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Abstract: Recent advances in Fused Filament Fabrication (FFF) include large material deposition
rates and the addition of chopped carbon fibers to the filament feedstock. During processing, the flow
field within the polymer melt orients the fiber suspension, which is important to quantify as the
underlying fiber orientation influences the mechanical and thermal properties. This paper investigates
the correlation between processing conditions and the resulting locally varying thermal-structural
properties that dictate both the final part performance and part dimensionality. The flow domain
includes both the confined and unconfined flow indicative of the extruder nozzle within the FFF
deposition process. The resulting orientation is obtained through two different isotropic rotary
diffusion models, the model by Folgar and Tucker and that of Wang et al., and a comparison is made
to demonstrate the sensitivity of the deposited bead’s spatially varying orientation as well as the
final processed part’s thermal-structural performance. The results indicate the sensitivity of the final
part behavior is quite sensitive to the choice of the slowness parameter in the Wang et al. model.
Results also show the need, albeit less than that of the choice of fiber interaction model, to include the
extrudate swell and deposition within the flow domain.

Keywords: additive manufacturing; short-fiber reinforcement; fiber orientation modeling; fiber interactions

1. Introduction

Fused Filament Fabrication (FFF) is an Additive Manufacturing (AM) technology that extrudes
beads of thermoplastic materials onto a moving substrate, layer by layer, based on a digital
three-dimensional model. Since its introduction nearly three decades ago, FFF (sometimes called Fused
Deposition Modeling or FDMTM) has become one of the fastest growing forms of AM. An attractive
feature of FFF as compared to other AM systems is material selection (see e.g., [1]). While this
advantage is responsible, in part, for the growth of FFF, the lack of structural materials and scalability
to industrially relevant volumes are limiting factors that must be overcome in order to realize
widespread application of AM systems. Recently, large scale FFF processes such as the Big Area
Additive Manufacturing (BAAM) process developed at the Manufacturing Demonstration Facility
(MDF) at Oak Ridge National Laboratories has significantly increased build volume. In addition, fiber
reinforcements have recently been introduced in FFF systems to reduce distortion and improve the
mechanical performance of the final part, particularly in the Z- or through-thickness direction where
they are weak. This work seeks to quantify the intra-layer structural and thermal performance of
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the deposited bead. The inter-layer performance is another significant consideration, and there are
a variety of authors who have presented methods to improve the inter-layer bonding strength such as
tamping (see e.g., [2,3]), infrared preheating (see e.g., [4]), and plasma treating (see e.g., [5]).

Fiber reinforced matrix (FRM) composites are used in many industries using multiple manufacturing
processes. For example, FRM composites have been used in construction for many years (see e.g., [6]).
They have also been used in the aerospace and medical industries (see e.g., [7–9]). In addition, the use
of short-fiber reinforced composites is widely prevalent throughout the injection and compression
molding community and is the most closely related field to the present work. The significant difference
between the presented work and previous modeling efforts of molding processes is that FFF systems
have a closed cavity flow followed by an unconfined expansion with a subsequent confined boundary
from the moving plate.

With the recent advances of large scale FFF, the use of fiber reinforcements in the AM process is
a viable option for increasing the performance of AM parts (see e.g., [10,11]). The process of blending
short, chopped fibers into a polymer melt coupled with the freeform nature of AM allows for the
fabrication of complex and intricate parts with the potential for improved structural performance
and with a geometric complexity previously unavailable. A key aspect to realize this vision is
understanding the impact of the nozzle, both its geometry and position relative to the moving platen,
on the internal fiber orientation state within the deposited bead and, by extension, the part’s final
stiffness. The thermo-mechanical behavior of the bead is also quite critical as the deposition process
induces large thermal gradients during fabrication and can impact the final part’s dimensionality.
To quantify a-priori the distortion of the entire fabricated product, the spatially and directionally
varying anisotropic stiffness and coefficient of thermal expansion tensors would be required. This work
seeks to present a method to predict the anisotropic stiffness and thermal expansion tensors due to
local variations in the fiber microstructure. The results from this paper can be used in a full scale
simulation of the macroscopic fabricated product, and the methodology presented in this work can be
used by designers in establishing new nozzle designs for the extruder to tailor the properties of the
deposited bead.

Fiber microstructure predictions in a short-fiber reinforced polymer composite require an accurate
understanding of the relationship between the fiber kinetics and the flow kinematics. There is an extensive
body of literature to address the relationship between the local fiber orientation kinetics and the
surrounding velocity field (see e.g., [12–19]). Several authors have developed methods for predicting
part stiffness and thermal conductivity as a function of local fiber orientation in the hardened polymer
melt (see e.g., [13,20–22]). Most fiber kinetics models are based on the motion of individual ellipsoids in
a dilute Newtonian solvent as constructed by Jeffery [23]. It is unfeasible to track the motion of every
fiber within a suspension, thus the fiber orientation distribution function (ODF) is often more desirable.
The full ODF has been solved using control volumes (see e.g., Bay [24]) or the computationally efficient
and numerically exact spherical harmonics (see e.g., Montgomery-Smith et al. [25]). Flow kinematics
are coupled to the fiber orientation state in densely packed flows (see e.g., [26,27]) and several authors
have performed numerical solutions for fully coupled flows (see e.g., [28,29]). In the present study, flow
kinematics are decoupled from the fiber orientation state similar to what is often done in injection molding
simulations (see e.g., [17,29–31]). This work focuses on the impact that the swell of the extrudate has on
the final orientation state.

The kinetic equation for the ODF may be used to describe the concentrated suspension behavior of
interacting fibers through the addition of a rotary diffusivity term Dr as generalized by Bird et al. [32]
for the related system of polymer chain alignment. The Folgar and Tucker [12] isotropic rotary diffusion
(IRD) model to represent fiber interactions has been widely used for more than three decades. Recent
studies demonstrate the IRD model predicts fiber alignment occurs at a rate faster than that observed
experimentally and several authors have sought to address this limitation (see e.g., [15,17,18,33,34]).
The strain-reduction factor model of Huynh [16] sought to reduce the alignment rate by a scaling
parameter pre-multiplied on the equation of motion. The reduced strain closure model (IRD-RSC)
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of Wang et al. [17] expanded the Huynh [16] approach by reducing the rate of fiber alignment by
operating exclusively on the eigenvalues of the orientation tensors and thus is invariant with respect
to the chosen coordinate frame. Recently Phelps and Tucker [18] introduced the anisotropic rotary
diffusion model (ARD) which introduces a directional dependence to fiber interactions and has been
shown to be quite effective for select long-fiber systems. Unfortunately, the general behavior of the
five ARD empirical coefficients as a function of the polymer melt and fiber packing is not yet well
understood in the literature. Strautins and Latz [35] introduced a computationally efficient form for
flexible fibers using the moments of the orientation distribution, and Ortman et al. [19] extended their
work to allow fiber interactions using a strain-reduction extension of the IRD model based on the
work of Sepehr et al. [34]. The current paper focuses on short, rigid fibers within a polymer melt and
compares results between the classical IRD model and the recent IRD-RSC model. Particular focus is
given to the sensitivity of the processed orientation state to the interaction coefficient CI within both
models and the slow-down parameter κ in the IRD-RSC model.

One objective of predicting the fiber orientation is to determine the mechanical performance of
the deposited bead. Advani and Tucker [13] linked the stiffness of the solidified part to the local fiber
microstructure using an orientation homogenization approach. In Jack and Smith [22] closed form
expressions for the stiffness expectation and variance were derived using complex spherical harmonics.
Nguyen et al. [36] performed a comparison between the E1 and E2 predicted by the IRD-RSC model
and tensile tests. Recently Nguyen et al. [31] used the ARD model to predict the fiber orientation
and the subsequent stress response for an injection molded long fiber thermoplastic. This work was
extended by Agboola et al. [37] to investigate the impact the choice of fiber interaction model has
on the expected macroscopic stiffness of a simple two dimensional part. Recently Stair and Jack [38]
demonstrated the effectiveness of taking the measured properties of the neat polymer and fibers to
predict both the locally varying stiffness and Coefficient of Thermal Expansion (CTE) tensors and
then used this information to successfully predict the part warpage of laminated composites due
to processing.

The current paper presents a computational approach that extends the work of Agboola et al. [37]
and Stair and Jack [38] for related composite systems to predict the stiffness and CTE tensors for the
deposited bead of a fiber reinforced polymer bead fabricated using the large volume FFF process.
Results are presented based on predictions of the spatially varying fiber orientation obtained from
process simulations that include the nozzle, die-swell and subsequent deposition and the constitutive
properties of the neat polymer and individual fibers. A method is presented to predict the spatially
varying, bulk stiffness tensors and CTE tensors for the beads for results from the IRD and the IRD-RSC
fiber interaction models to determine the sensitivity of the final part performance to variations in fiber
interaction parameters.

2. Fiber Orientation Modeling

The foundational work of Jeffery [23] describes the orientation change of a rigid and mass-less
ellipsoidal particle in a fluid. The particle direction is defined by p, a unit vector along the fiber
longitudinal axis. While Jeffery’s equation is effective for the motion of a single fiber in a Newtonian
solvent, it cannot adequately capture the motion of interacting fibers. Folgar and Tucker [12] applied
the probability density distribution function for the orientation of fibers, labeled as ψ (p). For a dense
suspension of interacting fibers the equation of motion is cast in a form, which is similar to the
expression initially used for polymer chain alignment developed by Bird et al. [32], as

Dψ

Dt
= −1

2
∇p · (Ω · p + λ (Γ · p− λΓ : ppp)ψ) +∇p · ∇p(Drψ) (1)

where the response to fiber interactions is contained within the rotary diffusivity term Dr, often expressed
as a function of ψ (p) and the cartesian gradient of the suspension velocity v (see, e.g., [12,15,18]).
In Equation (1), ∇p is the gradient operator in orientation space, and λ relates to the fiber aspect ratio
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(see e.g., Zhang et al. [39]). In Equation (1) Ω is the vorticity tensor Ω = [(∇v)− (∇v)T ], Γ is the rate of
deformation tensor Γ = [(∇v) + (∇v)T ], and D

Dt is the material derivative defined as D
Dt =

∂
∂t + v · ∇,

where ∇ is the gradient operator in cartesian space. Solutions of ψ(p, t) often take minutes to hours
of computational time for a single streamline using control volume methods, but spherical harmonic
methods (see e.g., Montgomery-Smith et al. [25]) reduce the computational time by several orders of
magnitude. Unfortunately neither approach is easily mapped to a finite element form, thus precluding
their use in complex geometries. This later issue is often addressed using the moments of ψ (p), called
the orientation tensors, as used by Advani and Tucker [13] who define the second-order orientation
tensor A and the fourth-order orientation tensor A as, respectively,

A =
∫
S

ppψ(p)dS, A =
∫
S

ppppψ(p)dS (2)

where S is the surface of the unit sphere. The moments in orientation space have the interpretation
similar to the moments of a one-dimensional probability distribution function, thus the first moment
(called the expectation in one dimension) has the analogy of the mean and the second moment would
be similar to the variance or the spread. As the fiber orientation distribution function is symmetric,
all odd ordered moments will yield the zero tensor of the respective order, we will limit the discussion
to the even ordered orientation tensors. The orientation equation of motion for ψ (p) from Equation (1)
can be recast in terms of the orientation tensors as

DA
Dt

=−1
2
(Ω·A−A·Ω)+

1
2

λ(Γ·A+A·Γ−2A : Γ) +D [A] (3)

where D [A] is the diffusion component of Equation (1) describing fiber interactions. The orientation
tensor form allows solutions for the spatially varying fiber orientation to be readily incorporated into
industrial finite element codes with the drawback that the higher-order orientation tensor is contained
within the equation of motion for the lower ordered orientation tensor. This is observed in Equation (3) for
the equation of motion for A that contains A. This necessitates the need for a closure by which the higher
order orientation tensor is approximated as a function of a lower order tensor, i.e., A = f (A). There
exist many closure approximations in the literature of A in terms of A (see e.g., [13,14,28,40–46] to list just
a few) and several for the sixth-order orientation tensor (see e.g., [30,47,48]). Montgomery-Smith et al. [45]
demonstrated that the orthotropic fitted (ORT) closure implemented by VerWeyst and Tucker [28] and the
fast exact closure (FEC) [45] are the most accurate. In the current paper, we present orientation results
obtained using an ORT closure.

2.1. Fiber Interactions: Isotropic Rotary Diffusion (IRD)

One of the most widely used models to predict the behavior of short fiber interactions is the
isotropic rotary diffusion (IRD) model of Folgar and Tucker [12] where D [A] of Equation (3) is
expressed as

D[A] = CIγ(2I− 6A) (4)

where γ is the scalar magnitude of the rate of deformation γ =
√

Γ : Γ/2 and CI is an empirically
measured parameter termed the interaction coefficient. The isotropic rotary diffusion model assumes
that all fibers within the melt interact with neighboring fibers in the same way, regardless of the
surrounding orientation state of the fibers. The interaction coefficient is often found by matching the
orientation observations of the steady state orientation in a pure shearing flow with those predicted
by solutions of Equation (3). The value for the interaction coefficient is often obtained through the
use of either measuring the resulting orientation state using sectioning (see e.g., [49]) and fitting the
flow prediction results to that of the measured orientation state or through transient shear rheology
and coupling the orientation state with that of the effective shear stress solution for concentrated
suspensions (see e.g., [17]). The resulting value of the interaction coefficient will be different for
different polymers and different packing densities. Regardless, authors typically present values for
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CI between 10−4 and 10−2 and their results show that CI is an increasing function of fiber packing
density, the fiber aspect ratio, and the viscosity of the polymer matrix. The IRD results predict the
steady state orientation with reasonable accuracy with the proper selection of CI , and for several
decades this model was considered the standard for use in industrial simulations of fiber motion.
Recent work, such as that of Huynh’s thesis [16], Sepehr et al. [34] and Wang et al. [17], demonstrated
that the alignment rate predicted by the IRD was faster than that observed experimentally. Of note
in the present context is that the velocity gradients are continually changing within the FFF nozzle
and subsequent deposition and then the flow immediately ceases prior to a steady state orientation
being attained.

2.2. Fiber Interactions: Isotropic Rotary Diffusion—Reduced Strain Closure (IRD-RSC)

The isotropic rotary diffusion model with the reduced strain closure (IRD-RSC) developed by
Wang et al. [17] controls the rate of change of the predicted fiber orientation through an empirical
scaling parameter 0 ≤ κ ≤ 1 in an objective manner by providing mathematical diffusion exclusively
on the eigenvalues of the orientation tensor A as [17]

DIRD-RSC = −2 (1− κ) (L−M : A) : Γ+ 2κCIγ (I− 3A) (5)

where L and M are expressed in terms of the eigenvalues αi and the unit eigenvectors ei of the second
order orientation tensor defined as [17]

L =
3

∑
i=1

αieieieiei, M =
3

∑
i=1

eieieiei (6)

While the RSC is termed the reduced strain closure, it is not a closure in the context of Equation (3)
as it is not an approximation of the fourth order orientation tensor. The fourth order orientation
tensor remains explicit in Equation (3), both through the Jeffery component and the fiber interaction
component and a closure is still required to solve DA/Dt. The IRD and IRD-RSC for the same choice
of CI achieve a similar steady state orientation so methods to capture CI from experimental data for
the IRD model remain applicable. The parameter κ can be fit to experimental observations during the
transient alignment state and has been determined using rheological studies (see e.g., [17]) with values
reported in the literature ranging between κ = 1/30 and κ = 1 for different fiber-polymer blends.

2.3. Mechanical Stiffness Tensor Predictions from Orientation

The homogenization approach for stiffness first proposed by Advani and Tucker [13] translates
the constitutive behavior of the fiber and the matrix along with the spatially varying orientation
distribution information to locally varying effective mechanical properties. This approach is derived
in detail in [22] and was shown to extend to orthotropic reinforcement materials. The local stiffness〈

Cijkl

〉
may be expressed as [13]

〈
Cijkl

〉
= B1 Aijkl + B2(Aijδkl + Aklδij) + B3(Aikδjl + Ailδjkδjl + Ajlδikδjl + Ajkδil)

+B4(δijδkl) + B5(δikδjl + δilδjk)
(7)

where δij is the Kronecker delta, Aij is A in component form, Aijkl is A in component form, and the Bm

terms are given as [13]
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B1 = C1111 + C2222 − 2C1122 − 4C1212 B4 = C2233

B2 = C1122 − C2233 B5 = 1
2 (C2222 + C2233)

B3 = C1212 +
1
2 (C2233 − 2C2222)

(8)

where Cijkl in Equation (8) indicates the (i, j, k, l) component of the underlying unidirectional composite
stiffness tensor defined in its principal material reference frame. In Equation (7), it can be seen that
the material stiffness is a function of the second and the fourth-order orientation tensors as well as the
underlying stiffness tensor of the unidirectional composite. The homogenization equation is constructed
for dilute and semi-dilute suspensions as stress concentrations due to the fiber inclusions [13,22] are
neglected. However, it was demonstrated in Caselman [50] that this approach yields reasonable results
for both semi-concentrated and the low range of concentrated suspensions as well.

There are many options for the choice of micromechanics model used to calculate the unidirectional
composite stiffness Cijkl for the homogenization in Equation (7). The Halpin-Tsai micromechanics
model [51], which is based on laminate theory, is a concise approach for aligned short fiber composites.
However, as indicated in the work of Tucker and Liang [52], this approach is ineffective for the aspect
ratios found in typical short-fiber composites, whereas the Tandon-Weng [53] and Lielens [54] models
are quite effective (see e.g., [52]). Using the closed form suggested by Tucker and Liang [52], as expressed
in Zhang [55], the Tandon-Weng micromechanics theory yields one of the most accurate set of solutions
over the range of aspect ratios found in short-fiber composites and is used in the present study.

2.4. CTE Tensor Predictions from Orientation

The second order, homogenized CTE tensor αij may be found from Camacho et al. [20] as

〈
αij
〉
=
〈

Cijklαkl

〉 〈
Cijkl

〉−1
(9)

In this equation,
〈

Cijkl

〉−1
is the inverse of

〈
Cijkl

〉
from Equation (7), which therefore must be

determined prior to solving Equation (9). Calculating
〈

Cijkl

〉−1
involves converting

〈
Cijkl

〉
into its

contracted form, a 6× 6 matrix, inverting the contracted stiffness, and then converting the inverted
6× 6 stiffness matrix back into a full fourth order tensor. Equation (9) also involves the term

〈
Cijklαkl

〉
which may be found from 〈

Cijklαkl

〉
= D1 Aij + D2δij (10)

where

D1 = A1 (B1 + B2 + 4B3 + B5) + A2 (B1 + 3B2 + 4B3)

D2 = A1 (B2 + B4) + A2 (B2 + 3B4 + B5)
(11)

In Equation (11), the Bi quantities come from Equation (8) which requires Cijkl . The Ai quantities
in Equation (11) come from

A1 = α11 − α22

A2 = α22 (12)

where α1 and α2 are components of the transversely isotropic CTE tensor αij. Thus, αij must also be
predicted before Equation (9) can be calculated and this is done so using the method of Schapery [56]
using the form expressed in Stair and Jack [38].
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3. Flow Modeling

The planar deposition fluid flow model, defining the flow domain in this paper, is generated
using the die-swell method suggested by the authors in Heller et al. [57]. A low nozzle configuration
is used in this paper, where the deposited bead height is actually higher than that of the separation
distance between the nozzle tip and moving platen as depicted in Figure 1a,b. The dimensions of
the nozzle are taken to be similar to that of the Strangpresse Model 19 large scale FFF extrusion
nozzle. The flow domain is confined within the nozzle region and experiences a no-slip boundary
on the nozzle walls. Upon exiting the nozzle, the flow expands and the boundary is that of either
air or the moving platen. The flow domain is modeled as a Newtonian fluid undergoing Stokes
flow where the inertial effects in the flow domain are neglected as is typically done when modeling
polymer flows (see e.g., [58]). The Newtonian fluid values used in the present study are those for
a typical extrusion grade ABS polymer with a density, ρ, of 1040 kg/m3 and a dynamic viscosity, µ,
of 3200 Pa-s. Under the Newtonian fluid assumption, the density and viscosity only effect the pressure
drop through the nozzle and do not change the velocity field within the flow domain and thus have
no impact upon the resulting fiber orientation within the fluid. The modulus, CTE, and Poisson’s
ratio of the ABS matrix were taken to be 2.25 GPa, 90× 10−6 (mm/mm)/◦C, and 0.35, respectively.
The Young’s modulus, CTE, Poisson’s ratio, and density of the carbon fiber were taken to be 230 GPa,
−2.6× 10−6 (mm/mm)/◦C, 0.2, and 1700 kg/m3, respectively. The weight fraction was taken to be
13% to match that of the composite system studied in Duty et al. [3] for a carbon fiber reinforced FFF
bead with similar bead deposition geometry to that considered here. The shape of the fiber was taken
into account using a geometric aspect ratio of 20, within the range of the carbon fiber reinforcement
in [3].

The boundary conditions for the model are summarized in Figure 1b. The fiber-filled polymer
enters the nozzle at the inlet with an average velocity of 24 mm/s, which would correspond to a mass
flow rate of 12.2 kg/h for a circular nozzle with the same dimensions as that of the nozzle depicted
in Figure 1. The nozzle walls are defined to be no-slip, meaning the velocity is zero all along the
nozzle walls. The end of the bead, called the “outlet” in Figure 1b, is constrained to have zero pressure.
The flat, bottom boundary of the printed bead is considered to be a moving wall with a velocity of
101.6 mm/s in the negative x1 direction and zero velocity in the x2 direction.

The shape of the leading and trailing free extrudate surfaces after the nozzle exit are defined
using a zero surface tension minimization method presented by Heller et al. [57]. Free surfaces can be
specified as zero penetration where the normal velocity is set equal to zero along the surface or zero
surface tension where the normal stress along the surface is set to zero (see e.g., [59]). The selection
of the curve to define the extrudate surfaces was complex due to a need for smoothness as well as
having enough variability to accurately model the extrudate surface and reach an acceptable minimum.
The curve that was found to give acceptable smoothness and variability for the given model is an nth

order Bezier curve ranging from 15 to 25 terms to define the polynomial, and the full details are
provided in the companion paper by Heller et al. [57].
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Figure 1. (a) The flow domain and dimensions; streamline 15 is highlighted in red. (b) The flow domain
with boundary conditions.

4. Results

In this section, the method of obtaining the effective longitudinal modulus and CTE is illustrated.
The results between those of the full nozzle, die-swell and deposition problem are contrasted with
those from a flow domain that neglects the orientational changes that occur outside of the nozzle by
treating the problem as just that of an injection molded part. The flow domain of this simplified model,
which is also planar, can be seen in Figure 2. The boundary conditions for the flow domain are also
shown in Figure 2 and it has the same dimensions as the nozzle in the previous flow domain which was
shown in Figure 1. For the new flow domain of just the nozzle, the pressure at the nozzle outlet was
constrained to be 0 and the flow at the outlet was constrained to be in the normal, or vertical, direction.
The flow simulations in both flow domains used an initial random orientation state, i.e., Aij =

1
3 δij,

taken to be well up-stream of the nozzle tip. In addition, the velocities and velocity gradients for both
of the flow simulations were found along 61 streamlines, numbered from left to right starting from the
top of the nozzle. Results are provided in this section for a comparison between the IRD and IRD-RSC
models for both the full die-swell process and the flow domain that neglects the swell. After this,
a final results table with the longitudinal property predictions of all the flow conditions considered
will be used for conclusion purposes.

No Slip Wall: 

Inlet: 

average velocity

Outlet: , 

Direc!on 

of Flow

Figure 2. The flow domain of the nozzle alone with boundary conditions. (Nozzle dimensions are the
same as those shown in Figure 1).
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4.1. Results for a Single Flow Type—IRD, CI = 10−2

Beginning in COMSOL (Version 5.3; COMSOL Inc., Berlin, Germany, 2017), the flow domain was
defined and the velocities in the x1 and x2 directions, that is v1 and v2, respectively, as well as the velocity
gradients ∂v1

∂x1
, ∂v1

∂x2
, ∂v2

∂x1
, and ∂v2

∂x2
were found along 61 streamlines. These were exported to MATLAB

(R2016a; MathWorks, 2016) which, using an in-house implementation of the IRD model, obtained
solutions for the orientation tensors for CI = 10−2 along each streamline. From the orientation tensors,
Equations (7)–(12) were used to predict

〈
Cijkl

〉
and

〈
αij
〉

across cross sections of the flow domain.

4.1.1. Orientation Tensors along a Streamline

The second order orientation tensor Aij was calculated using a custom code within MATLAB along
streamline 15 (shown in Figure 1a) and some of the components of Aij are shown in Figure 3. The Aij
results for the IRD model with CI = 10−2 are shown in Figure 3. It is worth noting that the choice
of a random initial condition is effectively meaningless for the IRD model as the orientation attains
a steady state just prior to the nozzle’s tapered zone. This will not be the case for the IRD-RSC results
shown in Figure 8, where the final orientation state is clearly a function of the initial alignment state
due to the slow rate of orientational changes. In the case of the IRD-RSC, a proper identification of the
orientation state prior to the nozzle would need to be performed prior to industrial implementations.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time (s)

-0.5

0

0.5

1

 A
ij

 A
11

 A
12

 A
22

Tapered Zone Start

Tapered Zone End

Nozzle Exit

Bead End

Figure 3. Components of Aij, predicted with the IRD model with CI = 10−2, along streamline 15.

There are two important cross sections of the flow that are worth highlighting. One is where
the flow reaches the end of the nozzle and the other is where the flow reaches the end of the flow
domain which is indicative of the final processed bead and will exhibit properties that represent the
properties of the final 3D printed bead. At the end of the nozzle, the IRD model predicts a relatively
high value of A22 and a relatively low value of A11. Since A11 and A22 are representative of the overall
fiber alignment in the x1 and x2 directions, respectively, this means that the IRD model predicts that
the nozzle induces a relatively high and low fiber alignment in the x2 and x1 directions, respectively.
At the end of the flow domain, however, the IRD predicts higher x1 alignment than x2 alignment. Thus,
the direction of highest fiber alignment tends to follow the flow direction.

4.1.2. Orientation Tensors at the Exit and End

More information about the orientation state at the exit of the 3D printer nozzle was gained by
calculating the second and fourth order orientation tensors Aij and Aijkl along 61 streamlines in the
flow domain. This permitted Aij and Aijkl to be obtained across cross sections of the flow domain,
such as at the nozzle exit. Aij as a function of x1 at the nozzle exit was calculated (using the IRD model
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with CI = 10−2) and select components are shown in Figure 4a. In addition, to predict Aij as a function
of x2 at the end of the flow domain (the bead end, which is representative of the deposited bead),
the flow domain as seen in Figure 1 was used. Components of Aij are shown in Figure 4b.
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Figure 4. Orientation tensors calculated using the IRD model with CI = 10−2. (a) Aij as a function of
x1 at the nozzle exit, calculated using the model in Figure 2, and (b) Aij as a function of x2 within the
deposited bead, calculated using the model in Figure 1.

Since A22 was found to be the dominant component of the orientation tensor along streamline 15
at the nozzle exit (see Section 4.1.1), it comes as no surprise that A22 was the dominant component of
the orientation tensor across the width of the nozzle at the nozzle exit. In addition, since the nozzle is
symmetrical about the x2 = 0 axis and the inlet condition for the flow was an average laminar inflow
velocity, A11 and A22 are symmetrical about the x2 = 0 axis as well and this can be seen in Figure 4a.
Since A12 contains the product of p1 and p2 according to Equation (2), A12 is not symmetric about the
x2 = 0 axis. Furthermore, as A11 was the dominant term at the end of streamline 15, it comes as no
great surprise that this was the dominant Aij component within the deposited bead. This can be seen in
Figure 4b. It can also be noted that A11 and A22 are not symmetrical within the deposited bead because
the extruded melt turns over and experiences non-symmetrical shears as the bead is deposited.

4.1.3. Stiffness and CTE at the Exit and End

In this section, we discuss the results for the stiffness and CTE at the nozzle exit and the deposited
bead. Again, these results use the orientation tensors predicted using the IRD model with CI = 10−2,
along with Equations (7)–(12). Select components of the fourth order, homogenized stiffness tensor
across the nozzle exit and across the deposited bead are shown in Figure 5a,b, respectively.

There are striking similarities between Figures 4 and 5. Figure 5a shows some of the components
of the homogenized, fourth order stiffness tensor and shows that 〈C2222〉 dominates across the width
of the nozzle at the nozzle exit. Since 〈C2222〉 is indicative of the stiffness in the x2 direction, this result
implies that the composite has greater stiffness in the vertical (or x2) direction. It can be seen that
〈C2222〉 and 〈C1111〉 are symmetrical about x2 = 0 at the nozzle exit and follow the trends of A22 and
A11, respectively. Figure 5b shows similar trends to that of Figure 4b for the stiffness in the deposited
bead. Again we see that 〈C2222〉 tends to follow the trend of A22 and 〈C1111〉 follows the trend of A11.
Thus, the stiffness of the composite tends to be highest in the direction of highest fiber alignment and
lower in the transverse direction. Since the direction of highest fiber alignment generally follows the
direction of the flow, the direction of highest stiffness also tends to be in the flow direction.

The second order, homogenized CTE
〈
αij
〉
, like 〈C2222〉, could also be found at any arbitrary point

in the flow domain. Figure 6 shows some of the components of
〈
αij
〉

as a function of x1 at the nozzle
exit and as a function of x2 within the deposited bead.
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Figure 5. Components of
〈

Cijkl

〉
from using the IRD model with CI = 10−2 (a) as a function of x1 at

the nozzle exit, and (b) as a function of x2 within the deposited bead.
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Figure 6. Components of
〈

αij

〉
from using the IRD model with CI = 10−2 (a) as a function of x1 at the

nozzle exit, and (b) as a function of x2 at the end of the bead.

At first glance, it is perhaps harder to notice trends in the CTE that were set by the fiber orientation
state, at least while using the IRD model with CI = 10−2. However, it can be seen that α1 is actually
the dominant component of the CTE tensor at the nozzle exit and α2 is the dominant component in
the deposited bead. Thus, the direction of highest fiber alignment is not the direction of highest CTE.
This is due to the low CTE of carbon fibers which counteracts the higher CTE of the ABS matrix and
decreases the overall CTE of the composite in the direction of highest fiber alignment. On the other
hand, the direction transverse to the direction of highest fiber alignment has a relatively high CTE.

4.1.4. Effective Longitudinal Properties

After the stiffness and CTE tensors were found in the deposited bead, the stiffness tensor values
were used to define the anisotropic stiffness tensor values across the width of a simulation tensile
sample in COMSOL. MATLAB and COMSOL were linked via LiveLink so that the stiffness tensors,
which were predicted at the end of each streamline, could be accessed by COMSOL. For COMSOL,
the MATLAB function linearly interpolates the stiffness tensor values between streamlines and sets the
stiffness tensor values in the region between the outermost streamlines and the boundary of the flow
domain to be equivalent to the stiffness tensor values of the outermost streamlines. The simulation
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involved a displacement-prescribed tensile test after which the bulk, effective, longitudinal Young’s
modulus was derived using the reaction stress and strain. The simulation tensile sample with boundary
conditions as shown in Figure 7a represents an equivalent tensile test for obtaining the longitudinal
modulus. The sample before deformation was 1.5 mm wide and 3 mm tall, the same height as the
bead in Figure 1a. A 20× 60 rectangular element mesh was used (20 elements in x1, 60 elements
in x2), the entire left side of the sample had a prescribed displacement of 0.01 mm in the -x1 direction,
the entire right side was fixed in the x1 direction with the center point fixed also in the x2 direction,
and the top and bottom sides were free. After the displacement-prescribed tensile simulation was
computed, the bulk effective longitudinal Young’s modulus in the x1 direction, E1, was derived using
a line average method. This involved dividing the average x1-reaction stress across the entire left side
of the sample by the strain, where strain is the average x1-displacement across the entire left side of
the sample divided by the original width of the sample. In mathematical terms, this can be expressed
as E1 = σ11/(u1/wo), where E1 is the bulk, effective, longitudinal Young’s modulus, σ11 is the reaction
stress on the left side of the sample, u1 is the average displacement of the entire left side of the sample
in the x1 direction, and wo is the original x1 dimension of the sample. Solving this equation yields
a Young’s modulus at the end of the bead of E1 = 6.82 GPa for the IRD model with CI = 10−2, not
too dissimilar from those results provided in Duty et al. [3] for a similar system. A similar procedure
can be done using the stiffness tensor values at the nozzle exit and this yields a Young’s modulus of
E2 = 7.10 GPa at the nozzle exit for the IRD model with CI = 10−2.

Free (no force)

Fixed at 

one point

u1=u2=0

(a)            (b)

1

2

3

3
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En!re Edge 
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Figure 7. Boundary conditions for finite element analysis: (a) the tensile sample boundary conditions,
and (b) the TMA boundary conditions.

A thermomechanical analyzer (TMA) machine is often used to measure the linear CTE of a material
sample by heating the sample in a furnace and measuring the displacement (expansion or contraction)
of the sample along a particular direction due to the changing temperature (see, e.g., http://www.
tainstruments.com/q400/). If the displacement is measured in the x1 direction, for example, then the
linear CTE in the x1 direction can be calculated using the equation α1 = 1/L1 × dL1/dT, where L1 is the
original x1-length of the sample, dL1 is the change in the x1-length, and dT is the change in temperature of
the sample. In this study, the boundary conditions for the representative domain for that of an equivalent
test are shown in Figure 7b to calculate the bulk, effective, longitudinal CTE which is α1. The TMA sample
was identical in dimensions to the tensile sample, the finite element mesh used was identical to that
used in the tensile simulation, and the displacement boundary conditions were identical to those used in
the tensile simulation. However, in this simulation, no loads were put on the sample. The sample was
initially at a uniform temperature and a temperature increase of ∆T = 1 ◦C was applied to the entire left
side of the sample while the other sides were insulated. The bulk, effective, longitudinal CTE in the x1

http://www.tainstruments.com/q400/
http://www.tainstruments.com/q400/
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direction is calculated when thermal equilibrium is attained using the equation α1 = −u1/wo/∆T, where
the negative sign ensures α1 will be positive due to expansion in the −x1 direction, u1 is the average
displacement in the x1 direction of the entire left side of the sample, and wo is the initial x1-length of the
sample. After the TMA simulation, the bulk, effective, longitudinal CTE evaluated is α1 = 32.2× 10−6/◦C
within the deposited bead for the IRD model with CI = 10−2. A similar procedure can be done for the
CTE at the nozzle exit and this yields α2 = 31.3× 10−6/◦C at the nozzle exit for the IRD model with
CI = 10−2.

4.2. Contrasting Results between IRD and RSC

The IRD-RSC model decreases the influence of strain on the fiber orientation state and thus
predicts different values for the orientation tensors along the flow domain than the IRD model predicts
and thus inevitably leads to different predictions for the stiffness and CTE tensors as well. Figure 8
shows components of Aij along streamline 15 in the low nozzle flow domain calculated using the
IRD-RSC model with CI = 10−2 and κ = 1/30. The IRD-RSC model predicted a much lower rate
of alignment than the IRD model (compare Figure 8 with Figure 3), although the IRD-RSC model
predicted a similar trend in the changes in the components of Aij along streamline 15. That is, A22 is
highest at the nozzle exit but A11 is highest at the bead end, indicating that the fibers tend to align
most in the flow direction.

Figure 8. Aij components along streamline 15—results are from using the IRD-RSC model with
CI = 10−2 and κ = 1/30.

Components of Aij across the nozzle exit and within the deposited bead, calculated using the
IRD-RSC model with CI = 10−2 and κ = 1/30, are shown in Figure 9. Once again, A11 and A22 are
symmetrical about the x2 = 0 axis at the nozzle exit as one would expect. Figure 9a shows that the
IRD-RSC model predicts much higher x2 alignment along the sides of the nozzle. This is due to the
higher shear along the sides of the nozzle. Figure 9b also shows that the fiber alignment is highest near
the sides of the flow domain in the deposited bead.



J. Compos. Sci. 2018, 2, 26 14 of 18

(a) (b)
0.5 1 1.5 2 2.5

x 2 (mm)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ij

A
11

A
12

A
22

-1.5 -1 -0.5 0 0.5 1 1.5

x 1 (mm)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

A
ij

A
11

A
12

A
22

Figure 9. Orientation tensors calculated from the IRD-RSC model with CI = 10−2 and κ = 1/30. (a) Aij as
a function of x1 at the nozzle exit and (b) Aij as a function of x2 within the deposited bead.

The homogenized stiffness and CTE tensors were also calculated using the orientation tensors
from the IRD-RSC model with CI = 10−2 and κ = 1/30. The results for these quantities at the end
of the bead for the low nozzle domain are shown in Figure 10. Once again, it can be seen that the
stiffness tends to follow a similar trend as the orientation tensors and that the CTE, in a sense, follows
the opposite trend. Regardless, when comparing the results from that of the IRD-RSC with κ = 1/30
to that of the IRD model with the same interaction coefficient CI , there is a clear difference in the
orientation, the stiffness, and the resulting coefficient of thermal expansion. Performing the same finite
element analysis as in the preceding section within the deposited bead, the bulk longitudinal stiffness
is E1 = 4.82 GPa and the bulk coefficient of thermal expansion is α1 = 45.5× 10−6/◦C. Both of these
numbers are significantly different than those of the IRD results.
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Figure 10. Results in the deposited bead from the IRD-RSC model with CI = 10−2 and κ = 1/30.

(a)
〈

Cijkl

〉
as a function of x2 in the deposited bead, and (b)

〈
αij

〉
as a function of x2.

4.3. Effective Longitudinal Properties—All Flow Conditions

Using the methodology discussed above, the effective, longitudinal stiffness and CTE properties
are studied as functions of the interaction model, the degree of fiber interaction CI , the amount of
slowness κ, and whether or not the die swell is included in the analysis. A fiber interaction coefficient of
CI = 3× 10−3 is chosen to represent melt with a lower degree of interaction, and slowness parameters
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of κ = 1/10 and 1/30 are presented. Table 1 shows the results from the complete study. Comparisons
of the results of the deterministic models between the various parameters is made through the use of
the percent relative difference, defined as

PRD = (|value1 − value2|)/(|value1 − value2|/2)× 100% (13)

Table 1. Summary of Effective Longitudinal Properties for All Flow Conditions.

Location Model CI κ Elong (GPa) αlong × 10−6/◦C

Deposited Bead IRD 0.01 1 6.82 32.2
Deposited Bead RSC 0.01 1/10 4.82 45.5
Deposited Bead RSC 0.01 1/30 4.18 53.3
Deposited Bead IRD 0.003 1 7.69 30.3

Deposited Bead RSC 0.003 1/10 4.88 45.1
Deposited Bead RSC 0.003 1/30 4.19 53.2

Nozzle Exit IRD 0.01 1 7.10 31.3
Nozzle Exit RSC 0.01 1/10 5.07 42.4
Nozzle Exit RSC 0.01 1/30 4.40 49.5
Nozzle Exit IRD 0.003 1 7.89 29.9

Nozzle Exit RSC 0.003 1/10 5.20 41.7
Nozzle Exit RSC 0.003 1/30 4.45 49.2

The first study is of the relative importance of the full die-swell model and bead deposition
versus that of model domain that stops at the nozzle end. Taking the bulk stiffness and CTE results
from the IRD model, the PRD for the longitudinal modulus Elong would be 4.02% for CI = 10−2 and
2.56% for CI = 3× 10−3, whereas for the same interaction coefficients and a κ = 1/10 the PRD in
the longitudinal modulus is respectively, 5.05% and 6.34% with similar percentages for a κ = 1/30.
The trend in the PRD in the various CTEs ranges between 1.3% and 7.8%. Thus, it would appear that if
the ultimate objective is the bulk behavior of the composite, the inclusion of the full model domain
with die swell and deposition on the moving platen will refine the results on the order of 5%.

Focusing on the results from the deposited bead and looking at the results as a function of the
interaction coefficient for the IRD model, there is a 12% PRD for the longitudinal modulus and a 6%
PRD for the longitudinal CTE as the interaction coefficient changes from CI = 3 × 10−3 to 10−2.
The change as a function of interaction coefficient is nearly non-existent when the IRD-RSC model is
used with either value of κ, with the greatest PRD of 1.3% occurring in the longitudinal modulus for
κ = 1/10.

Comparing the results of the IRD model to that of the IRD-RSC model with κ = 1/10, the PRD in
the longitudinal modulus for CI = 10−2 is 34% and for CI = 3× 10−3 it is nearly 45%, with similar
numbers for the CTE values. Similarly, when looking at the longitudinal modulus for κ = 1/10 as
compared to that of κ = 1/30, the PRD is 14% for the higher CI and 15% for the lower CI , with similar
values for the PRD of the CTEs.

Thus, of all the comparisons, the results are most sensitive to the choice of whether or not to use
the IRD-RSC model or the original IRD model. It is very interesting to note, that in this flow scenario,
where the melt experiences a rapid change in the nozzle region and then the velocity gradients go to
zero, the choice of the interaction coefficient has very little bearing on the final part behavior for the
newer IRD-RSC model. This observation is in contrast to results within an injection molded product
as there is a large period of the melt time that the fibers are subjected to a shear after they have left
the mold inlet. It is also worth noting, that although the die-swell and deposition have a substantial
bearing on the internal orientation state, the bulk material response is less sensitive to that effect than
to issues effecting the interaction coefficient and the slowness parameter. It would also be appropriate
to note the sensitivity of the choice of initial conditions on the orientation tensor for the IRD-RSC
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model. The initial condition can be neglected for the IRD model as the orientation reaches a steady
state prior to the tapered nozzle region, but for the IRD-RSC results this is not the case and the final
orientation maintains some history based on the somewhat arbitrary choice of the initial conditions.

5. Conclusions

In this study, we have developed a methodology for predicting the fiber orientation state within
the flow of an FFF 3D printer and subsequently predicting the effective, longitudinal stiffness Elong
and CTE αlong. We found that incorporating the die swell into the FFF flow domain did not have
a substantial impact on the predicted moduli. However, there was a significant difference between
the IRD predictions and the IRD-RSC predictions. When the interaction coefficient CI varies within
the range 0.003–0.01, it has moderate effects on the IRD predictions but the effects are insignificant
on the IRD-RSC predictions. Finally, varying the value of the slowness factor κ, which appears in the
IRD-RSC model, does indeed appear to significantly affect the Elong and αlong predictions. A future
study will focus on experimental validation of the computational methodology used in this paper.
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