

−
h
2
κ2

s
G(z)

2 dz
∑
i

w
(ik)−w(k)+

θ
(k)
I +θ

(ik)
I

2 ξ
(ik)(k)n

(ik)(k)
I


2

ξ
(ik)(k)

A(ik)

+
(

2
πδ2

)2
∫ h

2

−
h
2

G(z) 3ν(z)−1
2[1−ν(z)]dz

∑
i

u(i
k)

I −u(k)I
ξ
(ik)(k)

n(ik)(k)
I A(ik)

2

+
∫ h

2

−
h
2

G(z) 3ν(z)−1
2[1−ν(z)]z

2dz

∑
i

θ
(ik)
I −θ

(k)
I

ξ
(ik)(k)

n(ik)(k)
I A(ik)

2

+
∫ h

2

−
h
2

G(z) 3ν(z)−1
1−ν(z) zdz

∑
i

u(i
k)

I −u(k)I
ξ
(ik)(k)

n(ik)(k)
I A(ik)

∑
i

θ
(ik)
J −θ

(k)
J

ξ
(ik)(k)

n(ik)(k)
J A(ik)



(A24a)

Regarding the strain energy for the material point j, a similar form will hold if we replace the
index k with j as

W( j)

= 12
πδ3

∫ h
2

−
h
2

G(z)
2 z2dz

∑
i

[(
θ
(i j)
I −θ

( j)
I

)
n(i

j)( j)
I

]2

ξ
(i j)( j)

A(i j)

+
∫ h

2

−
h
2

G(z)
2 z2dz

∑
i

[(
θ
(i j)
I −θ

( j)
I

)
n(i

j)( j)
I

]2

ξ
(i j)( j)

A(i j)

+
∫ h

2

−
h
2

G(z)zdz
∑
i

(
u(i

j)
I −u( j)

I

)(
θ
(i j)
J −θ

( j)
J

)
ξ
(i j)( j)

n(i j)( j)
I n(i j)( j)

J A(i j)

)

+ 3
πδ3

∫ h
2

−
h
2
κ2

s
G(z)

2 dz
∑
i

w
(i j)
−w( j)+

θ
( j)
I +θ

(i j)
I

2 ξ
(i j)( j)

n(i
j)( j)

I


2

ξ
(i j)( j)

A(i j)

+
(

2
πδ2

)2
∫ h

2

−
h
2

G(z) 3ν(z)−1
2[1−ν(z)]dz

∑
i

u(i
j)

I −u( j)
I

ξ
(i j)( j)

n(i j)( j)
I A(i j)

2

+
∫ h

2

−
h
2

G(z) 3ν(z)−1
2[1−ν(z)]z

2dz

∑
i

θ
(i j)
I −θ

( j)
I

ξ
(i j)( j)

n(i j)( j)
I A(i j)

2

+
∫ h

2

−
h
2

G(z) 3ν(z)−1
1−ν(z) zdz

∑
i

u(i
j)

I −u( j)
I

ξ
(i j)( j)

n(i j)( j)
I A(i j)

∑i θ
(i j)
J −θ

( j)
J

ξ
(i j)( j)

n(i j)( j)
J A(i j)



(A24b)
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Appendix B

Application of boundary conditions in PD theory is different than the classical theory.
Boundary conditions can be applied by creating fictitious domain, Rc, outside of the actual
solution domain, R as shown in Figure A2. The length of this layer can be chosen as the double size
of the horizon if ν(z) , 1/3, or the size of the horizon if ν(z) = 1/3. The application procedure for
two common types of boundary conditions, i.e., clamped and simply supported, is given below.
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To implement the clamped boundary condition, a fictitious boundary layer is created outside the
actual material domain (see Figure A3). The horizon size can be approximately chosen as δ = 3∆x in
which the discretisation size is ∆x. The size of the fictitious region can be specified to be equal to 6∆x
for ν(z) , 1/3 and 3∆x for ν(z) = 1/3.

According to classical theory, the clamped boundary condition imposes zero in-plane displacements,
zero transverse displacement and zero rotations for the material point adjacent to the clamped end as

uI = 0 (A25a)

w = 0 (A25b)

θI = 0 (A25c)

In this study, these conditions can be achieved by enforcing mirror image of the transverse
displacement field for the material points adjacent to the clamped end and anti-symmetric image of
in-plane and rotational displacements fields as following

u(n)(i)
I = −u(n)(i∗)

I (A26a)
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w(n)(i) = w(n)(i∗) (A26b)

w(n)(1) = w(n)(1∗) = 0 (A26c)

θ
(n)(i)
I = −θ

(n)(i∗)
I for

{
i = 1, 2, · · · , 6 if ν(z) , 1/3
i = 1, 2, 3 if ν(z) = 1/3

(A26d)

Simply Supported Boundary Condition

J. Compos. Sci. 2020, 4, x 23 of 26 

 

 
Figure B2. Application of clamped boundary conditions in peridynamic theory. 

To implement the clamped boundary condition, a fictitious boundary layer is created outside 
the actual material domain (see Figure B2). The horizon size can be approximately chosen as 𝛿 =3∆𝑥 in which the discretisation size is ∆𝑥. The size of the fictitious region can be specified to be 
equal to 6∆x for 𝜈(𝑧) ≠ 1/3 and 3∆x for 𝜈(𝑧) = 1/3. 

According to classical theory, the clamped boundary condition imposes zero in-plane 
displacements, zero transverse displacement and zero rotations for the material point adjacent to the 
clamped end as 𝑢ூ = 0 (B1a) 

𝑤 = 0 
(B1b) 

 𝜃ூ = 0 (B1c) 

In this study, these conditions can be achieved by enforcing mirror image of the transverse 
displacement field for the material points adjacent to the clamped end and anti-symmetric image of 
in-plane and rotational displacements fields as following 𝑢ூ(௡)(௜) = −𝑢ூ(௡)(௜∗) (B2a) 𝑤(௡)(௜) = 𝑤(௡)(௜∗) (B2b) 𝑤(௡)(ଵ) = 𝑤(௡)(ଵ∗) = 0 (B2c) 

 𝜃ூ(௡)(௜) = −𝜃ூ(௡)(௜∗)  for ൜ i = 1,2, ⋯ ,6       if 𝜈(𝑧) ≠ 1/3i = 1,2,3             if 𝜈(𝑧) = 1/3  (B2d) 

Simply Supported Boundary Condition 

 
Figure B3. Application of simply supported boundary condition in peridynamic theory. Figure A4. Application of simply supported boundary condition in peridynamic theory.

To implement the simply supported boundary condition, the fictitious layer is introduced outside
the actual material domain (see Figure A4), whose size is again chosen to be equal to 6∆x for ν(z) , 1/3
and 3∆x for ν(z) = 1/3. According to classical theory, the simply supported boundary condition
can be achieved by imposing zero in-plane displacements, zero transverse displacements and zero
curvature for the material point adjacent to the boundaries as{

u(x, y) = v(x, y) = w(x, y) = 0
θy(x, y) = 0

for x = constant (A27a)

and {
u(x, y) = v(x, y) = w(x, y) = 0

θx(x, y) = 0
for y = constant (A27b)

In our study, the in-plane and transverse displacements boundary conditions can be applied
by enforcing anti-symmetrical displacement fields to the material points in the fictitious region with
respect to the actual region as u(n)(i)

I = −u(n)(i∗)
I

w(n)(i) = −w(n)(i∗)
for

{
i = 1, 2, · · · , 6 if ν(z) , 1/3
i = 1, 2, 3 if ν(z) = 1/3

(A28)

The curvature condition can be satisfied by enforcing the following conditions adjacent to the
edge xI = constant as

θ
(n)(i)
I = θ

(n)(i∗)
I and θ(n)(i)J = −θ

(n)(i∗)
J (I , J)for

{
i = 1, 2, · · · , 6 if ν(z) , 1/3
i = 1, 2, 3 if ν(z) = 1/3

(A29)
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