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Abstract: Due to increasing costs and growing environmental concerns pertaining to the construction
of structures, an alternative form of reinforcement has been proposed through our studies; through
a new beam design methodology, referred to as triple composite beams, glass can be used as a
cost-competitive and more environmentally friendly macro-scale compressive reinforcement. The cost
competitiveness of glasses derives from their large compressive strength (in general 1000 MPa;
>1100 MPa for fused quartz). To support the triple composite design architecture, equations have been
developed using Euler–Bernoulli beam theory and the method of transformed sections and compared
against finite element modeling determined stresses. Our results show that the average stress was
more accurate but less precise than fully considering binder, assuming the binder did not contribute to
the cross-section of the beam. The paper concludes by presenting a flexural reinforcement utilization
ratio (R), which predicts the ability of a reinforcement-binder combination to utilize the reinforcement
to maximum stress effectively while ignoring bonding strength. This R ratio suggests that while
concrete is a low cost, it cannot be used in a glass-reinforced beam as the concrete is too stiff compared
to the glass.

Keywords: glass reinforcement; transformed sections method; Euler–Bernoulli beam theory;
composite beam

1. Introduction

The first known use of composite materials is the use of straw in clay bricks to increase their
tensile strength, which is thousands of years old [1]. The production of steel-reinforced concrete
began in the 1800s [2] and continues to be one of the most common composite materials. Additional
improvements to composites were made during the 1940s and 1950s for military applications [3].
In general, composites attempt to improve the function of an engineered device by improving the
properties of the materials by which it is composed. In fact, part of what brought about composite
research in the mid-20th century was interest in finding a method of harnessing the crystal strengths
predicted by solid-state theory [4]. While there has been a general transition in composite interest from
macro-scale mixtures to micro- and nano-scale mixtures [5], the relative importance of composites as
a material for mechanical and civil applications has generally increased over time [6]. Composites
in and of themselves are interesting in that composite design must incorporate the configuration,
manufacturing method, and analysis methods all simultaneously, to provide an effective product.
As an example, Ref. [7] specifically studied the bonding strengths that can occur when plastic is
injection molded to steel reinforcement. In many regards, composite manufacturing techniques drive
the availability of more complex designs [3]. For example, reinforced concrete has unique analysis
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procedures, has specially designed reinforcement (ribs on the reinforcement bar, for example), and is
arranged so that the beams can be poured in an open-top form.

The composites proposed in this study are modeled primarily using the Euler–Bernoulli beam
theory and the method of transformed sections. Moreover, Ref. [8] provides details on how the method
of transformed sections is applied to engineering problems.

Much of this paper assumes a glass compressive strength of 1000 MPa. This is a substantial
strength when the glass is compared to many other mechanical components. Due to the disparity
between this strength and other typical materials, additional investigating was conducted; Ref. [9]
indicates that in general, the strength of glass is up to 1000 MPa, Ref. [10] indicates that the compressive
strength of fused quartz is >1100 MPa, and Ref. [11] indicated that the dynamic compressive strength
of borosilicate glass exceeded 2000 MPa in their testing. So, this paper assumes a glass compressive
strength of 1000 MPa.

There are four primary ways in which composites are formulated using current manufacturing
methods, which are summarized in Figure 1. These would be Figure 1a distributed composites
(particles and/or fibers, of which there are many subtypes, as indicated by [3,5]), Figure 1b sheet
composites (laminates), Figure 1c sandwich composites [2], and Figure 1d rod composites. Each type
of composite has its own advantages and disadvantages. This paper deals primarily with sandwich
and rod composites (referred to as macro-scale composites), as they are most applicable to triple
composite beams under bending moment loading. Distributed composites are typically the easiest to
manufacture, as they are constructed by essentially a mixture of solid within solid, such as glass fibers
distributed within a polymer.
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Figure 1. The types of composites: (a) Fiber/particle reinforcement distributed throughout the interior
of a component. (b) Laminate composites, which alternate different materials between layers. (c)
Sandwich composites. (d) Rod composites; these are representative of reinforced concrete.

Sandwich and rod composites have been explored by others. For example, precast concrete
sandwich panels are a sandwich composite which can be seen as an example of the type of behavior
that can occur in sandwich composites, as shown by [12]. Ref. [13] provides an example of a
steel-concrete-steel composite used for blast shielding. Reinforced concrete is the classical example of a
rod composite.

To better understand why sandwich and rod composites are preferred for beams, consider the
beam cross-sections shown in Figure 2. In Figure 2a, there is a random assortment of stiffer particles
distributed in the beam’s cross-section. When transforming this beam using the transformed section
method and Euler–Bernoulli beam theory, the stiffer particles increase the width of the equivalent beam
approximately uniformly across the depth of the beam. In Figure 2b, the sandwich composite, which
has the stiffer material placed at the extremities, increases the width at a distance far from the neutral
axis. This increased width greatly increases the beam’s strength due to the increased geometric second
moment of area. Figure 2c has the superior shape of Figure 2b, but includes a cover (the small portions
at the top and bottom of Figure 2c), material which protects the reinforcement rods. The glass-polymer
composite beams proposed in this paper will be either sandwich or rod composite beams.
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Figure 2. A comparison of the cross-section of different composite materials when transformed using
the transformed sections method with Euler–Bernoulli beam theory. (a) The distributed particles sum
to a increase in width in the transformed (right-side) section. (b) With sandwich composites, the
stiffer material is placed at the extreme top and bottom, allowing the contributed area to increase
the width at the extremities. (c) Rod composites have top and bottom cover included to allow for
reinforcement protection.

Distributed composites (as detailed in Figure 2a) do have design cases for which they are superior
to sandwich and rod composites. These design cases are referred to as general cases; that is, the
increased strength across the depth of the beam allows the beam to withstand more varied loading
conditions. For example, case Figure 2a resists axial loading and bending across both bending moment
axes without requiring anisotropic manufacturing conditions as would be required for the beams
shown in Figure 2b,c. As such, constructing a beam in configuration Figure 2a typically has a lower
cost relative to Figure 2b,c. To extrapolate on this, composites are shown as a sliding scale of complexity
in Figure 3. In this figure, the designs become increasingly complex from left to right. This causes an
increase in specialized strength (e.g., strength in bending across a single axis) and increased labor costs
due to the additional work required to install each additional composite material, such as chairs/fixtures
for tensile reinforcement in steel-reinforced concrete beams. However, this allows for more efficient
use of materials, which offsets the negatives of the increases in labor costs.
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Figure 3. As material moves from being a homogenized material to an increasingly complex composite,
several changes are made. While the strength becomes more specialized so too does the cost of
construction per additional compositing item added. This, however, is offset by decreasing material
costs per strength. The relative increases in specialized strength for beams greatly outweighs the
disadvantage of the increased labor costs. An additional example is fiber-reinforced concrete; while
it does have superior general strength, it cannot outperform steel-reinforced concrete for flexural
requirements due to the advantages of locating the reinforcement at the extremities of a beam section.

The interactions between dissimilar materials are where new properties for composites are
found [14], though the bonding strength does pose challenges. The presence and necessity of bond
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strength are noted here, the primary contribution of this work is the use of glass as compressive
reinforcement in macro-scale composites. The direct approach to modeling bonding strengths is to
examine the geometry between elements [14]. Accordingly, what is unique to compressive forces when
dealing with composites is an increase in frictional forces that occur at the interface of two materials
placed in compression. This can be thought of as the binding material having a hole through it; when
placed in compression, the binder will try to squeeze this cavity tighter, shrinking the diameter of
the hole. The reinforcement within said hole simultaneously is trying to increase in diameter due
to Poisson’s ratio. This dual-action between two materials placed in compression allows for greater
frictional forces to occur between the two materials as the loading is increased. Therefore, it can be
thought of that the compressive forces within the compressive reinforcement must transmit across the
surface of the reinforcement as a shear force, which is resisted by a frictional force that occurs due to
the squeezing action between the two materials. While these bonding strengths are beyond the scope
of this paper, these forces will be modeled and will play a larger role when samples of triple composite
beams are tested to failure.

Attempting to incorporate glass into structural applications isn’t novel. Glass has at many times
been utilized due to its transparent properties. With regard to attempting to composite glass, the
works of P.C. Louter et al. are of note [15–18]. A generic arrangement representative of their work is
shown in Figure 4. In this figure, steel tensioners are placed at the top and bottom of the beam and
post-tensioned, placing the beam in compression. Despite this, when the beam becomes loaded it
quickly builds tension and the allowed capacity is limited to 1

2 the strength of glass, a point which
coincides with the beam failing in tension at the top and compression at the bottom surface. However,
the applications specifically sought by the type of design represented in Figure 4 differs from what
is sought in this paper; instead of beams that specifically are translucent, the goal of this paper is to
establish beams that can utilize the maximum theoretical strengths of glasses. An additional aspect is
that beams that have glass throughout their depth tend to be significantly more expensive due to the
relatively high cost of glass per unit area.
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Figure 4. A typical post-tensioned glass composite is shown. These are constructed so that the view
through the glass is minimally obstructed while providing increased load capacity to the glass beam
through the post-tensioning of the steel rods.

The aims and objectives of this research are to introduce the concept of a polymer beam that
utilizes glass as compressive reinforcement, as a lower-cost and more environmentally friendly
alternative to structural elements that are currently available on the marketplace. As is discussed
in subsequent sections, glass, when compared on a per strength basis, outperforms both steel and
concrete. This work intends to provide justification for further study of such polymer beams that
utilize glass as compressive reinforcement and steel as tensile reinforcement. To summarize, what
is specifically being described in this paper is the application of glass reinforcement into structural
beams. Strength per cost ratios for glasses, when the glasses are only considered to be loaded in
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compression, outperform many other typical engineering materials for structural applications, such as
steel, aluminum, concrete, etc. The following section helps explain the specific means by which glass
outperforms these alternative materials.

2. An Explanation of the Potential Economics and Environmental Improvements of Glass
Reinforcement

Novel to this paper is the concept of including glass as a reinforcing element with the
purpose of attempting to offset the use of concrete or other binders in reinforced composite beams.
These glass-concrete-steel or glass-polymer-steel beams are referred to in this paper as triple composite
beams as there are three elements to these beams. Each beam element plays a vital role: steel in tension,
glass in compression, and a binder to hold the reinforcement together. To achieve the advantages of
glass, it must be produced at a low cost while guaranteeing a high compressive strength. This has been
tested; our initial experimentation created low-quality glasses by melting a mixture of glass making
materials (silica, soda ash, and lime) within a steel sleeve and allowing the mixture to cool insulated
only by sand surrounding the composite material. Despite the simplistic production method, this
low-quality glass had a failure stress of 208 MPa (30 ksi). These glasses are regarded as “as tested” in
subsequent context. While the testing fell short of the 1000 MPa (144 ksi) that was anticipated [9,10],
a leading cause could have been the testing arrangement, which did not guarantee a perpendicular
loading of the glass sample. Loading could not be guaranteed to be perpendicular due to the difficulty
of cutting the steel-sleeve into which the low-quality glass was cast.

Additionally, this paper uses comparison tools between glasses and many common structural
materials, such as concrete and steel. Preliminary calculations suggest that glass can be produced at a
price of approximately $0.12 per kilogram. The actual prices of soda-lime glass were researched and
found to be $0.17 per kilogram, which is 70% of the calculated value. This value of $0.12 per kilogram
takes into account the energy required to melt the glass making components as well as the costs of the
silica, soda ash, and lime as required for making the soda-lime glass. It also assumes a 10% thermal
efficiency and a cost of $0.10 per kilowatt-hr. Soda-lime glass can be produced at a lower cost than
other glasses [19] due to soda and lime acting to lower the glass melting temperature significantly.
However, bulk metallic glasses may provide superior mechanical properties at lower costs [20–22], etc.

Glass is specifically assumed to remain in compression when describing glass as a reinforcement
in this paper. This requirement is held as if the glass is directly compared with concrete or steel under
tensile loading, the assumed glass strength has to be reduced. An example of this can be found in
Ref. [23], which indicates that glasses have a strength of around 50–200 MPa and a relative cost per
volume index of 2.5. Conversely, these tables indicate that typical steels have a strength of 300 MPa
at a cost per volume index of 1.0; this would mean that steel greatly outperforms glass. However,
these charts typically make broad assumptions about materials, so the glasses referenced are silica
glass (a more costly to produce glass), not soda-lime glass as is used for the triple composite beams.
They also assume the glass is not loaded exclusively in compression and is manufactured to quality
necessary to make the glass translucent.

Regardless, even at such a low strength, given the manufacturing technique (which did not include
any annealing step), a low-quality glass may be able to function cost-effectively as a reinforcement.
It is difficult to compare data on glass manufacturing techniques from others due to the requirements
necessary for most glass manufacturing. For instance, most glass manufacturing focuses on producing
glass that is translucent, smooth, and able to withstand small (relative to steel) tensile loading. All three
of these requirements would be unnecessary for the glass reinforcement proposed in this paper as
the translucence does not matter, the glass needs to have a rough exterior (which can be provided by
casting it against silica in a sand-mold) to help transfer loading between the glass and binder, and the
glass need only be strong in compression.
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Based on the specific details outlined above, Table 1 was developed. This table indicates that glass
may provide a marginal improvement in cost (10%) over concrete (assuming an “as tested” strength
and a cost of $0.17 per kilogram).

Table 1. The cost of materials required to resist 100 Mn applied to a variable cross-sectional area (i.e.,
axially loaded) and at a unit length of 1 m. The sections are divided by the loading types for the given
materials so as not to directly compare compression-only to other material types.

Material Density
(kg/m3)

Mat. Str.
(MPa)

Length
(m)

Load
(Mn)

Area Req.
(m2)

Vol. Req.
(m3)

Weight
Req. (kg)

Est. Cost
Per Kg

Cost
Each

Compression Only Materials

Concrete, 4000 psi or
27.6 MPa 2324 27.6 1 100 3.62 3.62 8420 $0.03 $219

Glass, Max.
Theoretical, Virgin

Glass
2520 1000 1 100 0.1 0.1 252 $0.17 $42.8

Glass, Max.
Theoretical, Recycled

Glass
2520 1000 1 100 0.1 0.1 252 $0.18 $45.4

Glass, As Tested Thus
Far, Virgin Glass 2520 217 1 100 0.461 0.461 1160 $0.17 $197

Glass, As Tested Thus
Far, Recycled Glass 2520 217 1 100 0.461 0.461 1160 $0.18 $209

Compression and Tension

HDPE, Typical
Strength, Recycled and

Virgin
950 22 1 100 4.55 4.545 4320 $0.25 $1079

Steel, Mild A36 7800 400 1 100 0.403 0.403 3145 $0.45 $878

Tension Only

Steel, Prestressed
Cable 7800 1770 1 100 0.0565 0.0565 441 $0.45 $198

• The costs listed in this table reflect the most up to date information as found researching material
prices. Prices fluctuate, and accordingly, so do price indices. Steel prestressing cable price: [24];
Recycled soda-lime glass: [25]; Virgin soda-lime glass [26].

• The theoretical glass strength was set to 1000 MPa, the as-tested glass strength was 217 MPa (based
on our research), and the concrete strength was assumed to be 27.6 MPa (4 ksi, an industry-standard
concrete strength).

To obtain Table 1, a load of 100 Mn was applied to an arbitrary surface area made of a material.
Due to the strength of the material, a particular surface area can be assumed for this loading, assuming
the load is equally distributed across the member. Then, an arbitrary length of 1 m is assumed. By doing
this, a volume can be determined, by which the mass can be calculated using the material’s density.
This weight of the material is compared against the material’s cost, creating a cost per 100 Mn of load
(in USD $/100 Mn). While the definition of the shape is arbitrary, since all materials were applied
with the same criteria, a basis for comparison on a cost per load basis can be formed. Following this
procedure, the cost per loading of glass can be highlighted. The calculated cost for the arbitrary loading
and length was found to be $42.84 for glass, and $218.93 for concrete. This means that glass costs 20%
the cost of concrete to withstand an equal load. A superior description may be provided by developing
a formula for this specific price index. The index would be:

axial strength to cost index(asci) =
strength

area
·

1
unit length

·
volume

mass
·
mass
cost

(1)

asci =
σult or yield

ρ·cmi·unit length
(2)
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where ρ is the density, σult is the ultimate strength, which may be substituted with the yield (σy) for a
given application, cmi is the cost to mass (essentially the unit price) for a product, and asci is the axial
strength to cost index.

Admittedly, this analysis highlights the theoretical advantages of glass, but fails to extrapolate on
the disadvantages found with glass design. For instance, glass becomes exceedingly difficult to design
for if the design is based on glass reaching its theoretical compressive strength. The difficulty stems
from the abnormally small cross-sectional surface areas (for example, glass requires only 2.8% of the
cross-sectional area of concrete for equal strengths), especially when considering a material that must
bond effectively to the surrounding binder. It is likely that the bond strength itself will control the
design for triple composite beams.

There are additional benefits to glass. Glass provides a more environmentally friendly material
when compared on a per strength basis to concrete. These advantages are highlighted in Tables 2 and 3.
For Table 2, the percentages of material that is required to be transported and mined, if considering
designs of equivalent strength, are shown for glass and concrete. Glass, whether virgin, recycled,
as tested or at theoretical strength, outperforms concrete at least 10 fold concerning the quantity of
material that must be mined or transported.

Table 2. The required weight from Table 1, for the compression only materials, is used to compare the
transportation and mining requirements for each material. This is done to show that glass, having
a higher strength to mass, greatly outperforms concrete. This would help to reduce the amount of
greenhouse gas emissions developed during the transportation of materials.

Material
Compressive
Strength
(MPa)

Weight Req.
(kg)

Weight of Materials
Transported to Site as
% of Final Weight

Total Weight
of Transported
Materials (kg)

Transported
Material Weight
as % Weight of
Concrete

Concrete, Typical
Strength 27.60 8420.29 145% 12,209.42 100.00%

Glass, Max.
Theoretical, Virgin
Glass

1000.00 252.00 100% 252.00 2.06%

Glass, Max.
Theoretical, Recycled
Glass

1000.00 252.00 100% 252.00 2.06%

Glass, As Tested
Strength, Virgin Glass 217.00 1161.29 100% 1161.29 9.51%

Glass, As Tested
Strength, Recycled
Glass

217.00 1161.29 100% 1161.29 9.51%

Table 3 highlights the advantages with regard to embodied energy and CO2 generated. These
environmental qualities are of increasing importance. Comparisons should be made on a per strength
basis, as it allows for a more realistic real environmental impact for each material. The testing of glass
produced in preliminary testing has indicated an embodied energy of 92% that of concrete, while the
theoretical strength of glass would allow a reduction of 80% of the embodied energy. The advantages
regarding CO2 developed indicate that in order to reduce CO2 generated, the glass is required to be
recycled or near the theoretical strength. Virgin glass with the reduced weight does pose a disadvantage
by producing quadruple the CO2 generated by an equivalent strength component made of concrete.

• The embodied energies for concrete and glass were 1.9 MJ/kg and 12.7 MJ/kg, respectively [27].
• The kilograms of CO2 generated per kilogram of the material was 0.15 for concrete, 4.4 for

non-recycled (virgin) glass, and 0.73 for recycled glass [28].

To summarize, glass outperforms concrete in all cases except in the case of using virgin glass for
the “as tested” glass strengths. So, in this case, it may be superior to utilize recycled glass to produce
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glass structural reinforcement. As can be observed from the Tables 1–3, the prices of the proposed
materials in many regards meet or beat the traditional materials. This means that, although it often is
not considered as such, the glass may be able to reduce the use of concrete in reinforced concrete beams
or be placed into a new polymer-based-binder composite beam that allows for further cost reductions.

Table 3. The embodied energy (an estimate of the energy to produce a material, which correlates with
fossil fuel usage during the manufacturing of the material) and CO2 generated for concrete and glasses
are shown. Glass outperforms concrete in certain situations.

Material
Compressive
Strength
(MPa)

Weight
Req.
(kg)

Embodied
Energy
(MJ/kg)

Req.
Energy
(MJ)

% Req.
Energy of
Concrete

CO2
Generated
(kg CO2/kg)

CO2
Generated
(kg)

% CO2
Generated
Compared
to Concrete

Concrete, Typical
Strength 27.60 8420.29 1.90 15,998.55 100.00% 0.15 1263.04 100.00%

Glass, Max.
Theoretical, Virgin
Glass

1000.00 252.00 12.70 3200.40 20.00% 4.40 1108.80 87.79%

Glass, Max.
Theoretical,
Recycled Glass

1000.00 252.00 12.70 3200.40 20.00% 0.73 183.96 14.56%

Glass, As Tested
Strength, Virgin
Glass

217.00 1161.29 12.70 14748.39 92.19% 4.40 5109.68 404.55%

Glass, As Tested
Strength, Recycled
Glass

217.00 1161.29 12.70 14748.39 92.19% 0.73 847.74 67.12%

3. Stress Equations for Triple Composite Beams Using Euler–Bernoulli Beam Theory and the
Transformed Sections Method

The specific design selected for this paper is a beam which features glass as a compressive
reinforcement that works in conjunction with a tensile material and a binder. This triple-composite-beam
arrangement allows for a superior material to be provided for the compression face of a beam similar
to the method in which superior tensile reinforcement is used in concrete beams. This is proposed in
an attempt to provide superior cost-effectiveness for a beam.

Example designs are shown in Figure 5. In this figure, Figure 5a shows the beams utilized for
finite element modeling (FEM). These beams have a simplistic shape and arrangement though, due
to the low Young’s modulus of the binder they perform similarly to the beams shown in Figure 5b,c.
Figure 5b is a design that features rods in both faces but may have issues with slenderness. Conversely,
Figure 5c shows a T-section with a glass top plate, which reduces the likelihood of slenderness being
an issue in the beam. A capping material (cover) may be necessary for the beam shown in Figure 5c.

Future designs may allow for tensioning of the glass reinforcement but as mentioned before, the
as tested glasses have not had their tensile strengths checked and are assumed to be extremely weak
due to the prevalence of cracks in the as tested glass. In order to place the glass in a constant residual
compressive load, it must first be tensioned, then the tension must be released after the binder has
solidified. Post-tensioning designs will have to be researched at a later time.

Equations were developed for triple composite beams to establish a comprehensive method for
analysis. These equations were developed using the “transformed section” method with Euler–Bernoulli
beam theory. The transformed section method involves converting the cross-section of a beam to an
alternate, nonexistent beam that has an equivalent second area moment. This nonexistent beam is used
to determine the capacity of the beam and the stresses, though materials that have been converted
must be transformed back to the original material. The conversion ratio for the materials is based on
Young’s modulus of each material.
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Figure 5. (a) The beams considered in this study, which feature a purposefully wide section to limit
alternate failure modes. (b) An alternate design featuring rod-type reinforcement at the top and bottom.
(c) Another alternative, but a sheet of glass is placed as top reinforcement.

Due to the wide range of materials possible for composites, a single set of equations cannot
be employed for triple composite beams as the binders considered (concrete and polymers) behave
considerably differently. Therefore, Sections 3.1–3.3 all have specific analysis assumptions that were
used in determining the section maximum stresses and properties. These are summarized in Figure 6.
In this figure, Figure 6a shows the beam to be analyzed, Figure 6b shows the assumed geometric shape
under the binderless assumption, Figure 6c shows the geometric shape under the compression only
binder assumption, and Figure 6d shows the cross-section when considering full binder.
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Figure 6. A summary of the binder models considered. (a) The general arrangement of the beams
considered. (b) The binderless model, where the reinforcement is converted to binder-material; due to
the differential Young’s moduli between the materials. (c) The compression-only binder model, which
is commonly used for the concrete design. (d) In cases where the binder still contributes significantly to
the beam’s flexural stiffness, the full binder model may need to be used. Note the dark gray regions at
the top (c and d) and bottom (d), which denotes cover regions. These small components contribute
little strength, with the true intention being protection for the reinforcement.

3.1. Binderless Beams

Binderless beams are constructed typically of a binder with a relatively small Young’s modulus
when compared to the reinforcement’s Young’s modulus. Hence, the equations developed in this
section are for nonstiff binder materials that allow the neglection of the binder when considering the
bending properties of the beam. Conversely, if a beam’s binder has a relatively large stiffness, the
binderless assumption may not be appropriate. The concept of a binderless beam in and of itself is
incorrect, as a beam without an interior section would cease to function as a complete entity; only the
top reinforcement would become loaded. What is specifically meant as a “binderless beam” is the lack
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of consideration of the binder when calculating the geometric, second moment of area. The second
moment of area is key as this value is inversely proportional to the stress due to the bending moment.
The binderless assumption, which is, by definition, what makes it a binderless beam, artificially
removes the binder from consideration, resulting in a more conservative design. The advantage of
disregarding the binder is that the stress analysis for the beam becomes significantly less complicated.
For example, the equations that define the stresses in a binderless beam are (based on the method of
transformed sections presented in [29]):

yb =
Atηt/bd

Atηt/b + Abηb/b
(3)

yt = d − yb (4)

I* = yt
2Atηt/b + yb

2Abηb/b (5)

σr,t,x = ±ηt,b/b
Myt,b

I* (6)

σb,t,x = ±
Myt

I* (7)

These stress equations are analytically derived from the method of transformed sections. This
theory has been extrapolated and worked by many others, such as [8]. Inherent to the method of
transformed sections is an assumption that Euler–Bernoulli beam theory is followed.

Where yb is the distance from the neutral axis to the bottom reinforcement, yt is the distance
from the neutral axis to the top reinforcement, At is the area of the top reinforcement, nt/b is the ratio
of Young’s modulus of the top reinforcement to the binder, d is the distance between the top and
bottom reinforcement (i.e., depth), Ab is the area of the bottom reinforcement, nb/b is Young’s modulus
ratio of the bottom reinforcement to the binder, I* is the second moment of area of the transformed
section, M is the applied bending moment, σr,t,x is the normal stress of the top reinforcement in the
x-direction, σb,t,x is the normal stress of the top binder in the x-direction, σr,b,x is the normal stress of the
bottom reinforcement in the x-direction, and σb,b,x is the normal stress of the binder at the bottom in
the x-direction. While the binder is not considered to contribute to the second moment of area, it can
still have maximum stress calculated which will be larger than the maximum stress in analyses that
consider the contributions of the binder. The advantage of this arrangement of equations is that the
method of designing a beam with a different top and bottom reinforcement can be made significantly
easier using this set of equations.

3.2. Compression Only Binder Beams

Compression only binder beams are considered next, which are typically ceramic-like materials
(such as concrete) which are assumed to only develop compressive loads. This results in the following
series of stress equations:

A = [
2
b

(Atηt/b + Abηb/b)] + 2tc (8)

B =
2
b

Abηb/bd − tc
2 (9)

yt =
−A +

√

A2 + 4B
2

(10)

yb = d − yt (11)

I* =
b
3

(yt + tc)3 + yt
2Atηt/b + yb

2Abηb/b (12)
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σb,t,x = −
M(yt + tc)

I* (13)

where tc is the top cover distance. Note that Equations (6) and (8) also apply in this section, though (7)
has been modified to include a top cover (see (14) above) and (9) is neglected. There is no calculation
for the binder tension on the bottom half of the beam, as it is assumed that the binder is a ceramic
material and fails immediately upon the development of tension (an assumption often used in the
concrete analysis, though concrete does have a minimal tensile strength).

3.3. Beams Considering Full Binder

Beams that consider the binder to remain intact during analysis prove more challenging to
determine properties for. This occurs due to the complexity of meeting the requirements of the first
moment of the area being equal on either side of the neutral axis while having a relationship of the
centroids of the reinforcement to the measurement for the depth, d. First, the locations of the centroids
of the top and bottom sections must be found while maintaining a depth that is equivalent:

(yt + tc)2bt

2
+ ytAtηt/b =

(yb + bc)2bb

2
+ ybAbηb/b (14)

yt + yb = d (15)

The above equations are most easily solved through iterative techniques, to establish values of the
reinforcement locations that equal the depth, d (the requirement of Equation (16)). The easiest way to
do this is to assume a value of yt, solving for a value of yb through Equation (16), then solving Equation
(15). If the assumed yt value was correct, then the left and right sides of the Equation (15) will be equal.

Once the reinforcement locations relative to the central axis are found, the moment of inertia is
calculated through:

I* = (yt −
d
2

)
2
b(d + tc + bc) +

1
12

b(d + tc + bc)3 + yt
2Atηt/b + yb

2Abηb/b (16)

Now, the stresses can be calculated using Equations (6), (8), (14) and the following, additional
equation:

σb,b,x =
M(yb + bc)

I* (17)

4. Finite Element Modeling for Triple Composite Beams

A comprehensive Finite Element Modeling (FEM) study was conducted to verify the stresses
calculated using the formula developed. Figure 7 shows the dimensions of the beam and cross-sections
considered for analysis. Finite element analysis was conducted using the following parameters:
fixed-fixed supported beam, 3.048-m length (10 feet), 254 mm depth (10 inches, between reinforcement
centroids), beam width of 152 mm (6 inches), loading of 10.5 kN per meter (720 pounds per foot,
input as a 10 psi pressure on the top surface of the beams in ANSYS), top reinforcement had an
area of 484 square mm (0.75 square inches), bottom reinforcement had an area of 484 square mm
(0.75 square inches), top and bottom cover (for the rod-beam only) was 25 mm (1 inch) from the surface
to reinforcement centroid, Young’s modulus for steel was 200 GPa, Young’s modulus of HDPE was
0.8 GPa [30], and Young’s modulus of glass was 70 GPa [31]. The critical section considered for analysis
was the center of the beam (five feet from each fixed face of the beam). The section was utilized to
prevent localized discrepancies that are sometimes caused at supports in finite element models.
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Figure 7. The dimensions utilized for the FEM of the triple composite beams. (a) Side view showing the
length of the beam. (b) The configuration used for rod-type reinforced models. (c) The configuration
used for double-plate reinforced beams. Note that the reinforcement spacing was maintained between
cross-sections (b and c) to provide comparable stresses between the two cross-sections.

Finite Element Analysis (FEA) was conducted through Ansys 2019 R1 using the static structural
analysis tool. Examples of the models can be seen in Figures 8–10. Figure 8 shows the double-plate
beam model at an isometric view. Figure 9 shows the double-plate cross-section near the center and
some normal stress values. Figure 10 shows the same cross-section as 9, but for the double rod.
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Figure 10. A section cut near the center of the beam for the double-rod configuration with glass
reinforcement in the top plate and steel in the bottom. Probe values are shown in MPa.

In all cases, the model was utilized for two different analyses; one analysis had steel as reinforcement
in the top and bottom reinforcement while the second analysis had glass replace the steel in the top
reinforcement only. In all cases considered, HDPE was assumed to be the binder for the beam.

Table 4 summarizes the measurements taken from the FEM and compares them to the calculations
conducted using equations developed in this paper.

Table 4. The FEM stresses are compared against all-binder and no binder assumptions. The percent
error for both against the FEM results is also presented.

Summary of Calculations Calculation Method Percent Error

System Measurement FEM No Binder All-Binder No Binder All-Binder

SHS-R

σs,t,avg −33.8 −33.1 −30.3 −2% −10%

σh,t,max −0.20 −0.13 −0.15 −37% −27%

σs,b,avg 33.8 33.1 30.3 −2% −10%

σh,b,max 0.19 0.13 0.15 −34% −23%

SHS-DP

σs,t,avg −35.1 −33.1 −31.4 −6% −10%

σh,t,max −0.20 −0.13 −0.13 −37% −37%

σs,b,avg 35.1 33.1 31.4 −6% −10%

σh,b,max 0.21 0.13 0.13 −39% −39%

GHS-R

σs,t,avg −25.5 −33.1 −23.4 30% −8%

σh,t,max −0.40 −0.38 −0.31 −5% −24%

σs,b,avg 35.3 33.1 30.4 −6% −14%

σh,b,max 0.20 0.13 0.16 −34% −20%

GHS-DP

σs,t,avg −28.2 −33.1 −26.7 18% −5%

σh,t,max −0.40 −0.38 −0.31 −4% −23%

σs,b,avg 37.5 33.1 33.6 −12% −10%

σh,b,max 0.16 0.13 0.13 −15% −13%

The table highlights some corollary data. The equations developed typically produce values
that have a smaller magnitude than the FEM determined stresses. Additionally, given the materials
and their differing Young’s modulli, the binderless assumption is generally a superior predictor of
the stresses in the reinforcement as it is either at a value closer to the FEM determined value or
is above the FEM value. However, at times the all-binder assumption is superior in calculating
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stresses in the binder. The differences in the binder stress calculations are typically quite large. While
this may appear concerning, given the materials used, HDPE is very unlikely to fail, even in these
conditions. Additionally, the values of the stress in the binder are significantly smaller than that of the
reinforcement, so a small discrepancy in stress in the reinforcement can contribute a large variation in
the stress in the binder. It should be specifically expressed that these results are for these particular
materials. The results would likely be appreciably different if Young’s moduli ratios between the
reinforcement and binder grew close to 1.0; at lower ratios, the binder contributes more significantly to
the beam strength. Otherwise, the beams designed may be far too conservative, a consideration for
some of the values in Table 4 (e.g., the binderless assumption predicts greater stress in the glass, by
30% and 18% for the double-plate and double-rod configurations).

To further explain the differences, Table 5 was created. Table 5 uses select data from Table 4 and
organizes it in a way that allows for a superior interpretation. Table 5 only looks at the reinforcement
stresses of each condition, and includes the average errors and the standard deviation of error. What
this table explains is that while the average stress of the binderless assumption is lower, the binderless
assumption has a significantly large standard deviation when compared to the all-binder assumption.
This means that it may be more appropriate to consider all-binder, and provide a comfortable safety
factor equivalent in value to the negative percentage error.

Table 5. A select subset of Table 4 in which the differences in reinforcement stress can be better
comprehended for comparison purposes.

Summary of Calculations Percent Error

System Measurement No Binder All-Binder

SHS-R
σs,t,avg −2.09% −10.35%

σs,b,avg −2.09% −10.35%

SHS-DP
σs,t,avg −5.59% −10.37%

σs,b,avg −5.59% −10.37%

GHS-R
σg,t,avg 29.84% −8.39%

σs,b,avg −6.34% −14.02%

GHS-DP
σg,t,avg 17.55% −5.07%

σs,b,avg −11.78% −10.34%

Average 1.74% −9.91%

Standard Deviation 14% 2%

5. Establishment of the Flexural Reinforcement Utilization Factor

There is a maximum stress that is theoretically possible for the reinforcement of a composite beam.
This specific ratio, referred to as the Flexural Reinforcement Utilization Ratio (R) is:

R =
σr,x,bmax

σr,x,max
=
ηr/b( ȳ

ȳ + c )σb,x,max

σr,x,max
(18)

This ratio, in and of itself, heavily influences how the materials that compose a composite beam
will function due to the application of bending moment. For instance, at a value of 1.0, the R ratio
indicates that the binder and reinforcement are of equivalent transformed loading. This means that the
reinforcement and the binder will become loaded to failure at the same instant. This beam would be
best analyzed using a full binder type analysis. In a case where the value of R is less than 1.0, this is
a potentially negative configuration of reinforcement. In this situation, the reinforcement will never
be fully stressed prior to the binder failing. This particular situation exists for glass and concrete.
To explain this, first consider glass to have a Young’s modulus of 70 GPa (the average, according
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to [31]). Next, concrete’s Young’s modulus is considered as 24.8 GPa (calculated according to ACI
318-08, Section 8.5 [32]). Under these circumstances, the utilization ratio, R, is:

ηr/b =
Eglass

Econcrete
=

70 GPa

0.043w1.5
c

√
f
′

c MPa
=

70 GPa
24.8 GPa

= 2.72 (19)

R =
2.72(28 MPa)

1000 MPa
= 0.076 = 7.6% (20)

This means that for a glass-concrete composite, glass can only be stressed at a maximum to 7.6%
of its theoretical strength. This results in a poor utilization of glass (and therefore, a less efficient beam),
but there are strategies to reduce this issue; by modifying the glass (to be stiffer, i.e., to have a greater
Young’s modulus) and the concrete (by utilizing lightweight concrete with a higher failure load), this
utilization percentage can be increased. Hence, by changing to a glass with Young’s modulus of 90 GPa
(the upper limit, according to [31]), concrete with a unit weight of 1550 kg/m3, and a strength of 42 MPa,
the ratio becomes:

R =

90 GPa
0.043(1550)1.5 √42 MPa

(42 MPa)

1000 MPa
= 0.222 = 22.2% (21)

By changing these material properties, the glass can be stressed up to a maximum of 22.2% of the
theoretical maximum glass strength. While this represents an improvement, there will be additional
costs associated with the improved concrete and glass properties. It is possible to rearrange the R
equation accordingly:

Rσr,x,max = σr,x,bmax (22)

This arrangement helps to express the maximum stress allowed in the reinforcement in cases
where R is less than 1.0. So, for the glass-concrete example above, it can be said that:

Rσr,x,max = σr,x,bmax = (0.222)(1000 MPa) = 222 MPa (23)

This value closely matches the stress that was determined to be the “as tested” glass strength
for the first set of experiments (217 MPa), which utilized a low-quality glass. This means that glass,
in this case, doesn’t have to reach the theoretical maximum of 1000 MPa to be considered possible
for reinforcement when using a concrete binder. For confirmation, the R values for glass-HDPE and
steel-HDPE are:

ηg/H =
Eglass

EHDPE
=

70 GPa
0.8 GPa

= 87.5 (24)

R =
σr,x,bmax

σr,x,max
=

87.5(22 MPa)
1000 MPa

= 1.93 = 193% (25)

And for steel and HDPE:

ηs/H =
Eglass

EHDPE
=

200 GPa
0.8 GPa

= 250 (26)

R =
σr,x,bmax

σr,x,max
=

250(22 MPa)
400 MPa

= 13.8 = 1380% (27)

As the ratio becomes too large, other factors will begin to dictate the strength of the
reinforcement-binder couple, factors that are not accounted for, to any extent, in the equations
above. Some examples include bonding stresses exceeding acceptable values for the binder interfacing
with the reinforcement, or buckling of the reinforcement itself.

6. Conclusions

This paper introduces the idea of using low-quality cast glass as a compressive reinforcement
replacement for concrete, with the goal of easing the detriment of increasing construction costs. Due
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to the relatively high cost per cross-sectional area, glass must be paired with a binder and used as a
compressive reinforcement. By involving three different materials into a single beam and applying the
transformed sections method using Euler–Bernoulli beam theory, a series of equations were developed
that allow for direct calculation of the maximum stresses (for both reinforcement and binder) in a
variety of design cases based on material properties between the binder and reinforcement materials.

The transformed sections method was tested against finite element models that were developed
to replicate the design cases. This resulted in the binderless assumption proving superior when only
considering average stresses, as it estimates stresses to be within 2% (on average) of the FEM stresses.
However, the all-binder assumption results in more precision, as the standard deviation is much
smaller (2% vs. 10% with the binderless assumption); the all-binder assumption resulted in estimated
stresses at values, on average, 10% lower than the FEM suggested. The binderless assumption does
have some advantages in that it is much quicker to estimate values and maximize the efficiency of a
cross-section due to its simplistic nature.

This paper proves, on a theoretical basis, that glass and steel-reinforced polymers can be more
cost-effective than both reinforced concrete and steel structures when considering the development of
stresses according to Euler–Bernoulli beam theory and the method of transformed sections. Future
studies will focus on the additional testing of samples. Physical samples need to be fabricated and
tested to failure. This will likely take many iterations as there are many ways for a composite beam to
fail. One such failure mode is from a bonding failure; in this case, the glass or steel would debond
from the binding material. This would be particularly detrimental to the glass as it may place the glass
in tension, where it has little strength. Reinforcement buckling, lateral torsional buckling, and shear
failure are a few other failure modes. As such, this paper is simply the first in a series of investigations
into the possibility of these triple composite beams.
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