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Abstract: In this paper, the authors develop Reissner’s mixed variational theorem (RMVT)-based finite
layer methods for the three-dimensional (3D) coupled thermoelastic analysis of simply supported,
functionally graded, doubly curved (DC) shells with temperature-independent material properties.
A two-phase composite material is considered to form the shell, and its material properties are
assumed to obey a power–law distribution of the volume fractions of the constituents through the
thickness direction of the shell. The effective material properties are estimated using the Mori–Tanaka
scheme. The accuracy and convergence rate of these RMVT-based finite layer methods are validated
by comparing their solutions with the quasi 3D and accurate two-dimensional solutions available in
the literature.
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1. Introduction

In 1984, a Japanese scientist, Niino, proposed the concept of functionally graded (FG) materials
for use in thermal barrier materials at the National Aerospace Laboratory of Japan [1,2]. Since then,
the development of these FG materials has progressed rapidly, and their application in various
advanced industries has become increasingly popular. These FG materials are composed of two- or
more-phases of dissimilar materials in such a manner that the material properties vary gradually and
continuously in one or more directions. One of the most obvious applications of the FG materials is
the ceramic–metal two-phase FG composite materials, which can have the low thermal conductivity
property of ceramic materials, as well as the high toughness and strength properties of metallic
materials. The FG materials also have considerable design flexibility. Engineers can design the most
appropriate material properties, according to a variety of structural performance requirements, by
adjusting the spatial distributions of the volume fractions of the constituents. Moreover, because of the
continuous spatial distribution of the material properties of the FG material, it can be used to form a
variety of single-layered, sandwiched, and multi-layered FG structures to prevent delamination failure,
which often occurs at the interface between adjacent layers of conventional laminated composite
structures, in which the material properties suddenly change.

Since the above-mentioned FG structures are intended for use in severe thermal environments,
the thermoelastic analysis of these structures has attracted considerable attention in order to accurately
estimate the thermoelastic stress and deformation induced in them. Some theoretical methodologies
and numerical models for the assorted analyses of laminated composite structures have been extended
to those of FG structures. Based on the classical lamination plate theory (CLPT), Shaw [3] investigated
the thermal residual stresses induced in an infinite substrate-coating plate subjected to a thermal load,
in which the material properties of the substrate were considered to be homogeneous, while those of
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the coating were functionally graded in the thickness direction with a power–law material model [4].
Based on the same plate theory (i.e., CLPT), Chi and Chung [5] and Chung and Chang [6] presented
the analytical and finite element solutions of stress and deformation induced in the FG plate subjected
to thermomechanical loads, in which the through-thickness distributions of material properties
were considered as power–law, sigmoid function, and exponential function models. The CLPT
was also extended by Dai and Dai [7] to the thermomechanical bending analysis of FG cylindrical
shells with fully simply supported and clamped edges. Zenkour and Alghamdi [8,9] developed a
unified shear deformable plate theory (USDPT) for the bending analysis of FG sandwich plates under
thermomechanical loads, in which the core was a homogeneous ceramic layer, while the top and
bottom face sheets were the FG two-phase material (i.e., the metal–ceramic composite material) layers,
the material properties of which obeyed a power–law distribution through the thickness direction of
the face sheets according to the volume fractions of the constituents. Numerical solutions obtained
from various refined and advanced theories reduced from the USDPT, such as the classical lamination
theory (CLT), and first-order, third-order, and sinusoidal shear deformation theories (FSDT, TSDT, and
SSDT), were presented, and the results obtained using these theories were compared with one another.
The above-mentioned theories can be categorized as the two-dimensional (2D) equivalent single layer
theories (ESLTs) based on the principle of virtual displacements (PVD), rather than the Reissner mixed
variational theorem (RMVT). In addition, Kreja and Sabik [10] evaluated the performance of some
selected ESLTs by comparing their solutions with several benchmark solutions for the static problems
of multilayered plates.

Grigolyuk and Kulikov [11,12] presented the geometrically nonlinear and the static analyses
of multilayered anisotropic shells, in which the corresponding governing equations associated with
the possible boundary conditions were derived on the basis of the Hellinger–Reissner variational
principle [13] and the through-thickness distributions of the transverse normal and shear stresses
induced in the shells were numerically investigated. Subsequently, Grigolyuk and Kulikov [14]
developed a generalized model for laminated composite thin-walled structures, in which a variety
of multi-layered shell theories were constructed. The transverse displacement components of these
multi-layered shell theories were assumed to nonlinearly vary through their thickness direction, which
makes them possible to study the actual through-thickness stress and strain distributions induced in
these shells.

In 2003, Carrera [15] proposed Carrera’s unified formulation (CUF), which is able to handle
numerous PVD- and RMVT-based plate/shell theories in a unified manner. The 2D refined and advanced
plate/shell theories (i.e., a variety of ESLTs) and their corresponding layerwise (LW) versions can be
deduced by taking a set of appropriate fundamental nuclei in the CUF, and these can thus be regarded
as the special cases of the CUF, such as the global CLT, FSDT, TSDT, and SSDT, as well as the layerwise
CLT, FSDT, TSDT, and SSDT [16–18]. The CUF has been applied to estimate the thermomechanical
behavior of single-layered, sandwiched, and multi-layered plates [19] and shells [20,21], as well as FG
plates [22] and shells [23–25], in which both of the ESLTs and their corresponding LW versions were
considered along with variable orders of expansions of the field variables in the thickness direction,
from linear to fourth orders. After the implementation of various 2D PVD- and RMVT-based theories,
the conclusion was that the LW models are superior to the ESLT ones, and that the RMVT-based
models are superior to the PVD-based ones, based on an identical order used for expansions of the
field variables through the thickness direction. In order to extend the application of CUF, Cinefra
et al. [26,27] developed a shell finite element with variable through-the-thickness kinematic for the
coupled thermoelastic and coupled hygro-thermoelastic analyses of laminated structures. Moreover,
numerous finite element analyses of various structures based on the CUF were carried out by Carrera
et al. [28]. Fazzolari [29] and Fazzolari and Carrera [30] used the CUF combined with a set of variable
kinematics and the Ritz method to study the free vibration characteristics of laminated composite and
FG doubly curved shells and to examine the coupled thermoelastic effect on the frequency parameters
of multi-layered composite and FG plates, respectively. Based on an advanced hierarchical higher-order
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ESLTs, Fazzolari [31] investigated the free vibration of P- and S-FG plates, where the volume fractions
of the constituents of the plates were assumed to be a power–law function and a sigmoid function
varying through the thickness direction of the plates, and where the material properties of the plates
were assumed to be dependent upon the temperature variable.

Some three-dimensional (3D) analytical and semi-analytical numerical theories were also
developed for the thermomechanical analysis of laminated composite plates/shells and multi-layered
FG ones. Reddy and Cheng [32] studied the 3D thermomechanical deformations of FG rectangular
plates using an asymptotic approach, in which the power–law material model was used, and the
effective material properties were estimated using the Mori–Tanaka scheme [33]. Based on the
FSDT combined with a 3D heat conduction analysis, Reddy and Chin [34] presented the dynamic
thermoelastic responses of FG cylinders and plates. Jabbari et al. [35,36] presented the 3D solutions
for the thermomechanical behavior of FG hollow cylinders under the radially symmetric loads and
non-axisymmetric steady-state loads using a power series method, which was also extended by
Poultangari et al. [37] to the analysis of FG hollow spheres under non-axisymmetric thermomechanical
loads. Within the framework of 3D elasticity theory, Kulikov and Plotnikova [38–40] proposed a
sampling surfaces (SaS) method for the 3D thermal stress analysis of laminated composite plates and
shells, as well as FG plates subjected to a steady-state thermal load, in which the field variables were
expanded as the Fourier series functions in the in-surface domain, and discretized by the differential
quadrature (DQ) method in the thickness direction by selecting a series of nodal surfaces located at
the Chebyshev polynomial nodes in order to provide a uniform convergence of the SaS solutions.
In conjunction with the state space and DQ methods, Akbari Alashti and Khorsand [41] presented
the 3D DQ solutions for the nonlinear thermoelastic analysis of FG cylindrical shells bonded with the
piezoelectric layers on the top and bottom surfaces of the shells. This semi-analytical DQ method
was also extended to the quasi-3D nonlinear thermoelastic analysis of thick-walled FG piezoelectric
cylinders by Arefi [42], and the thermoelastic analysis of multi-directional FG rectangular plates resting
on an elastic foundation by Adineh and Kadkhodayan [43]. A comprehensive survey with regard
to the exact and approximate 3D methods for assorted structural analyses of laminated composite
structures and multi-layered FG ones in the literature was carried out by Wu et al. [44] and Wu and
Liu [45].

Based on Reddy’s refined higher-order shear deformation theory (HSDT) [46] coupled with the von
Kármán geometrical nonlinearity (VKGN) term, Shen [47,48] investigated the nonlinear thermal bending
responses of FG plates subjected to the thermomechanical loads, in which temperature-dependent
material properties were considered, and this approach was also extended to the similar analysis of
FG cylindrical panels resting on elastic foundations by Shen and Wang [49]. The above issue was
also examined by Mahapatra et al. [50] using a TSDT and considering the Green–Lagrange nonlinear
strains. Wu and Ding [51] presented the coupled thermoelectromechanical analysis of sandwiched
hybrid FG elastic material and piezoelectric plates.

Due to the fact that RMVT-based models have better performance than the PVD-based ones
and that the LW models are better than the ESLT ones in capturing the interlaminar stresses and
deformation, in this work we thus extend some existing RMVT-based finite layer methods [52–55]
for laminated composite plates/hollow cylinders to the thermoelastic analysis of multilayered FG
doubly curved (DC) shells subjected to thermal loads. In the formulation the material properties
of the DC shell were assumed to obey the power–law and sigmoid function models, in which the
through-thickness distributions of material properties were assigned as certain specific functions
according to the volume fractions of the constituents. The accuracy and convergence rate of the
RMVT-based finite doubly-curved layer (FDCL) methods with different orders, which were used for
expansions of the field variables in the thickness direction, are examined by comparing their solutions
with the accurate ones available in the literature. A parametric study with regard to the influence of
various factors on the thermoelastic behavior of functionally graded doubly curved (FGDC) shells is
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conducted, such as the material–property gradient indices, different material models, aspect ratios,
and radii of curvature.

2. Effective Material Properties

In this work, we consider a simply supported, FGDC shell subjected to steady-state thermal loads,
as shown in Figure 1a, in which the material properties of the shell are thickness-dependent. In the
formulation, the shell is artificially divided into Nl layers with a small thickness for each individual
layer, as compared with the in-surface dimensions. In order to derive the formulation, a global doubly
curved coordinate system (i.e., ξ, η and ζ coordinates) is located on the mid-surface of the shell, and a
set of local thickness coordinates zm (m = 1, 2, 3, ..., Nl) is located at the mid-surface of each individual
layer, as shown in Figure 1b, in which Nl is taken to be five. The in-surface dimensions of the shell
in the ξ and η directions are defined as Lξ and Lη, respectively, and the curvature radii of the shell
are Rξ and Rη. The thicknesses of each individual layer and the shell are hm (m = 1, 2, ..., Nl) and h,

respectively, while h =
Nl∑

m=1
hm. The relationship between the global and local thickness coordinates in

the mth-layer is ζ = ζm + zm, in which ζm = (ζm + ζm−1)/2, as well as ζm and ζm−1 denote the global
thickness coordinates measured from the mid-surface of the shell to the top and bottom surfaces of the
mth-layer, respectively.
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The material properties of the FGDC shell are assumed to obey a specific function distribution
according to the volume fractions of the constituents through the thickness coordinate, such as the
power–law distribution. The effective bulk modulus, shear modulus, thermal expansion coefficient
and thermal conductivity coefficient of the FGDC shell are estimated using the Mori–Tanaka scheme,
and are given as follows [23,33]:

B(ζ) = [Vc(ζ) (Bc − Bm)]/
{
1 + [1−Vc(ζ)](Bc − Bm)/[Bm + (4/3)Gm]

}
+ Bm, (1)

G(ζ) = Vc(ζ) (Gc −Gm)/[1 + [1−Vc(ζ)](Gc −Gm)/(Gm + fm)] + Gm, (2)

α(ζ) = Bc (αc − αm)/
{{

1− [B(ζ) − Bc]/[B(ζ) − Bm]
}

B(ζ)
}
+ αm, (3)

λ(ζ) = Vc(ζ) (λc − λm)/
{
1 + [1−Vc(ζ)](λc − λm)/(3λm)

}
+ λm, (4)

where fm = Gm [9Bm + 8Gm]/[6 (Bm + 2Gm)], and the subscripts c and m are defined as the material
properties of certain ceramic and metal materials, respectively. Bc, Gc, αc, λc and Bm, Gm, αm, λm are
the bulk modulus, shear modulus, thermal expansion coefficient, and thermal conductivity coefficient
of the ceramic and metal materials, respectively. The relationships between the bulk and shear moduli,
as well as Young’s modulus (E) and Poisson’s ratio (υ), are B = E/[3 (1− 2υ)] and G = E/[2 (1 + υ)].
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As mentioned above, the FGDC shell is considered to be a two-phase composite one, which is
composed of the ceramic and metal materials according to a specific function distribution of volume
fractions of the constituents through the thickness direction of the shell, such as the power–law. In the
power–law model the through-thickness distribution of the volume fraction of the ceramic material,
Vc(ζ) in Equations (1)–(4), is given by

Vc(ζ) = [(ζ+ h/2)/ h]κp , (−h/2) ≤ ζ ≤ (h/2), (5)

where Vc = 1, when ζ = h/2, such that B(ζ = h/2) = Bc, G (ζ = h/2) = Gc, α (ζ = h/2) = αc, and
λ (ζ = h/2) = λc; as well as Vc = 0, when ζ = −h/2, such that B(ζ = −h/2) = Bm, G (ζ = −h/2) = Gm,
α (ζ = −h/2) = αm, and λ (ζ = −h/2) = λm. κp denotes the material–property gradient index for the
power–law model. The distributions of the volume fraction Vc(ζ) along with the thickness direction of
the shell are shown in Figure 2, in which the values of κp is taken to be κp = 0.2, 0.5, 1, 2, and 5.
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3. Heat Conduction Analysis

A heat conduction analysis of the FGDC shell subjected to a steady-state thermal load will first
be analyzed, and the determined temperature distribution of the shell domain is then used for the
thermomechanical analysis of the shell. The material properties of the FGDC shell are considered to be
dependent upon the thickness coordinate and temperature.

The equation of steady-state heat conduction of the shell without heat generation is given as

(1/γξ)Hξ,ξ+(1/γη)Hη,η+Hζ,ζ+
[
(1/γξ Rξ) + (1/γη Rη)

]
Hζ = 0, (6)

where the commas denote partial differentiation with respect to the suffix variables, Hk (k = ξ, η and ζ)
denote the heat fluxes in the ξ, η and ζ directions, and Hk,k = (∂H/∂k). γξ andγη are the scale factors
in the ξ and η directions, respectively, in which γξ = 1 + (ζ/Rξ) and γη = 1 + (ζ/Rη).

The relations between the heat flux and temperature change in the ξ, η and ζ directions are given as

Hξ = −(λξ/γξ)T,ξ , (7)

Hη = −(λη /γη)T,η , (8)

Hζ = −(λζ)T,ζ , (9)

where T denotes the temperature change, which is measured from the room temperature (T̂0), and
T̂0 = 300 K. In addition, the current temperature variable is defined as T̂, such that T = T̂ − T̂0.
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The state space equations related to the heat conduction analysis of the FGDC shell is given as{
T,ζ

Hζ,ζ

}
=

 0 −λ−1
ζ

(λξ/γ2
ξ) ∂ξξ + (λη/γ2

η) ∂ηη −

[
(1/γξRξ) + (1/γηRη)

]  { T
Hζ

}
. (10)

The temperature changes on the top and bottom surfaces of the FGDC shell are given as

T = T
−

at ζ = −h/2, (11)

T = T
+

at ζ = h/2, (12)

where T
−

and T
+

are the applied temperature changes at the bottom and top surfaces of the DC shell.
In this work, the temperature change prescribed on the top and bottom surfaces of the DC shell are

expanded as the double Fourier series as T
±

=
∞∑

m̂=1

∞∑
n̂=1

T
±

m̂n̂ sin m ξ sin n η, in which m = m̂π/Lξ and

n = n̂π/Lη, as well as m̂ and n̂ are the half-wave numbers, the values of which are positive integers.
In addition, the thermal conditions at the edges are T̂ = 300 K (or T = 0 K).

For the fully simply supported boundary conditions, the thermal field variables can also be
expressed as the double Fourier series in the in-surface domain to exactly satisfy the edge conditions,
as follows:

T(ξ, η, ζ) =
∞∑

m̂=1

∞∑
n̂=1

Tm̂n̂(ζ) sin mξ sin nη, (13)

Hζ(ξ, η, ζ) =
∞∑

m̂=1

∞∑
n̂=1

Hζm̂n̂(ζ) sin mξ sin nη, (14)

where the symbols of double summations will be omitted in the later work of this paper for brevity.
Substituting Equations (13) and (14) in (10), the authors can obtain{

Tm̂n̂,ζ
Hζm̂n̂,ζ

}
=

 0 − λ−1
ζ

−

[
(λξm2/γ2

ξ) + (ληn2/γ2
η)

]
−

[
(1/γξRξ) + (1/γηRη)

]  { Tm̂n̂

Hζm̂n̂

}
. (15)

Equation (15) represents two simultaneously first-order differential equations in terms of two
variables (i.e., Tm̂n̂ and Hζm̂n̂), while the related coefficients are dependent on the temperature variable
and thickness coordinate. A modified Pagano method with an iteration process is thus used to obtain
the through-thickness distributions of the temperature changes. The relevant solution process of the
modified Pagano method can be found in Wu and Lu [56], and is not repeated here for brevity.

4. Coupled Thermoelastic Analysis

In the former Section, a heat conduction analysis of the FGDC shell under thermal loads is
presented. Once the through-thickness distribution of the temperature changes of the DC shell is
obtained, an FDCL method can be developed for the thermal deformation and stress analyses of the
FGDC shell, and the corresponding formulation is derived as follows.

4.1. Kinematic and Kinetic Assumptions

In an earlier work, Wu and Li [52,54,55] developed an RMVT-based FDCL for the elastic
deformation, stress, free vibration, and buckling analyses of simply supported, laminated composite
plates and shells. The earlier formulation is then extended to the elastic deformation and stress analyses
of simply supported, FGDC shell, in which the primary variables of a typical layer (i.e., the mth-layer)
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of the shell, of which the domains are in 0 ≤ ξ ≤ Lξ and 0 ≤ η ≤ Lη, and −hm/2 ≤ zm ≤ hm/2, are thus
given by

f
(m)

(ξ, η, zm) =
n+1∑
i=1

ψ
(m)
i (zm)

[
f (m)(ξ, η)

]
i
, (16)

where f (m) = u(m)
ξ

, u(m)
η , u(m)

ζ
, τ(m)

ξ ζ
, τ(m)

η ζ
and σ(m)

ζ
, in which

(
u(m)
ξ

)
i
,
(
u(m)
η

)
i
and

(
u(m)
ζ

)
i

denote the

elastic displacement components at the ith-nodal surface of the mth-layer of the shell, while
(
τ
(m)
ξ ζ

)
i
,(

τ
(m)
η ζ

)
i
, and

(
σ
(m)
ζ

)
i

are the transverse shear and normal stress components. ψ(m)
i (i = 1, 2, . . . , and

(n + 1)) is the shape function of the corresponding ith-nodal surface. n denotes the related orders used
for expansions of each primary variable, and when n = 1, 2, and 3, the FDCL methods are called linear,
quadratic, and cubic ones, respectively.

For a typical layer, the linear constitutive equations, which are valid for the orthotropic materials,
are given by

σ
(m)
ξ

σ
(m)
η

σ
(m)
ζ

τ
(m)
η ζ

τ
(m)
ξ ζ

τ
(m)
ξ η


=



c(m)
11 c(m)

12 c(m)
13 0 0 0

c(m)
12 c(m)

22 c(m)
23 0 0 0

c(m)
13 c(m)

23 c(m)
33 0 0 0

0 0 0 c(m)
44 0 0

0 0 0 0 c(m)
55 0

0 0 0 0 0 c(m)
66





ε
(m)
ξ

ε
(m)
η

ε
(m)
ζ

γ
(m)
η ζ

γ
(m)
ξ ζ

γ
(m)
ξ η


−



c(m)
α 1

c(m)
α 2

c(m)
α 3
0
0
0


T(m), (17)

where σ
(m)
ξ

, σ(m)
η , ..., and τ(m)

ξ η
are the stress components; ε

(m)
ξ

, ε(m)
η , ..., andγ(m)

ξ η
are the strain

components; c(m)
i j (i, j = 1–6) are the elastic coefficients, which are variable through the thickness

direction of each FGEM individual layer, and are constants in the homogeneous one. c(m)
α i (i = 1–3)

denote the stress-temperature coefficients, and c(m)
α i = c(m)

1i α
(m)
1 + c(m)

2 i α
(m)
2 + c(m)

3 i α
(m)
3 (i = 1–3), in which

α
(m)
i (i = 1–3) are the thermal expansion coefficients in the ξ, η and ζ directions.

The strain–displacement relations for each individual layer are written as follows:

ε
(m)
ξ

=
[
u(m)
ξ

,ξ +
(
u(m)
ζ

/Rξ
)]

/γξ =
n+1∑
i=1

[
ψ
(m)
i

(
u(m)
ξ

)
i
,ξ+ψ

(m)
i

(
u(m)
ζ

)
i
/Rξ

]
/γξ, (18)

ε
(m)
η =

[
u(m)
η ,η +

(
u(m)
ζ

/Rη
)]

/γη =
n+1∑
i=1

[
ψ
(m)
i

(
u(m)
η

)
i
,η+ψ

(m)
i

(
u(m)
ζ

)
i
/Rη

]
/γη, (19)

ε
(m)
ζ

= u(m)
ζ

,ζ =
n+1∑
i=1

(
Dψ(m)

i

) (
u(m)
ζ

)
i
, (20)

γ
(m)
η ζ

=
(
u(m)
ζ

,η /γη
)
+ u(m)

η ,ζ −
[
u(m)
η /

(
γη Rη

)]
=

n+1∑
i=1

[
ψ
(m)
i

(
u(m)
ζ

)
i
,η /γη +

(
Dψ(m)

i

) (
u(m)
η

)
i
−ψ

(m)
i

(
u(m)
η

)
i
/
(
γηRη

)]
, (21)

γ
(m)
ξ ζ

=
(
u(m)
ζ

,ξ /γξ
)
+ u(m)

ξ
,ζ −

[
u(m)
ξ

/(γξ Rξ)
]
=

n+1∑
i=1

[
ψ
(m)
i

(
u(m)
ζ

)
i
,ξ /γξ +

(
Dψ(m)

i

) (
u(m)
ξ

)
i
−ψ

(m)
i

(
u(m)
ξ

)
i
/(γξ Rξ)

]
, (22)

γ
(m)
ξ η

=
(
u(m)
η ,ξ /γξ

)
+

(
u(m)
ξ

,η /γη
)
=

n+1∑
i=1

[(
ψ
(m)
i

) (
u(m)
η

)
i
,ξ /γξ +

(
ψ
(m)
i

) (
u(m)
ξ

)
i
,η /γη

]
, (23)
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where the commas denote partial differentiation with respect to the suffix variables, and(
Dψ(m)

i

)
= d

(
ψ
(m)
i

)
/dzm.

4.2. An RMVT-Based Weak-form Formulation

The Reissner mixed variational theorem is used to derive the system equations of the FGDC shell
for the FDCL methods, and its corresponding energy functional is written in the form of

ΠR =
Nl∑

m=1

∫ hm/2
−hm/2

s
Ω

[
σ
(m)
ξ

ε
(m)
ξ

+ σ
(m)
η ε

(m)
η + σ

(m)
ζ
ε
(m)
ζ

+ τ
(m)
ξ ζ

γ
(m)
ξ ζ

+ τ
(m)
η ζ

γ
(m)
η ζ

+ τ
(m)
ξ η

γ
(m)
ξ η
− B(σi j)

]
γξ γη dξ dη dzm

−

Nl∑
m=1

∫ hm/2
−hm/2

∫
Γσ

(
t
(m)
ξ u(m)

ξ
+ t

(m)
η u(m)

η + t
(m)
ζ u(m)

ζ

)
dΓ dzm

−

Nl∑
m=1

∫ hm/2
−hm/2

∫
Γu

[
(u(m)

ξ
− u(m)

ξ
) t(m)
ξ

+ (u(m)
η − u(m)

η ) t(m)
η + (u(m)

ζ
− u(m)

ζ
) t(m)
ζ

]
dΓ dzm,

(24)

where Ω denotes the DC shell domain on the ξ−η surface, and Ω± denotes the top surface (ζ = h/2) and
the bottom one (ζ = −h/2) of the shell, in which Γσ and Γu denote the portions of the edge boundary,
in which the surface traction and elastic displacement components are prescribed, respectively

(i.e., t(m)
i = t

(m)
i and u(m)

i = u(m)
i , in which i = ξ, η, and ζ); B(σi j) is the complementary energy

density function.
In this formulation, we artificially divide the shell into a series of Nl finite layers and take the

elastic displacement components and transverse shear and normal stress components as the primary
variables subject to variation. A weak-form formulation can be derived by expressing the energy
functional in terms of the primary variables, and then letting the first-order variation of the Reissner
energy functional be zero, which yields

δΠR =
Nl∑

m=1

∫ hm/2
−hm/2

s
Ω

{ (
δε(m)

p

)T
σ(m)

p +
(
δε(m)

s

)T
σ(m)

s + δε
(m)
ζ
σ
(m)
ζ

+
(
δσ(m)

s

)T(
ε(m)

s −Q(m)
τ σ(m)

s

)
+δσ

(m)
ζ

[
ε
(m)
ζ
−

(
1/c(m)

33

)
σ
(m)
ζ

+
(
Q(m)
ζ

)T
ε(m)

p −

(
c(m)
α3 /c(m)

33

)
T(m)

] }
γα γβdα dβ dzm

−

Nl∑
m=1

∫ hm/2
−hm/2

∫
Γσ

(
t
(m)
ξ δu(m)

ξ
+ t

(m)
η δu(m)

η + t
(m)
ζ δu(m)

ζ

)
dΓ dzm

−

Nl∑
m=1

∫ hm/2
−hm/2

∫
Γu

[
(u(m)

ξ
− u(m)

ξ
) δ t(m)

ξ
+ (u(m)

η − u(m)
η ) δ t(m)

η + (u(m)
ζ
− u(m)

ζ
) δ t(m)

ζ

]
dΓ dzm

= 0,

(25)

where the superscript of T denotes the transposition of the matrices or vectors; and Γu and Γσ stand for
the boundary edges, in which the essential and natural conditions are prescribed. In addition,

ε(m)
p =

[
ε
(m)
ξ

ε
(m)
η γ

(m)
ξη

]T
= B(m)

1 u(m) + B(m)
2 w(m), (26)

ε(m)
s =

[
γ
(m)
ξ ζ

γ
(m)
η ζ

]T
= B(m)

3 u(m) + B(m)
4 w(m), ε

(m)
ζ

= B(m)
5 w(m), (27)

σ(m)
s =

[
τ
(m)
αζ

τ
(m)
βζ

]T
= B(m)

6 τ(m), σ
(m)
ζ

= B(m)
7 σ(m), (28)

σ(m)
p =

[
σ
(m)
ξ

σ
(m)
η τ

(m)
ξ η

]T
= Q(m)

p B(m)
1 u(m) + Q(m)

p B(m)
2 w(m) + Q(m)

ζ
B(m)

7 σ(m)
−Q(m)

α T(m), (29)

u(m) =


(
u(m)
ξ

)
i(

u(m)
η

)
i

, w(m) =
[(

u(m)
ζ

)
i

]
, τ(m) =


(
τ
(m)
ξ ζ

)
i(

τ
(m)
η ζ

)
i

, σ(m) =
[(
σ
(m)
ζ

)
i

]
, (30)
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Q(m)
τ =


(
c(m)

55

)−1
0

0
(
c(m)

44

)−1

, Q(m)
p =


Q(m)

11 Q(m)
12 0

Q(m)
12 Q(m)

22 0

0 0 Q(m)
66

, Q(m)
ζ

=


(
c(m)

13 /c(m)
33

)
(
c(m)

23 /c(m)
33

)
0

, (31)

Q(m)
α =


Q(m)
α 1

Q(m)
α 2
0

, B(m)
1 =



(
ψ
(m)
i /γξ

)
∂ξ 0

0
(
ψ
(m)
i /γη

)
∂η(

ψ
(m)
i /γη

)
∂η

(
ψ
(m)
i /γξ

)
∂ξ

, B(m)
2 =


(
ψ
(m)
i /Rξ γξ

)
(
ψ
(m)
i /Rη γη

)
0

, (32)

B(m)
3 =

 −
(
ψ
(m)
i /Rξ γξ

)
+ Dψ(m)

i 0

0 −

(
ψ
(m)
i /Rη γη

)
+ Dψ(m)

i

, B(m)
4 =


(
ψ
(m)
i /γξ

)
∂ξ(

ψ
(m)
i /γη

)
∂η

, (33)

B(m)
5 =

[
Dψ(m)

i

]
, B(m)

6 =

 ψ(m)
i 0

0 ψ
(m)
i

, B(m)
7 =

[
ψ
(m)
i

]
, (34)

where i = 1, 2, . . . , (n + 1), Q(m)

kl = c(m)

kl −

(
c(m)

k3 c(m)

l3 /c(m)
33

)
(k, l = 1 and 2), Q(m)

66 = c(m)
66 ,

Q(m)

α l = c(m)

α l −

(
c(m)
α3 c(m)

l3 /c(m)
33

)
(l = 1 and 2).

4.3. System Equations and Boundary Conditions

The thermoelastic static behavior of a simply supported, FGDC shell under thermal loads is studied
in the following illustrative examples, in which the temperature-independent material properties are
used. The applied thermal conditions on the top and bottom surfaces of the shell are mentioned in
Equations (13) and (14), and the traction free conditions are given as follows:[

τ
(Nl)
ξ ζ

(ξ, η, h/2) τ
(Nl)
η ζ

(ξ, η, h/2) σ
(Nl)
ζ

(ξ, η, h/2)
]
= [0 0 0] on the top surface, (35)

[
τ
(1)
ξ ζ

(ξ, η, −h/2) τ
(1)
η ζ

(ξ, η, −h/2) σ
(1)
ζ

(ξ, η, −h/2)
]
= [0 0 0] on the bottom surface. (36)

As mentioned before, the thermal conditions at the edges are T̂ = 300 K (or T = 0 K). In addition,
the edge boundary conditions of each individual layer are considered as fully simple supports, which
requires that the following quantities are satisfied.

u(m)
η = u(m)

ζ
= σ

(m)
ξ

= 0 at ξ = 0 and ξ = Lξ, (37)

u(m)
ξ

= u(m)
ζ

= σ
(m)
η = 0 at η = 0 and η = Lη, (38)

where m = 1, 2, ..., Nl.
The primary variables of each individual layer are expanded as the double Fourier series as follows:

(
u(m)
ξ

, τ(m)
ξ ζ

)
=

∞∑
m̂=1

∞∑
n̂=1

(
u(m)

m̂n̂ , τ(m)
13m̂n̂

)
cos m ξ sin n η, (39)

(
u(m)
η , τ(m)

η ζ

)
=

∞∑
m̂=1

∞∑
n̂=1

(
v(m)

m̂n̂ , τ(m)
23m̂n̂

)
sin m ξ cos n η, (40)

(
u(m)
ζ

, σ(m)
ζ

)
=

∞∑
m̂=1

∞∑
n̂=1

(
w(m)

m̂n̂ , σ(m)
3m̂n̂

)
sin m ξ sin n η, (41)
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where the edge boundary conditions of the FGDC shell are exactly satisfied.
Substituting Equations (39)–(41) in (25) and then imposing the stationary principle of the Reissner

energy functional (i.e., δΠR = 0), we finally obtain the system equations of the FGDC shell, as follows:

Nl∑
m=1


K(m)

I I K(m)
I II K(m)

I III K(m)
I IV

K(m)
II I K(m)

II II K(m)
II III K(m)

II IV
K(m)

III I K(m)
III II K(m)

III III 0

K(m)
IV I K(m)

IV II 0 K(m)
IV IV





¯
u
(m)

¯
w

(m)

τ(m)

σ(m)


=

Nl∑
m=1


F(m)

I
F(m)

II
0

F(m)
IV

 , (42)

where K(m)
I I =

∫ hm/2

−hm/2

 ¯
B
(m)

1

T

Q(m)
p

¯
B
(m)

1 γξ γη dzm, K(m)
I II =

∫ hm/2

−hm/2

 ¯
B
(m)

1

T

Q(m)
p B(m)

2 γξ γη dzm,

K(m)
I III =

∫ hm/2

−hm/2

(
B(m)

3

)T
B(m)

6 γξ γη dzm, K(m)
I IV =

∫ hm/2

−hm/2

 ¯
B
(m)

1

T

Q(m)
ζ

B(m)
7 γξ γη dzm,

K(m)
II II =

∫ hm/2

−hm/2

(
B(m)

2

)T
Q(m)

p B(m)
2 γξ γη dzm, K(m)

II III =

∫ hm/2

−hm/2

 ¯
B
(m)

4

T

B(m)
6 γξ γη dzm

K(m)
II IV =

∫ hm/2

−hm/2

[(
B(m)

5

)T
B(m)

7 +
(
B(m)

2

)T
Q(m)
ζ

B(m)
7

]
γξ γη dzm

K(m)
III III = −

∫ hm/2

−hm/2

(
B(m)

6

)T
Q(m)
τ B(m)

6 γξ γη dzm

K(m)
IV IV = −

∫ hm/2

−hm/2

(
B(m)

7

)T (
c(m)

33

)−1
B(m)

7 γξ γη dzm

K(m)
i j =

(
K(m)

j i

)T
(i, j = I, II, III, IV),

¯
B
(m)

1 =


−m

(
ψ
(m)
i /γξ

)
0

0 − n
(
ψ
(m)
i /γη

)
n

(
ψ
(m)
i /γη

)
m

(
ψ
(m)
i /γξ

)
,

¯
B
(m)

4 =

 m
(
ψ
(m)
i /γξ

)
n
(
ψ
(m)
i /γη

) ,

¯
u
(m)

=


(
u(m)

m̂n̂

)
i(

v(m)
m̂n̂

)
i

, ¯
w

(m)
=

[(
w(m)

m̂n̂

)
i

]
, τ(m) =


(
τ
(m)
13m̂n̂

)
i(

τ
(m)
23m̂n̂

)
i

, σ(m) =
[(
σ
(m)
3m̂n̂

)
i

]
,

F(m)
I =

∫ hm/2

−hm/2

 ¯
B
(m)

1

T

Q(m)
α T(m)

m̂ n̂ γξ γη dzm, F(m)
II =

∫ hm/2

−hm/2

(
B(m)

2

)T
Q(m)
α T(m)

m̂ n̂ γξ γη dzm

F(m)
IV =

∫ hm/2

−hm/2

(
B(m)

7

)T (
c(m)
α3 /c(m)

33

)
T(m)

m̂ n̂ γξ γη dzm

According to the above weak-form formulation, the authors can analyze the thermoelastic static
behavior of simply supported, FGDC shells when the thermal loads are applied, which means the
primary variables at each nodal surface can be determined, and subsequently the in-surface stress
components at the nodal surfaces can be obtained using the resulting primary variables.
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5. Illustrative Examples

In the following numerical examples the orders for expansions of the field variables in the
RMVT-based FDCL methods are defined to be identical to one another, which means the in- and
out-of-surface elastic displacements, and the transverse shear and normal stresses, are expanded as the
nth-order Lagrange polynomials in the thickness coordinate of each layer, and n is taken to be 1, 2, and
3 for the linear, quadrature, and cubic FLDC methods, respectively.

5.1. Sandwiched Composite Spherical Shells

The thermoelastic behavior of simply supported, sandwiched composite spherical shells under
the thermal loads has been investigated by Brischetto and Carrera [20] using various advanced
and refined shell theories deduced from the CUF, while Khare et al. [57] used the FSDT and HSDT,
in which the face sheets are made of the graphite-epoxy composite material, and the core is made of
an orthotropic elastic material. The through-thickness distribution of the temperature change was
directly given as T = (ζT11/h) sin m ξ sin n η, and m̂ = n̂ = 1. These solutions are thus used to
validate the accuracy and convergence rate of assorted RMVT-based FDCL methods. The lay-up
of the sandwiched spherical shell is [0◦/core/0◦]. The material properties of face sheets are given
as E1 = 172.37 GPa, E2 = E3 = 6.89 GPa, G12 = G13 = 3.45 GPa, G23 = 1.38 GPa, υ12 = υ13 =

υ23 = 0.25, α11 = α33 = 0.1 × 10−5 (1/◦C), and α22= 2 × 10−5 (1/◦C), and those of the core are
E1 = E2 = 0.28 GPa, E3 = 3.45 GPa, G12 = 0.11 GPa, G13 = G23 = 0.41 GPa, υ12 = υ13 = υ23 = 0.02,
α11 = α33 = 0.1× 10−6 (1/◦C), and α22= 2× 10−5 (1/◦C). The material properties in this example are
assumed to be temperature-independent.

The geometric parameters of the shell are Lξ = Lη = 1 m, h = 0.25 m, h1 : h2 : h3 = 0.1h : 0.8h : 0.1h
and Rξ = Rη = 5 m, 10 m, 20 m and∞ (plate). A set of dimensionless variables is defined as follows:[

ûξ, ûη, ûζ
]
=

[
uξ

(
0, Lη/2, ζ

)
, uη(Lξ/2, 0, ζ), uζ

(
Lξ/2, Lη/2, ζ

)] (
10h/α̂1 T11 L2

ξ

)
, (43)[

σ̂ξ, σ̂η, τ̂ξη
]
=

[
σξ

(
Lξ/2, Lη/2, ζ

)
, ση

(
Lξ/2, Lη/2, ζ

)
, τξη(0, 0, ζ)

] (
10h/α̂1 T11 Ê1 Lξ

)
, (44)[

τ̂ξζ, τ̂ηζ, σ̂ζ
]
=

[
τξζ

(
0, Lη/2, ζ

)
, τηζ(Lξ/2, 0, ζ), σζ

(
Lξ/2, Lη/2, ζ

)] (
10h/α̂1 T11 Ê1 Lξ

)
, (45)

where α̂1= 1× 10−6 (1/◦C) and Ê1 = 1 GPa.
Table 1 shows the linear-, quadratic-, and cubic-order solutions of the RMVT-based FDCL methods

for the out-of-surface displacement components induced at certain positions of the thick sandwiched
spherical shell, in which N f and Nc denote the number of divided layers of face sheets and core,
respectively, such that Nl = 2N f + Nc. It can be seen in Table 1 that various RMVT-based FDCL
methods converge rapidly, and the convergent solutions are obtained when (N f , Nc) are taken as
(N f , Nc) = (4, 16), (2, 8), and (1, 2) for linear, quadratic, and cubic FDCL methods, respectively, on
the basis of the same four digits after the decimal point. The performance of these FDCL methods
is the cubic FDCL method > quadrature FDCL method > linear FDCL method, in which the symbol
“>” means a more accurate result and a faster convergence rate. These convergent solutions are also
compared with those obtained using the CLT [20], FSDT [20,57], HSDT [57], ESLTs with first-, second-,
third-, and fourth-orders (i.e., ED1, ED2, ED3, and ED4) [20], various ESLTs combined with Murakami’s
zig-zag function [58] (i.e., EDZ1, EDZ2, and EDZ3) [20] and layer-wise linear, quadratic, cubic, and
quartic theories (i.e., LD1, LD2, LD3, and LD4) [20]. The results show the convergent solutions of FDCL
methods are in excellent agreement with the closed-form solutions of layer-wise cubic and quartic
theories, and the accuracy of the advanced and refined theories is LD theories > EDZ theories > ED
theories when the orders used to expand the field variables through the thickness direction remain the
same, in which the symbol “>” means more accurate. In addition, the out-of-surface displacement
decreases when the curvature radius of the sandwiched spherical shell becomes smaller, which also
means when the shell becomes a deeper shell.
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Figure 3 shows the through-thickness distributions of displacement and stress components
induced in the sandwiched spherical shells, in which Lξ = Lη, Rξ = Rη, Rξ/Lη = 5, and Lξ/h = 5
(thick shell), 10 (moderately thick shell), and 20 (thin shell). In the case of homogeneous sandwiched
spherical shells, the through-thickness distributions of out-of-surface and in-surface displacements
appear to be global linear and layer-wise linear functions, respectively, while those of in-surface
and out-of-surface stress components are layer-wise linear and layer-wise higher-order polynomial
functions. The in-surface stresses are discontinuous when crossing over the interfaces between adjacent
layers, because the material properties are dissimilar to each other for the bottom surface of the upper
layer and the top surface of the lower layer, which might result in a matrix cracking failure at the
face sheet-core interfaces. In addition, the transverse shear and normal stresses are shown to be
concentrated at the face sheet-core interfaces, which might cause delamination damage.

Table 1. Results of convergence and accuracy studies for the dimensionless deflections induced in thick
sandwiched spherical shells ([0◦/core/0◦]) under a thermal load.

Theories
(Nl=2Nf+Nc)

Rξ/Lξ=5 Rξ/Lξ=10 Rξ/Lξ=20 Rξ/Lξ=∞
(Plates)

Linear FDCL method
(N f = 1, Nc = 1) 4.3444 4.3683 4.3744 4.3764
(N f = 1, Nc = 2) 4.3518 4.375 4.3809 4.3828
(N f = 1, Nc = 4) 4.3422 4.3656 4.3715 4.3734
(N f = 2, Nc = 8) 4.3497 4.3732 4.3791 4.3811
(N f = 4, Nc = 8) 4.3498 4.3733 4.3792 4.3811
(N f = 4, Nc = 16) 4.3496 4.373 4.3789 4.3809

Quadratic FDCL method
(N f = 1, Nc = 1) 4.3493 4.3728 4.3787 4.3806
(N f = 1, Nc = 2) 4.3494 4.3728 4.3787 4.3807
(N f = 1, Nc = 4) 4.3495 4.373 4.3789 4.3808
(N f = 2, Nc = 8) 4.3496 4.373 4.3789 4.3809

Cubic FDCL method
(N f = 1, Nc = 1) 4.3497 4.3731 4.379 4.381
(N f = 1, Nc = 2) 4.3496 4.373 4.3789 4.3809
(N f = 1, Nc = 4) 4.3496 4.373 4.3789 4.3809
(N f = 2, Nc = 8) 4.3496 4.373 4.3789 4.3809
CLT [20] 1.8043 1.8025 1.8021 1.8019
FSDT [20] 3.1472 3.1632 3.1672 3.1685
FSDT [57] 3.2618 3.2745 3.2775 3.2784
HSDT [57] 4.2032 4.2343 3.2422 4.2448
ED1 [20] 3.1466 3.1631 3.1672 3.1685
ED2 [20] 3.0306 3.0471 3.0512 3.0525
ED3 [20] 4.1867 4.2308 4.2419 4.2456
ED4 [20] 4.1928 4.236 4.2469 4.2505
EDZ1 [20] 4.3705 4.419 4.4312 4.4352
EDZ2 [20] 4.3228 4.372 4.3843 4.3885
EDZ3 [20] 4.3261 4.3754 4.3878 4.3919
LD1 [20] 4.3417 4.3653 4.3712 4.3732
LD2 [20] 4.342 4.3651 4.3709 4.3729
LD3 [20] 4.3427 4.3658 4.3716 4.3736
LD4 [20] 4.3426 4.3657 4.3715 4.3735
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displacement; (c) In-surface normal stress; (d) In-surface shear stress; (e) Transverse shear stress; (f)
Transverse normal stress.

5.2. FG Cylindrical Shells

The thermoelastic behavior of a simply supported, FG cylindrical shell under a thermal load
has been investigated by Cinefra et al. [25] using various layer-wise theories and a quasi-3D theory
deduced from the CUF, in which the through-thickness distribution of the temperature change of
the shell was obtained by performing a heat conduction analysis of it. The specified temperature

changes on the top and bottom surfaces are given as T
+
= T11 sin m ξ sin n η and T

−

= 0, respectively,
in which m̂ = n̂ = 1. The FG cylindrical shell was made of a two-phase composite material, with
the particulate-phase material being ceramic zirconia (ZrO2) and the matrix-phase material being
nickel-based alloy (Monel, 70Ni-30Cu). The volume fractions of the ceramic and metal materials
(i.e., Vc(ζ) and Vm(ζ)) are taken to be Vc(ζ) = [(ζ+ 0.5h)/h]κp and Vm(ζ) = 1 − Vc(ζ), in which
the subscripts m and c denote the metal and ceramic materials, respectively, while the effective
material properties are estimated using the Mori–Tanaka micromechanics scheme [33]. The material
properties of these two phase materials [23,32] are given as Bm = 227.24 GPa, Gm = 65.55 GPa,
αm = 15× 10−6 (1/K), λm = 25 W/mK, and Bc = 125.83 GPa, Gc = 58.08 GPa, αc = 10× 10−6 (1/K),
λc = 2.09 W/mK. The material properties in this example are assumed to be temperature-independent.
The geometric parameters of the shell are Lξ = 1 m, Lη = (10π/3)m, Rξ →∞m, Rη = 10 m, and
Rη/h = 50 and 1000.
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The dimensionless variables are defined as follows:[
uξ, uη, uζ

]
=

[
uξ

(
0, Lη/2, ζ

)
, uη(Lξ/2, 0, ζ), uζ

(
Lξ/2, Lη/2, ζ

)]
(1/α1 T11 Lξ), (46)[

σξ, ση, τξη
]
=

[
σξ

(
Lξ/2, Lη/2, ζ

)
, ση

(
Lξ/2, Lη/2, ζ

)
, τξη(0, 0, ζ)

] (
1/α1 T11 B

)
, (47)[

τξζ, τηζ, σζ
]
=

[
τξζ

(
0, Lη/2, ζ

)
, τηζ(Lξ/2, 0, ζ), σζ

(
Lξ/2, Lη/2, ζ

)] (
1/α1 T11 B

)
, (48)

where α1 = 1× 10−6 (1/K) and B = 1 GPa.
Table 2 shows the results of cubic FDCL methods for various field variables induced in the

shell, in which κp = 2. The convergent solutions are obtained when the number of divided layers
is taken to be 40, and the relative errors of various field variables are below 0.9% as compared
with the 400-layer solutions. The convergence rate of various field variables in the case of the
shell with Lξ/h = 5 and Rξ/h = 50 is slightly slower than that in the case of case of the shell with
Lξ/h = 5 and Rξ/h = 1000. These convergent solutions are also shown to be in excellent agreement
with the solutions of the LD14 method [25] and the quasi-3D theory [25].

Figure 4 shows the through-thickness distributions of assorted field variables induced in the
single-layered FG cylindrical shell, in which Lξ/h = 5, Rξ/h = 50, and κp = 2, 1 and 0.5. It can be seen
in Figure 4a that the distributions of the temperature change of the FG cylindrical shell appear to be
higher-order polynomial functions through the thickness direction, rather than the linear function in
the case of homogeneous sandwiched shell. The results in Figure 4b–f also show the through-thickness
distributions of thermal deformations and thermal stresses are higher-order polynomial functions, and
the trend of the distributions of transverse shear and normal stresses is much steeper than that of the
distributions of thermal deformations and in-surface stresses.

Table 2. Results of cubic FDCL methods for various field variables induced in a single-layered FGDC
shell under a thermal load.

Rη/h Cubic FDCL
Methods ûξ(ζ=0.5h) ûξ(ζ=−0.5h) ûζ(ζ=0.5h) σ̂η(ζ=0.5h) τ̂ξζ(ζ=0) σ̂ζ(ζ=0)

50

Nl = 10 −3.6818 0.5008 7.4042 −1444.4 27.552 5.2791
Nl = 20 −3.5948 0.4855 7.2241 −1461.3 26.87 5.1512
Nl = 40 −3.5685 0.4807 7.1693 −1466.5 26.643 5.0905
Nl = 80 −3.5614 0.4794 7.1546 −1467.8 26.5804 5.0744
Nl = 400 −3.5591 0.4789 7.1498 −1468.3 26.56 5.0692
LD2 [25] −4.162 0.9074 8.8684 −1409.8 −7.3846 319.18
LD8 [25] −3.5545 0.488 7.1548 −1470.8 26.664 7.5271
LD14 [25] −3.5477 0.4837 7.1361 −1470.4 26.459 5.1982
Quasi-3D [25] −3.5466 0.4833 7.1337 −1481.4 26.448 5.0753

1000

Nl = 10 −1.8435 −0.4301 45.001 −1127.2 −5.4085 0.2023
Nl = 20 −1.8033 −0.4214 44 −1150 −5.2768 0.245
Nl = 40 −1.7913 −0.4188 43.7 −1156.9 −5.2373 0.24
Nl = 80 −1.7881 −0.4181 43.62 −1158.7 −5.2268 0.2393
Nl = 400 −1.787 −0.4179 43.593 −1159.3 −5.2233 0.2391
LD2 [25] −1.8872 −0.3785 48.034 −1098.6 −6.6837 259.6
LD8 [25] −1.7886 −0.4176 43.653 −1159.3 −5.2415 −1.7681
LD14 [25] −1.7871 −0.4178 43.6 −1159.2 −5.2262 0.3165
Quasi-3D [25] −1.7868 −0.4178 43.59 −1170.2 −5.2242 0.2428
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Figure 4. Through-thickness distributions of thermal and elastic field variables induced in an FG
cylindrical shell with different values of κp. (a) Temperature; (b) Out-of-surface displacement;
(c) In-surface normal stress; (d) In-surface shear stress; (e) Transverse shear stress; (f) Transverse
normal stress.

5.3. FGDC Shells

In the previous two Sections, the FDCL methods with linear-, quadratic-, and cubic-orders are
validated by comparing their solutions with the quasi-3D and accurate 2D solutions available in the
literature, in which the material properties of the shells are considered to remain at room temperature
(T̂ = 300 K). In this section, the authors investigate the thermoelastic behavior of simply supported,
FGDC shells. The DC shell is made of the two-phase composite material, in which the particulate-phase
material is ceramic zirconia and the matrix-phase material is metal Ti-6Al-4V, the TD material properties
of which are given in the form of

P = P0
[(

P−1/T̂
)
+ 1 +

(
P1T̂

)
+

(
P2T̂2

)
+

(
P3T̂3

)]
, (49)

where P denotes various material properties, such as E, υ, α, and λ, as well as the values of coefficients
Pi (i = −1, 0, 1, 2 and 3) are listed in Table 3 [34].

The surface thermal conditions of the shell and dimensionless variables are the same as those
used in the previous Section, i.e., Equations (39)–(41). The thermal conditions of the top and bottom

surfaces of the shell are T
+
= T11 sin m ξ sin n η and T

−

= 0, respectively, in which m̂ = n̂ = 1 and
T11 = 300 K, and the cubic FDCL method is used.

Figure 5 shows the through-thickness distributions of assorted field variables induced in the
FGDC shell, in which the geometric parameters of the shell are Lξ = Lη = 1 m , Rξ = Rη = 5 m, and
h = 0.2 m, in which the power–law model is used and the values of κp = 0.5, 1, and 2. It can be seen in
Figure 5 that various displacement and stress components induced in the FGDC shell appear to be
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higher-order polynomial functions, which obviously differs from those distributions assumed in CST
and FSDT.

Table 3. Temperature-dependent material properties of metal and ceramic materials (Ti-6Al-4V
and zirconia), in which P = P0

⌊(
P−1/T̂

)
+ 1 +

(
P1 T̂

)
+

(
P2 T̂2

)
+

(
P3 T̂3

)⌋
, and T̂ denotes the current

temperature and its unit is K.

Materials Properties P(T) P0 P−1 P1 P2 P3

Zirconia [34]

E (GPa) 244.27 0 −1.371 × 10−3 1.214 × 10−6
−3.681 × 10−10

ν 0.2882 0 1.133 × 10−4 0 0
α (1/K) 12.766 × 10−6 0 −1.491 × 10−3 1.00 × 10−5

−6.778 × 10−11

λ (W/m K) 1.7000 0 1.276 × 10−4 6.648 × 10−8 0

Ti-6Al-4V [34]

E (GPa) 122.56 0 −4.586 × 10−4 0 0
ν 0.2884 0 1.121 × 10−4 0 0

α (1/K) 7.5788 × 10−6 0 6.638 × 10−4
−3.147 × 10−6 0

λ (W/m K) 1.0000 0 1.704 × 10−2 0 0J. Compos. Sci. 2019, 3, x 16 of 20 
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increase when the shell becomes thicker. The effects of the transverse shear and normal stresses must 
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stress; (d) In-surface shear stress; (e) Transverse shear stress; (f) Transverse normal stress.

Figure 6 shows the through-thickness distributions of thermal and elastic field variables induced
in the FGDC shells, in which κp = 1.5, Lξ = Lη = 1 m, Rξ = Rη = 5 m, and Lξ/h = 5, 10 and 20, which
are the thick, moderately thick, and thin shells, respectively. It can be seen in Figure 6 that the effects
of length-to-thickness ratio on the thermal field variables are minor, while those on the elastic field
variables are significant, especially on the elastic deformation, transverse shear stress, and transverse
normal stress components. The magnitude order of the various elastic field variables is in-surface
stress components (σξ and τξη) > transverse shear stress component (τξζ) > transverse normal stress
component (σζ). It is clear that the transverse shear and normal stress components increase when the
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shell becomes thicker. The effects of the transverse shear and normal stresses must thus be taken into
account in the thermoelastic analysis of the FGDC shell when it becomes thicker.
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6. Concluding Remarks

In this work, the authors develop a unified formulation of RMVT-based FDCL methods with
various orders to investigate the thermoelastic behavior of simply supported, laminated composite
and FGDC shells, and subjected to thermal loads. Implementation of assorted RMVT-based FDCL
methods shows the current FDCL methods converge rapidly, and their convergent solutions are in
excellent agreement with the quasi-3D and accurate 2D solutions available in the literature. The
through-thickness distributions of thermal and elastic field variables induced in the laminated composite
shells appear to be layer-wise linear functions for the displacement and in-surface stress components,
while they are higher-order polynomial functions for the transverse shear and stress components.
In contrast, the through-thickness distributions of thermal and elastic field variables induced in the
FGDC shells appear to be higher-order polynomial functions for all field variables. The results reveal
the above-mentioned through-thickness distributions of field variables induced in FGDC shells are
inconsistent with the kinematic assumptions of the existing 2D equivalent single-layered shell theories,
and development of a specific advanced 2D shell theory for the FG shells is thus needed. Because
the current cubic FDCL methods are demonstrated to be superior to the quadrature and linear ones,
the layerwise third-order deformation theory may be a potential candidate for the future study of
FGDC shells.
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