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Abstract: The present research deals with the linear static behavior of soft-core sandwich plates
and shells. The external skins are reinforced by curvilinear fibers. Their curved paths are described
by a general mathematical law that allows the definition of arbitrary placements. The mechanical
behavior of these structures is modeled through several Higher-order Shear Deformation Theories
(HSDTs) including the zig-zag effect, based on an Equivalent Single Layer (ESL) approach.
The solution of the governing equations is achieved numerically by means of the Generalized
Differential Quadrature (GDQ) method. A huge number of parametric investigations is proposed in
graphical and tabular forms to highlight the influence of the fiber orientation on the static response.
The results prove that the structural behavior is affected by such parameters. Thus, the desired
structural behavior can be modified by means of a proper choice of the fiber orientation.

Keywords: curvilinear reinforcing fibers; parametric investigations; Higher-order Shear Deformation
Theories

1. Introduction

Advanced composite materials are mainly developed to design stiffer and lighter structures,
characterized by an improved and more efficient mechanical behavior. Among them, fiber-reinforced
media [1–4], laminated and sandwich composites [5–24], Functionally Graded Materials (FGMs) [25–41],
nanocomposites [42–46] and metamaterials [47–53] should be mentioned. Thus, many scientists and
researchers focused their efforts on the design of optimal and optimized configurations of these
innovative constituents. One of the most recurring approaches is the redistribution of the stiffness
within the structural body without a weight growth, to improve or, at least, modify its static and
dynamic responses. Structures characterized by variable mechanical properties arose precisely for this
purpose. The present paper can be placed in this context, since it deals with variable stiffness sandwich
plates and shells made of fiber-reinforced layers. The variation of the mechanical properties of these
structural elements is accomplished by defining a curvilinear path of the reinforcing fibers [54,55].
To this aim, an innovative and general mathematical formulation is developed by the authors [56].
Differently from the previous paper by Tornabene et al. [56], in which the same general approach is
employed for the natural frequency analysis of variable stiffness shells, the current research is focused
on the linear static behavior of soft-core sandwich plates and shells.

A brief literature review is presented below to introduce this topic. For this purpose, the authors
would like to apologize for the possible omissions of those contributions that could be considered
as important steps in the development of this subject. A more complete literature review can be
found in the PhD Thesis by Groh [57]. A pioneering application of curvilinear fibers in composite
structures was presented by Hyer and Charette [58] to deal with a rectangular plate with centrally
located circular hole. Hyer et al. [59] continued the same topic by studying also the manufacturing
problem. A plane elasticity problem of a symmetrically laminated composite with curvilinear fibers
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was investigated by Gürdal and Olmedo [60] to evaluate the stiffness variation effect on the elastic
response of the structure. In their work, the orientation of the fibers was defined by two parameters,
which consisted of the fiber angle at the center of the laminate and the fiber angle at a specified
distance from the center. The manufacturing process of the proposed approach was progressively
studied by Waldarth et al. [61], Setoodeh and Gürdal [62], and Setoodeh et al. [63,64]. Jegley et al. [65]
proved that the load carrying capability of panels reinforced by curvilinear fibers was superior to the
one that characterized panels with straight fibers. Analogously, the stress concentrations around
the hole were reduced due to the curvilinear paths of the fibers. Abdalla et al. [66] developed
a maximization procedure for the natural frequency of composite panels reinforced by curved
fibers. The post-buckling progressive damage behavior and the structural failure of variable-stiffness
composite panels were studied by Lopes et al. [67] taking into account the residual thermal stresses
caused by the curing process. Gürdal et al. [68] investigated the in-plane and buckling responses of flat
rectangular composite laminates with variable stiffness. Their research proved that it was possible to
vary either the buckling load or the in-plane stiffness of the structure. The variable-stiffness concept
and the two-parameter law for the fiber orientation were extended also to conical and cylindrical
shells by Blom et al. [69–71]. Akhavan and Ribeiro [72] investigated the natural frequencies and
vibrational modes of variable-stiffness laminated composite plates reinforced by curvilinear fibers
by means of a p-version finite element approach. The same topic was analyzed also by Honda
and Narita [73], who proposed an analytical method for this purpose. Díaz et al. [74] presented
a numerical method for obtaining the interlaminar stresses in variable stiffness composite panels.
Coburn et al. [75] highlighted the improved buckling performances of variable-stiffness laminates
compared to the ones reinforced by straight fibers. They employed the Rayleigh-Ritz procedure in the
theoretical framework of the First-order Shear Deformation Theory (FSDT). Raju et al. [76] performed
a geometrically nonlinear analysis of symmetric laminated composite plates with curvilinear fibers
subjected to in-plane shear loads. In particular, the effect of fiber orientation on the buckling and
post-buckling behavior was investigated. The same kind of analysis was performed by White et al. [77],
who extended the research to variable-stiffness cylinders under axial compression forces. Yazdani and
Ribeiro [78] developed a layer-wise p-version finite element approach able to capture accurately the
free vibrations of thick composite laminates reinforced by curvilinear fibers. Ribeiro and Stoykov [79]
and Ribeiro [80,81] investigated respectively the free and forced geometrically nonlinear vibrations of
variable-stiffness cylindrical shells. Analogously, Akhavan and Ribeiro [82] developed a third-order
shear deformation theory to study the geometrically nonlinear periodic forced vibrations of imperfect
laminates reinforced by curvilinear fibers. To this aim, a p-version finite element method was used.
An accurate variable-kinematic approach was developed instead by Vescovini and Dozio [83] for
the vibration and buckling analysis of moderately thick variable-stiffness laminated and sandwich
plates. Groh and Weaver [84] proposed a pseudo-spectral differential quadrature method to analyze
the mechanical behavior of sandwich panels with variable-stiffness face sheets, whose governing
equations are derived by using the Hellinger-Reissner model. On the other hand, the Koiter’s approach
and the finite element method were employed in the paper by Madeo et al. [85] to analyze the
post-buckling behavior of variable-stiffness composite plates. Khani et al. [86] investigated failure loads,
failure modes and weights of variable-stiffness panels with cut-out by means of several experimental
tests. Their work proved that variable-stiffness laminates could sustain larger loads before failure.
Demasi et al. [87] proposed a multi-theory approach based on the Generalized Unified Formulation
(GUF), including Equivalent Single Layer, zig-zag, and Layer-Wise models, for the static analysis
of variable-stiffness composites. The Rayleigh-Ritz method was employed by Oliveri et al. [88] to
investigate the thermo-mechanical post-buckling behavior of variable-stiffness multilayered plates,
taking into account geometrical nonlinearities through the Von Kármán’s hypotheses. A theoretical
framework based on higher-order theories was developed by Tornabene et al. [89,90] for the free
vibration and static analyses of doubly-curved laminated composite shells reinforced by curvilinear
fibers placed according to classical schemes. A numerical solution was proposed in these circumstances.
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Finally, it should be mentioned that the presence of defects or imperfections, such as gaps and
overlaps, characterizes laminated composites reinforced by curvilinear fibers, due to the peculiar
manufacturing process, as highlighted in the papers [91–94]. This aspect could be even more evident
in shell structures due to their curvature. For this purpose, an innovative fiber placement method
named as Continuous Tow Shearing (CTS) was recently developed by Kim et al. [95] to minimize such
defects in the manufacture of variable-stiffness composites.

A structural model based on an ESL approach is developed in this paper to investigate the linear
static behavior of doubly-curved shells reinforced by curvilinear fibers placed according to a general
scheme. In particular, several Higher-order Shear Deformation Theories (HSDTs) are developed to this
aim [96,97]. Since soft-core sandwich structures are analyzed, the Murakami’s function is embedded in
the model to capture the effective zig-zag effect that occurs in this peculiar circumstance [98–100]. This ESL
approach can reach the same accuracy of a layer-wise theory without increasing the degrees of freedom
of the problem and the computational cost, consequently. Further details concerning layer-wise theories
could be found in the paper by Tornabene [12] and by Naumenko and Eremeyev [101]. In addition,
as highlighted in the papers [102–114], lower-order theories such as the well-known FSDT could be
inadequate in these cases. Once the theoretical framework is introduced, a massive set of parametric
investigations is presented to show the effect of the fiber orientation on the static response of these
structural elements. The Generalized Differential Quadrature (GDQ) method is employed to get the
numerical solution of the governing equations [115–118].

2. Shell Geometry

Let us introduce a global reference coordinate system Ox1x2x3 in the three-dimensional space, as
shown in Figure 1. Each direction xi is clearly identified by the corresponding unit vector e1. A generic
shell element is defined in such space. Its shape can be described through the position vector of the
middle surface r(α1, α2), where α1, α2 are the principal and orthogonal curvilinear coordinates of the
surface in hand (Figure 1), for α1 ∈

[
α0

1, α1
1
]

and α2 ∈
[
α0

2, α1
2
]
.
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The coordinate ζ denotes the thickness direction. Thus, O′α1α2ζ stands for the local reference
system of the shell middle surface. The shell volume is identified by its constant thickness h. It should
be recalled that the structure is made of l layers, therefore the overall thickness is given by

h =
l

∑
k=1

hk (1)

where hk stands for the thickness of the k-th layer, which can be computed as follows

hk = ζk+1 − ζk (2)

Since only sandwich structures are analyzed in the present paper, the shells are made of
three layers: two external thinner plies of equal thickness hs, and a thicker core of thickness hc.
Thus, the total thickness is given by

h = hc + 2hs (3)

Each point of this three-dimensional structure is analytically described through the following
position vector R(α1, α2, ζ)

R(α1, α2, ζ) = r(α1, α2) + ζn(α1, α2) (4)

where n(α1, α2) represents the outward unit normal vector. This quantity can be computed by means
of the cross product (denoted by “×”) as follows

n =
r,1 × r,2

|r,1 × r,2|
(5)

in which r,i = ∂r/∂αi. Once the position vector r(α1, α2) of the middle surface is given, the Lamè
parameters A1, A2 of the doubly-curved surface which define the shape of the shell can be easily
evaluated by means of the dot product (denoted by “·”) as shown below

A1(α1, α2) =
√

r,1 · r,1, A2(α1, α2) =
√

r,2 · r,2 (6)

Analogously, the radii of curvature R1, R2 of the shell middle surface can be calculated through
the following relations

R1 = − r,1 · r,1

r,11 · n
, R2 = − r,2 · r,2

r,22 · n
(7)

3. Higher-Order ESL Model

The present higher-order structural model allows the study of several displacement fields
by varying the maximum order of kinematic expansion N. The three-dimensional displacements
U1(α1, α2, ζ), U2(α1, α2, ζ), U3(α1, α2, ζ) can be written as follows

U1 =
N+1
∑

τ=0
Fτu(τ)

1 = F0u(0)
1 + F1u(1)

1 + F2u(2)
1 + · · ·+ FN−1u(N−1)

1 + FNu(N)
1 + FN+1u(N+1)

1

U2 =
N+1
∑

τ=0
Fτu(τ)

2 = F0u(0)
2 + F1u(1)

2 + F2u(2)
2 + · · ·+ FN−1u(N−1)

2 + FNu(N)
2 + FN+1u(N+1)

2

U3 =
N+1
∑

τ=0
Fτu(τ)

3 = F0u(0)
3 + F1u(1)

3 + F2u(2)
3 + · · ·+ FN−1u(N−1)

3 + FNu(N)
3 + FN+1u(N+1)

3

(8)

in which Fτ(ζ) are the thickness-functions that define the kinematic expansion. The generalized
displacements u(τ)

1 (α1, α2), u(τ)
2 (α1, α2), u(τ)

3 (α1, α2), which are defined on the shell middle surface,
are the degrees of freedom. The thickness functions are assumed as power law functions.
In other words, one gets

Fτ(ζ) = ζτ (9)
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for τ = 0, 1, 2, . . . , N. The (N + 1)-th function, instead, denotes the Murakami’s function Z(ζ)
defined below

FN+1 = Z = (−1)k
(

2
ζk+1 − ζk

ζ − ζk+1 + ζk
ζk+1 − ζk

)
(10)

This peculiar function must be inserted in the structural model to capture the effective
behavior of soft-core sandwich structures. Otherwise, the so-called zig-zag effect cannot be properly
modeled [90]. The notation EDZN is used to identify the shear-deformation theory including the
Murakami’s function.

For the sake of conciseness, the three-dimensional displacements can be collected in the
corresponding vector U(α1, α2, ζ)

U =
[

U1 U2 U3

]T
(11)

Analogously, the vector u(τ)(α1, α2) can be introduced to collect the degrees of freedom of the
model for τ = 0, 1, 2, . . . , N, N + 1.

u(τ) =
[

u(τ)
1 u(τ)

2 u(τ)
3

]T
(12)

The generalized strain components, which are defined on the shell middle surface as well, can be
included in the corresponding vector ε(τ)(α1, α2) shown below

ε(τ) =
[

ε
(τ)
1 ε

(τ)
2 γ

(τ)
1 γ

(τ)
2 γ

(τ)
13 γ

(τ)
23 ω

(τ)
13 ω

(τ)
23 ε

(τ)
3

]T
(13)

for τ = 0, 1, 2, . . . , N, N + 1. These quantities can be evaluated as a function of the generalized
displacements as follows

ε(τ) = DΩu(τ) (14)

in which DΩ is the kinematic differential operator defined below

DΩ =


1

A1
∂

∂α1
1

A1 A2

∂A2
∂α1

− 1
A1 A2

∂A1
∂α2

1
A2

∂
∂α2

− 1
R1

0 1 0 0
1

A1 A2

∂A1
∂α2

1
A2

∂
∂α2

1
A1

∂
∂α1

− 1
A1 A2

∂A2
∂α1

0 − 1
R2

0 1 0
1

R1
1

R2
0 0 1

A1
∂

∂α1
1

A2
∂

∂α2
0 0 1


T

(15)

The three-dimensional strain components can be included in the vector ε(α1, α2, ζ), which assumes
the aspect below

ε =
[

ε1 ε2 γ12 γ1n γ2n εn

]T
(16)

These quantities can be computed once the generalized strains are evaluated. The following
definition can be used for this purpose

ε =
N+1

∑
τ=0

Z(τ)ε(τ) (17)

where the matrix Z(τ)(α1, α2, ζ) has the meaning shown below for each order τ of kinematic expansion

Z(τ) =



Fτ
H1

0 0 0 0 0 0 0 0

0 Fτ
H2

0 0 0 0 0 0 0
0 0 Fτ

H1

Fτ
H2

0 0 0 0 0

0 0 0 0 Fτ
H1

0 ∂Fτ
∂ζ 0 0

0 0 0 0 0 Fτ
H2

0 ∂Fτ
∂ζ 0

0 0 0 0 0 0 0 0 ∂Fτ
∂ζ


(18)
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The geometric parameters H1, H2 can be evaluated as a function of the principal radii of curvature

H1 = 1 +
ζ

R1
, H2 = 1 +

ζ

R2
(19)

Consequentially, the three-dimensional stress components can be evaluated as a function of the
strain components by using the elastic constitutive laws, assuming a linear behavior of the composite
materials. The stress components at issue can be collected in the vector σ(α1, α2, ζ) defined below

σ =
[

σ1 σ2 τ12 τ1n τ2n σn

]T
(20)

The following relation written in compact matrix form allows a definition of such quantities as
a function of the corresponding stress components

σ = C(k)
ε (21)

where C(k) is the constitutive operator for the k-th orthotropic layer defined in the local reference
system of the structure. It assumes the following aspect

C(k)
=



C(k)
11 C(k)

12 C(k)
16 0 0 C(k)

13

C(k)
12 C(k)

22 C(k)
26 0 0 C(k)

23

C(k)
16 C(k)

26 C(k)
66 0 0 C(k)

36

0 0 0 C(k)
44 C(k)

45 0

0 0 0 C(k)
45 C(k)

55 0

C(k)
13 C(k)

23 C(k)
36 0 0 C(k)

33


(22)

Quantities included in C(k) take into account the orientation of the reinforcing fibers θ(k) for the
k-th ply. The following relations can be used to evaluate them

C(k)
11 = C(k)

11 c4 + 2
(

C(k)
12 + 2C(k)

66

)
c2s2 + C(k)

22 s4 (23)

C(k)
12 = C(k)

12 c4 +
(

C(k)
11 + C(k)

22 − 4C(k)
66

)
c2s2 + C(k)

12 s4 (24)

C(k)
13 = C(k)

13 c2 + C(k)
23 s2 (25)

C(k)
16 =

(
C(k)

11 − C(k)
12 − 2C(k)

66

)
c3s +

(
C(k)

12 − C(k)
22 + 2C(k)

66

)
cs3 (26)

C(k)
22 = C(k)

22 c4 + 2
(

C(k)
12 + 2C(k)

66

)
c2s2 + C(k)

11 s4 (27)

C(k)
23 = C(k)

23 c2 + C(k)
13 s2 (28)

C(k)
26 =

(
C(k)

12 − C(k)
22 + 2C(k)

66

)
c3s +

(
C(k)

11 − C(k)
12 − 2C(k)

66

)
cs3 (29)

C(k)
33 = C(k)

33 (30)

C(k)
36 =

(
C(k)

13 − C(k)
23

)
cs (31)

C(k)
66 =

(
C(k)

11 + C(k)
22 − 2C(k)

12

)
c2s2 + C(k)

66

(
c2 − s2

)2
(32)

C(k)
44 = C(k)

44 c2 + C(k)
55 s2 (33)
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C(k)
45 =

(
C(k)

44 − C(k)
55

)
cs (34)

C(k)
55 = C(k)

55 c2 + C(k)
44 s2 (35)

where c = cos θ(k) and s = sin θ(k). The elastic constants in (23)–(35) can be computed as a function of
the engineering constants of the materials of the k-th layer as shown below

C(k)
11 =

1− ν
(k)
23 ν

(k)
32

E(k)
2 E(k)

3 ∆(k)
, C(k)

12 =
ν
(k)
21 + ν

(k)
31 ν

(k)
23

E(k)
2 E(k)

3 ∆(k)
, C(k)

13 =
ν
(k)
31 + ν

(k)
21 ν

(k)
32

E(k)
2 E(k)

3 ∆(k)

C(k)
22 =

1−ν
(k)
13 ν

(k)
31

E(k)
1 E(k)

3 ∆(k)
, C(k)

23 =
ν
(k)
32 + ν

(k)
12 ν

(k)
31

E(k)
1 E(k)

3 ∆(k)
, C(k)

33 =
1− ν

(k)
12 ν

(k)
21

E(k)
1 E(k)

2 ∆(k)

C(k)
44 = G(k)

13 , C(k)
55 = G(k)

23 , C(k)
66 = G(k)

12

(36)

where the quantity ∆(k) has the following meaning

∆(k) =
1− ν

(k)
12 ν

(k)
21 − ν

(k)
23 ν

(k)
32 − ν

(k)
31 ν

(k)
13 − 2ν

(k)
21 ν

(k)
32 ν

(k)
13

E(k)
1 E(k)

2 E(k)
3

(37)

in which E(k)
1 , E(k)

2 , E(k)
3 are the Young’s moduli, G(k)

12 , G(k)
13 , G(k)

23 are the shear moduli, and ν
(k)
12 , ν

(k)
13 , ν

(k)
23

are the Poisson’s ratios. The following relations are required for a complete mechanical characterization
of the orthotropic layer, for i, j = 1, 2, 3

ν
(k)
ij

E(k)
i

=
ν
(k)
ji

E(k)
j

, G(k)
ij = G(k)

ji (38)

The evaluation of the elastic coefficients is simplified if an isotropic layer is considered, since
E(k) = E(k)

1 = E(k)
2 = E(k)

3 , ν(k) = ν
(k)
12 = ν

(k)
13 = ν

(k)
23 , and the mechanical properties are not affected by

the orientation of the lamina. In this circumstance, the shear modulus is given by

G(k) =
E(k)

2
(
1 + ν(k)

) (39)

In this paper, the core is always assumed as isotropic; therefore, its orientation is meaningless.
On the other hand, the two external skins are orthotropic and characterized by a variable orientation
of the fibers θ(k). In other words, the reinforcing fibers are placed according to curvilinear paths.
The value of θ(k) can be defined through the following general law

θ(k)(α1, α2) = θ
(k)
1 ψ

(k)
1 (α1) + θ

(k)
2 ψ

(k)
2 (α2) + θ

(k)
3 ψ

(k)
3 (α1)+

+ θ
(k)
4 ψ

(k)
4 (α2) + θ

(k)
5 ψ

(k)
5 (α1, α2) + θ

(k)
6 ψ

(k)
6 (α1, α2) + θ

(k) (40)

in which the constants θ
(k)
i , for i = 1, 2, . . . , 6, represent the maximum values of the corresponding

fiber variations denoted by the functions ψ
(k)
i . On the other hand, θ

(k)
is the constant orientation that

define the initial straight placement of the reinforcing fibers. The meaning of the six general functions
ψ
(k)
i is given below in terms of the following dimensionless coordinates, for i = 1, 2

αi =
αi − α0

i
α1

i − α0
i

, α̃i =
α1

i − αi

α1
i − α0

i
(41)
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The functions ψ
(k)
1 , ψ

(k)
3 denote a variation along the principal direction α1 and can assume

different meanings (power law, sine-wave, or exponential), as shown below

ψ
(k)
1 (α1) =


α1

p1

(sin(π(n1α1 + α1m)))
p1

e(−
α1

α1m
)

p1
, ψ

(k)
3 (α1) =


α̃1

p3

(sin(π(n3α̃1 + α3m)))
p3

e(−
α̃1

α3m
)

p3
(42)

where n1, n3 ∈ N+
0 , p1, p3 ∈ R and α1m, α3m ∈ [0, 1]. On the other hand, the functions ψ

(k)
2 , ψ

(k)
4 define

a variation along the principal direction α2 and have the same meaning of the previous ones

ψ
(k)
2 (α2) =


α2

p2

(sin(π(n2α2 + α2m)))
p2

e(−
α2

α2m
)

p2
, ψ

(k)
4 (α2) =


α̃2

p4

(sin(π(n4α̃2 + α4m)))
p4

e(−
α̃2

α4m
)

p4
(43)

where n2, n4 ∈ N+
0 , p2, p4 ∈ R and α2m, α4m ∈ [0, 1]. Finally, the functions ψ

(k)
5 , ψ

(k)
6 involve both the

principal directions α1, α2 and can be expressed in the following form

ψ
(k)
i (α1, α2) = e−Ψi (44)

for i = 5, 6. The Gaussian distribution can be used for this purpose and one gets

Ψ5 =
1

2
(
1− ρ2

12
)((α1 − α5m

∆1

)2
+

(
α2 − α6m

∆2

)2
− 2ρ12

α1 − α5m

∆1

α2 − α6m

∆2

)
(45)

where ρ12 ∈ [−1, 1] and ∆1, ∆2 > 0. This function is clearly centered in the point (α5m, α6m) of the
domain, with α5m ∈

[
α0

1, α1
1
]

and α6m ∈
[
α0

2, α1
2
]
. Analogously, an ellipse-shaped function could be

chosen and one gets

Ψ6 =
((α1 − α7m) cos β + (α2 − α8m) sin β)2

a2 +
(−(α1 − α7m) sin β + (α2 − α8m) cos β)2

b2 (46)

in which a, b define the semi-axes of the ellipse, which could be also rotated by a constant angle
β measured counter-clockwise from the direction α1. This function is centered instead in the point
(α7m, α8m) within the reference domain, with α7m ∈

[
α0

1, α1
1
]

and α8m ∈
[
α0

2, α1
2
]
. The variations ψ

(k)
i are

activated by setting the corresponding value θ
(k)
i different from zero. It should be noted that several

variations can be also combined to obtain a more complex path of the reinforcing fibers.
The present formulation does not consider any defect or imperfection that could occur in

the manufacturing process. Such defects are unavoidable when the fibers are placed according
to curvilinear paths, as specified in the papers by Blom et al. [91,92], Nik et al. [93] and
Akbarzadeh et al. [94]. Nevertheless, several production techniques are developed to reduce these
imperfections [95]. Thus, in this research paper it is assumed by hypothesis that such defects that
occur during the manufacturing process are negligible. Further assumptions that involve the present
formulation can be found in the recent paper by Tornabene et al. [56].

Once the constitutive laws are introduced, it is more advantageous to define the internal actions
in terms of generalized stress resultants S(τ)(α1, α2) as shown below for τ = 0, 1, 2, . . . , N, N + 1

S(τ) =
N+1

∑
η=0

A(τη)DΩu(η) (47)
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The vector that collects the generalized stress resultants, which are defined on the shell middle
surface, assumes the following aspect for each order of kinematic expansion τ

S(τ) =
[

N(τ)
1 N(τ)

2 N(τ)
12 N(τ)

21 T(τ)
1 T(τ)

2 P(τ)
1 P(τ)

2 S(τ)
3

]T
(48)

On the other hand, the matrix A(τη) in (47) represents the constitutive operator of the present
higher-order approach which can be evaluated as follows

A(τη) =
l

∑
k=1

ζk+1∫
ζk

(
Z(τ)

)T
C(k)Z(η)H1H2dζ (49)

for τ, η = 0, 1, 2, . . . , N, N + 1. In extended notation, the following matrix is accomplished

A(τη) =



A(τη)
11(20) A(τη)

12(11) A(τη)
16(20) A(τη)

16(11) 0 0 0 0 A(τη̃)
13(10)

A(τη)
12(11) A(τη)

22(02) A(τη)
26(11) A(τη)

26(02) 0 0 0 0 A(τη̃)
23(01)

A(τη)
16(20) A(τη)

26(11) A(τη)
66(20) A(τη)

66(11) 0 0 0 0 A(τη̃)
36(10)

A(τη)
16(11) A(τη)

26(02) A(τη)
66(11) A(τη)

66(02) 0 0 0 0 A(τη̃)
36(01)

0 0 0 0 A(τη)
44(20) A(τη)

45(11) A(τη̃)
44(10) A(τη̃)

45(10) 0

0 0 0 0 A(τη)
45(11) A(τη)

55(02) A(τη̃)
45(01) A(τη̃)

55(01) 0

0 0 0 0 A(τ̃η)
44(10) A(τ̃η)

45(01) A(τ̃η̃)
44(00) A(τ̃η̃)

45(00) 0

0 0 0 0 A(τ̃η)
45(10) A(τ̃η)

55(01) A(τ̃η̃)
45(00) A(τ̃η̃)

55(00) 0

A(τ̃η)
13(10) A(τ̃η)

23(01) A(τ̃η)
36(10) A(τ̃η)

36(01) 0 0 0 0 A(τ̃η̃)
33(00)



(50)

where the following definitions are required to compute its elements for τ, η = 0, 1, 2, . . . , N, N + 1,
n, m = 1, 2, 3, 4, 5, 6 and p, q = 0, 1, 2

A(τη)
nm(pq) =

l
∑

k=1

ζk+1∫
ζk

C(k)
nmFη Fτ

H1 H2
Hp

1 Hq
2

dζ

A(τ̃η)
nm(pq) =

l
∑

k=1

ζk+1∫
ζk

C(k)
nmFη

∂Fτ
∂ζ

H1 H2
Hp

1 Hq
2

dζ

A(τη̃)
nm(pq) =

l
∑

k=1

ζk+1∫
ζk

C(k)
nm

∂Fη

∂ζ Fτ
H1 H2
Hp

1 Hq
2

dζ

A(τ̃η̃)
nm(pq) =

l
∑

k=1

ζk+1∫
ζk

C(k)
nm

∂Fη

∂ζ
∂Fτ
∂ζ

H1 H2
Hp

1 Hq
2

dζ

(51)

Finally, the static equilibrium of the shell can be expressed in terms of generalized displacement
components by means of the following governing equation in vector form

N+1

∑
η=0

L(τη)u(η) + q(τ) = 0 (52)

for τ = 0, 1, 2, . . . , N, N + 1. This system of partial derivative equations defines three equilibrium
relations for each order of kinematic expansion. The fundamental operator L(τη) can be evaluated
according to the definition shown below

L(τη) = D∗ΩA(τη)DΩ (53)
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for τ, η = 0, 1, 2, . . . , N, N + 1. The equilibrium operator D∗Ω, instead, assumes the following aspect

D∗Ω =



1
A1

∂
∂α1

+ 1
A1 A2

∂A2
∂α1

− 1
A1 A2

∂A1
∂α2

− 1
R1

− 1
A1 A2

∂A2
∂α1

1
A2

∂
∂α2

+ 1
A1 A2

∂A1
∂α2

− 1
R2

1
A1 A2

∂A1
∂α2

1
A1

∂
∂α1

+ 1
A1 A2

∂A2
∂α1

0
1

A2
∂

∂α2
+ 1

A1 A2

∂A1
∂α2

1
A1 A2

∂A2
∂α1

0
1

R1
0 1

A1
∂

∂α1
+ 1

A1 A2

∂A2
∂α1

0 1
R2

1
A2

∂
∂α2

+ 1
A1 A2

∂A1
∂α2

−1 0 0
0 −1 0
0 0 −1



T

(54)

On the other hand, the vector q(τ) introduced for each order of kinematic equation in (52) collects
three load components for τ = 0, 1, 2, . . . , N, N + 1 as shown below

q(τ) =
[

q(τ)1 q(τ)2 q(τ)n

]T
(55)

where q(τ)1 , q(τ)2 , q(τ)n stand for the external load components applied within the shell middle surface
along the principal directions α1, α2, ζ, respectively. Their value is computed once the surface loads
applied on the shell external surfaces q(±)1 , q(±)2 , q(±)n are defined. The superscript (+) specifies that
the load component is acting on the upper surface, whereas (−) is used to characterize the force
component applied on the lower surface. By means of the static equivalence principle, one gets

q(τ)1 = q(−)1 F(−)
τ H(−)

1 H(−)
2 + q(+)

1 F(+)
τ H(+)

1 H(+)
2

q(τ)2 = q(−)2 F(−)
τ H(−)

1 H(−)
2 + q(+)

2 F(+)
τ H(+)

1 H(+)
2

q(τ)n = q(−)n F(−)
τ H(−)

1 H(−)
2 + q(+)

n F(+)
τ H(+)

1 H(+)
2

(56)

where the symbol F(±)
τ denotes the value that a generic thickness function assumes on the external

surfaces of the shell. Analogously, H(±)
1 , H(±)

2 are the values that the geometric parameters (19) assume
on the same surfaces (for ζ = ±h/2).

The governing equations in (52) can be solved once the natural or essential boundary conditions
are properly enforced. The compatibility requirement of the present formulation is C1, since both the
displacements and stress resultant components are involved in the boundary conditions. The essential
boundary conditions involve the generalized displacements for each order of kinematic expansion τ.
The following relations are required for clamped edges

u(τ)
1 = u(τ)

2 = u(τ)
3 = 0 (57)

On the other hand, a free edge condition is expressed analytically through the natural boundary
conditions. Thus, the stress resultants are involved. In particular, the following conditions are required
for α1 = α0

1 (or α1 = α1
1) and α0

2 ≤ α2 ≤ α1
2

N(τ)
1 = N(τ)

12 = T(τ)
1 = 0 (58)

On the other hand, the natural boundary conditions for α2 = α0
2 (or α2 = α1

2) and α0
1 ≤ α1 ≤ α1

1
become

N(τ)
21 = N(τ)

2 = T(τ)
2 = 0 (59)
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With reference to the shell element depicted in Figure 1, it can be observed that the four external
edges are identified by a cardinal direction: north (N), east (E), south (S), and west (W). To simplify the
definition of external restraints, the boundary conditions are specified following the sequence WSEN.
The letters “C” and “F” will replace the corresponding cardinal direction notation to define a clamped
or free edge, respectively. For instance, CCCC stands for a completely clamped shell. On the other
hand, when the notation CCCF is used, only the northern edge is free, whereas the others are clamped.

When a structure with a closing meridian such as a complete shell of revolution is analyzed, the
structural compatibility must be enforced along the two coincident edges. If the closing meridian is
identified by α1 = α0

1 and α1 = α1
1, the structural compatibility is given by

N(τ)
1
(
α0

1, α2
)
= N(τ)

1
(
α1

1, α2
)

u(τ)
1
(
α0

1, α2
)
= u(τ)

1
(
α1

1, α2
)

N(τ)
12
(
α0

1, α2
)
= N(τ)

12
(
α1

1, α2
)

u(τ)
2
(
α0

1, α2
)
= u(τ)

2
(
α1

1, α2
)

T(τ)
1
(
α0

1, α2
)
= T(τ)

1
(
α1

1, α2
)

u(τ)
3
(
α0

1, α2
)
= u(τ)

3
(
α1

1, α2
) (60)

On the other hand, the following relations are required if the closing edge is characterized by
α2 = α0

2 and α2 = α1
2

N(τ)
21
(
α1, α0

2
)
= N(τ)

21
(
α1, α1

2
)

u(τ)
1
(
α1, α0

2
)
= u(τ)

1
(
α1, α1

2
)

N(τ)
2
(
α1, α0

2
)
= N(τ)

2
(
α1, α1

2
)

u(τ)
2
(
α1, α0

2
)
= u(τ)

2
(
α1, α1

2
)

T(τ)
2
(
α1, α0

2
)
= T(τ)

2
(
α1, α1

2
)

u(τ)
3
(
α1, α0

2
)
= u(τ)

3
(
α1, α1

2
) (61)

4. Numerical Technique

The governing equations are solved numerically by means of the GDQ method. In this section,
only the main features of this numerical approach are presented, since a complete and accurate treatise
is presented in the recent review paper by Tornabene et al. [117]. By definition, the GDQ method allows
evaluation of the n-th order derivative of a smooth function f (x) at a generic discrete point xi of the
reference domain as a weighted linear sum of the values that the function assumes in each point of
the domain

dn f (x)
dxn

∣∣∣∣
x=xi

∼=
T

∑
j=1

ς
(n)
ij f

(
xj
)

(62)

where T stands for the overall number of discrete points defined within the domain, which are placed
according to the Chebyshev-Gauss-Lobatto grid distribution

xi =

(
1− cos

(
i− 1
T − 1

π

))
xT − x1

2
+ x1 (63)

Consequently, a set of T discrete nodes is introduced as follows

a = x1, x2, . . . , xi, . . . , xT−1, xT = b (64)

where x1, xT are the boundary points of the domain. The weighting coefficients ς
(n)
ij are computed

instead through the following recursive expressions provided by Shu [115], for i, j = 1, 2, . . . , T and
n = 1, 2, . . . , T − 1

ς
(n)
ij = n

(
ς
(1)
ij ς

(n−1)
ii −

ς
(n−1)
ij

xi−xj

)
for i 6= j

ς
(n)
ij = −

T
∑

j=1,j 6=i
ς
(n)
ij for i = j

(65)

where ς
(1)
ij stands for the weighting coefficients for the first-order derivatives defined below
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ς
(1)
ij =

T
∏

k=1,i 6=k
(xi − xk)

(
xi − xj

) T
∏

k=1,j 6=k

(
xj − xk

) (66)

As far as two-dimensional domains are concerned, the present approach can be easily generalized
as shown in [23,117]. In these circumstances, the grid distribution (63) is applied along the main
directions α1, α2 by specifying the number of discrete points as IN , IM, respectively.

The same numerical approach can be considered as the starting point for the evaluation of
integrals. The methodology in hand is known as Generalized Integral Quadrature (GIQ) method.
For the sake of completeness, only the main definition is presented in the paper. Further details
concerning this technique can be found in [117]. The integral of a smooth function f (x) within the
interval

[
xi, xj

]
included in the reference domain, with xi, xj ∈ [a, b] and xi > a, xj < b, can be

computed as follows
xj∫

xi

f (x)dx ∼=
T

∑
k=1

wij
k f (xk) (67)

where wij
k stands for the weighting coefficients for the integration at issue, which can be easily evaluated

starting from the weighting coefficients for the first-order derivatives (66). This numerical method
is used in the present research to compute the stiffness terms (51), once the thickness direction is
discretized by applying the same grid shown above.

5. Solution of the Static Problem

By means of the GDQ method, the discrete form of the fundamental system of Equation (53) is
achieved, which becomes

Kδ = f (68)

where K is the global discrete stiffness matrix, δ the vector of generalized displacements related to the
discrete points of the domain, and f is the vector that collects the values of the external loads. It should
be noted that the unknowns of the static problem at issue are collected in the corresponding algebraic
vector δ. It is convenient at this point to collect such displacements so that the degrees of freedom
linked to the inner points of the domain are separated from the ones related to the boundary points.
The sub-vectors δd,δb are introduced, respectively. Analogously, the same classification is specified for
the external load vector (fd, fb). Thus, the system of linear Equation (68) becomes[

Kbb Kbd
Kdb Kdd

][
δb
δd

]
=

[
fb
fd

]
(69)

in which the stiffness matrix is also partitioned, consequently. Finally, the proper manipulations lead
to the following result, which allows the obtaining of the static solution δd in terms of generalized
nodal displacements (

Kdd −KdbK−1
bb Kbd

)
δd = fd −KdbK−1

bb fb (70)

The procedure just illustrated represents the so-called static condensation procedure and allows
the reduction of the initial size of the problem [4].

Once the static solution in terms of generalized displacements is accomplished, the through-the-
thickness profiles of stress and strain components can be evaluated by using the three-dimensional
elasticity equations written in an orthogonal curvilinear coordinate system. This approach is known as
recovery procedure and can be employed to evaluate the three-dimensional quantities at issue, starting
from the solutions obtained by a two-dimensional shell model. The reader can find a complete treatise
about this approach in the papers [21].
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Finally, it should be mentioned that the present formulation is implemented in a computational
code developed in MATLAB by the authors [119].

6. Applications

The numerical results are presented in this section. For this purpose, four structures reinforced by
curvilinear fibers are analyzed. Their geometries are depicted in Figure 2. In particular, a square plate,
a conical shell, a doubly-curved panel of revolution with catenary meridian and a doubly-curved panel
of translation (obtained by moving a circumference over a parabola) are investigated. Their shape is
described through the position vectors listed in Table 1. Analogously, the lamination schemes, as well
as the mathematical laws that describe the curvilinear paths of the reinforcing fibers, are specified in
Table 1. For the sake of clarity, the curvilinear paths are also presented in graphical form in Figure 3 for
the lower and upper sheets of each structure, considering the maximum value of the fiber orientation.
For conciseness purposes, the mechanical properties of the orthotropic skins and the isotropic core are
listed in Table 2. On the other hand, the mechanical composition of the four structures, which are all
loaded by an external pressure q(+)

n = −10 kPa, is summarized in Table 3.
The results are presented in terms of through-the-thickness profiles of strain, stress, and

displacement components. Then, the profiles of the generalized displacements u(0)
1 , u(0)

2 , u(0)
3 along

two couples of orthogonal directions are also provided for each structure.
A set of parametric investigations is presented to study the effect of the fiber orientation

represented by the symbol φ ∈ [0◦, 60◦] on the linear static response. Each group of analyses is
repeated to investigate also the influence of the maximum order of kinematic expansion. To this aim,
three higher-order theories are considered, which are EDZ2, EDZ3 and EDZ4.

Finally, it should be mentioned that the same structures have been analyzed from the dynamic
point of view (free vibration analysis) in the previous paper by Tornabene et al. [56].
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Table 1. Definition of structural geometries and corresponding lamination schemes.

Square plate

Position vector

r(x, y) = xe1 + ye2, x ∈ [0, Lx], y ∈
[
0, Ly

]
, Lx = Ly = 1.5 m

Lamination scheme(
θ
(1)
1 ψ

(1)
1 /Soft− core/90 + θ

(3)
1 ψ

(3)
1

)
, θ

(1)
1 = θ

(3)
1 = φ, hs = 0.02 m, hc = 0.06 m

ψ
(1)
1 (x) = ψ

(3)
1 (x) = (sin(π(n1α1 + α1m)))

p1

Conical shell

Position vector

r(α1, y) = (a cos α1 + y sin α sin ϕ)e1 − y cos αe2 + (b sin α1 − y sin α cos ϕ)e3

ϕ(α1) = arctan

(
− b cos α1

a
√

1− cos2 α1

)
, a = b = 0.5 m, α = π/12, α1 ∈

[
α0

1, α1
1
]
= [0, 2π], y ∈ [y0, y1] = [0, 1 m]

Lamination scheme(
90 + θ

(1)
2 ψ

(1)
2 /Soft− core/90 + θ

(3)
2 ψ

(3)
2

)
, θ

(1)
2 = −θ

(3)
2 = φ, hs = 0.02 m, hc = 0.06 m

ψ
(1)
2 (y) = ψ

(3)
2 (y) = α2

p2 , p2 = 1

Doubly-curved panel of revolution with catenary meridian

Position vector

r(ϕ, ϑ) = R0(ϕ) cos ϑe1 − R0(ϕ) sin ϑe2 + aarcsinh
(

1
tan ϕ

)
e3

R0(ϕ) = a cosh
(

arcsinh
(

1
tan ϕ

))
, a = 2 m, c = 2 m, d = 1 m

α1 ∈
[
α0

1, α1
1
]
= [−2.05117, 2.05117], α2 ∈

[
α0

2, α1
2
]
= [−π/6, π/6]

Lamination scheme(
30 + θ

(1)
1 ψ

(1)
1 /Soft− core/45 + θ

(3)
5 ψ

(3)
5

)
, θ

(1)
1 = −2θ

(3)
5 = φ, hs = 0.05 m, hc = 0.1 m

ψ
(1)
1 (ϕ) = e(−

ϕ
ϕm

)
p1

, p1 = 1, ϕm = 0.9

ψ
(3)
5 (ϕ, ϑ) = e

(− 1
2(1−ρ2

12)
(( ϕ−ϕm

∆1
)

2
+( ϑ−ϑm

∆2
)

2−2ρ12
ϕ−ϕm

∆1
ϑ−ϑm

∆2
))

, ϕm = 0, ϑm = ϑ1−ϑ0
2 , ∆1 = 0.3, ∆2 = 100, ρ12 = 0

Doubly-curved panel of translation (a circumference slides over a parabola)

Position vector

r(α1, α2) =
(

Rα1
0 (α1)− xα2

3 (α2) sin α1
)
e1 +−Rα2

0 (α2)e2 +
(

xα1
3 (α1) + xα2

3 (α2) cos α1
)
e3

Rα1
0 (α1) =

kα1 tan α1
2 , xα1

3 (α1) =
(Rα1

0 (α1))
2

kα1 , kα1 = a2−d2

b , a = 2 m, b = 0.5 m, c = −2 m, d = 0 m
Rα2

0 (α2) = R sin α2, xα2
3 (α2) = R(1− cos α2), R = 3 m, α1 ∈

[
α0

1, α1
1
]
=
[
−π

6 , π
6
]
, α2 ∈

[
α0

2, α1
2
]
= [−π/4, π/4]

Lamination scheme(
30 + θ

(1)
3 ψ

(1)
3 (α1)/Soft− core/60 + θ

(3)
1 ψ

(3)
1

)
, θ

(1)
3 = −θ

(3)
1 = φ, hs = 0.02 m, hc = 0.06 m

ψ
(1)
3 (α1) = α̃

p3
1 , p3 = 1, ψ

(3)
1 (α1) = α1

p1 , p1 = 1
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Figure 3. Curvilinear fiber paths in the external sheets of the structures: (a) Square plate; (b) Conical
shell; (c) Doubly-curved panel of revolution; (d) Doubly-curved panel of translation.

Table 2. Mechanical properties of the materials used in the computations.

Material Young’s Moduli
[GPa] Poisson’s Ratios Shear Moduli

[GPa]

Graphite-epoxy
(orthotropic)

E1 = 137.90 ν12 = 0.30 G12 = 7.10
E2 = 8.96 ν13 = 0.30 G13 = 7.10
E3 = 8.96 ν23 = 0.49 G23 = 6.21

Glass-epoxy
(orthotropic)

E1 = 53.78 ν12 = 0.25 G12 = 8.96
G12 = 8.96E2 = 17.93 ν13 = 0.25

E3 = 17.93 ν23 = 0.34

Foam
(isotropic) E = 0.232 ν = 0.20 G =

E
2(1 + ν)
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Table 3. Mechanical composition of the four structures.

Structural Element Core Material Skin Material

Square plate Foam Glass-epoxy
Conical shell Foam Glass-epoxy

Doubly-curved panel of revolution Foam Graphite-epoxy
Doubly-curved panel of translation Foam Graphite-epoxy

6.1. Square Plate

The discrete model of a completely clamped (CCCC) square plate is obtained by setting
IN = IM = 25 grid points. In this circumstance, a three-dimensional finite element model (3D-FEM) is
also developed for comparison purposes, only for straight reinforcing fibers (φ = 0). The commercial
software Strand7 is employed for this reason, by using the Hexa20 brick elements.

The through-the-thickness variations of the strain, stress and displacement components are
evaluated in

(
0.25Lx, 0.25Ly

)
and are shown in Figures 4–6. On the other hand, the profiles of the

generalized displacements are evaluated for constant values of the main coordinates, varying the
values of the fiber orientation φ and the maximum order of kinematic expansion.
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Figure 6. Through-the-thickness variation of the displacement components [m] for a completely
clamped square plate evaluated in

(
0.25Lx, 0.25Ly

)
, varying the values of the fiber orientation φ and

the maximum order of kinematic expansion N. Comparison with the finite element method (3D FEM).

These results are presented in Figures 7 and 8. It can be noted that the variation of the fiber
orientation mainly affects the generalized displacements defined on the middle surface than the
three-dimensional profiles of strains, stresses and displacements, since the soft-core effect is prevalent.
Nevertheless, also the stress and strain components are influenced by the placement of the fibers,
especially for higher values of φ ∈ [0◦, 60◦]. This example proves also the validity of the current
formulation, both in terms of two-dimensional and three-dimensional solutions, through the great
agreement with the 3D-FEM results.
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6.2. Conical Shell

A completely clamped conical shell is considered in the next application. The discrete model
is obtained by setting IN = 31 and IM = 25. The through-the-thickness profiles of strain, stress and
displacement components are evaluated in the point

(
0.25

(
α1

1 − α0
1
)
+ α0

1, 0.25(y1 − y0) + y0
)

and are
presented in Figures 9–11. As it can be noted from these figures, the fiber orientation φ ∈ [0◦, 60◦]
affects the static response of the sandwich structure at issue. Analogously, several profiles of the
generalized displacements u(0)

1 , u(0)
2 , u(0)

3 for constant values of the main coordinates can be obtained
by varying the fiber orientation, as it can be noted in Figures 12 and 13. The influence of the curvilinear
path is especially evident along the circumferential lines obtained for constant values of y coordinate
(Figure 12), where the corresponding displacement profiles are represented by straight segments.
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6.3. Doubly-Curved Panel of Revolution

The doubly-curved panel investigated in this paragraph is obtained by the rotation of a catenary
shaped profile about the axis of revolution. The corresponding discrete model is obtained by setting
IN = 31 and IM = 25 as in the previous example. The boundary conditions are specified by the
notation CCCF; in other words, the northern edge is free, whereas the others are clamped.

The through-the-thickness variations of three-dimensional strains, stresses and displacements
are computed in the point (0.25(ϕ1 − ϕ0) + ϕ0, 0.25(ϑ1 − ϑ0) + ϑ0). The corresponding graphs are
illustrated in Figures 14–16, varying the values of the fiber orientation φ ∈ [0◦, 60◦] and the maximum
order of kinematic expansion. Even in this circumstance, the static response is affected by the
fiber orientation.
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orientation φ and the maximum order of kinematic expansion N.
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panel of revolution evaluated in (0.25(ϕ1 − ϕ0) + ϕ0, 0.25(ϑ1 − ϑ0) + ϑ0), varying the values of the
fiber orientation φ and the maximum order of kinematic expansion N.
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On the other hand, the profiles of the generalized displacements within the shell middle surface
are collected in Figures 17 and 18 for constant values of the principal coordinates.J. Compos. Sci. 2018, 2, x FOR PEER REVIEW  28 of 43 
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6.4. Doubly-Curved Panel of Translation

The last structure is a completely clamped doubly-curved panel of translation. The middle surface
of this peculiar geometry can be described by sliding a circumference over a parabolic arch. As far as
the discrete model is concerned, the grid distribution is applied by setting IN = IM = 31.

The through-the-thickness profiles of strain, stress and displacement components are evaluated
respectively in

(
0.25

(
α1

1 − α0
1
)
+ α0

1, 0.25
(
α1

2 − α0
2
)
+ α0

2
)
, varying the values of the fiber orientation

φ ∈ [0◦, 60◦] and the maximum order of kinematic expansion N. Their graphs are shown in
Figures 19–21.
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The variations of the generalized displacement components computed on the shell middle surface
are shown instead in Figures 22 and 23, by selecting constant values of the principal coordinates.

Finally, the deformed shapes of the four shell structures analyzed in this section are depicted in
Figure 24 for three different values of the fiber orientation (φ = 0◦, φ = 30◦, φ = 60◦).
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6.5. Remarks on the Use of the Murakami’s Function

It can be noted that the present approach is used to perform the static analysis of sandwich
structures made of three layers (two external stiffer skins and a soft-core). Murakami’s function can
capture their effective mechanical behavior in this circumstance. Nevertheless, sandwich structures
could be characterized by more than three layers. For instance, the inner soft-core could be enclosed
by couples of orthotropic stiffer layers. Consequently, a lamination scheme could be given by(

θ(1)/θ(2)/Soft− core/θ(4)/θ(5)
)

. As highlighted first in the paper by Gherlone [120], then in the
work by Groh and Weaver [121], the Murakami’s function embedded in an ESL model could be
inadequate to deal with these kinds of structural problems. A final application is presented to illustrate
this aspect. For this purpose, a completely clamped laminated square plate with Lx = Ly = 1.5 m and

h = 0.1 m, loaded by an external pressure q(+)
n = −10 kPa, is considered. Its lamination scheme is

given by (0/90/Soft− core/90/0), assuming h1 = h2 = 0.01 m, h4 = h5 = 0.01 m and h3 = 0.06 m.
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The four external layers are made of orthotropic material (Graphite-epoxy), whereas the soft-core
is made of Foam. Their properties are listed in Table 2. In this circumstance, the reinforcing fibers
are placed according to straight paths to perform the comparison also with the three-dimensional
finite element solution (3D FEM). As far as the present ESL approach is concerned, the EDZ4 is
considered to be structural theory. To prove the inadequacy of the Murakami’s function to capture the
effective static behavior of this five-layered plate, a layer-wise theory is used for the sake of comparison.
In particular, the LD4 model is used. The reader can find the meaning and the features of this theory in
the paper by Tornabene [12]. The through-the-thickness profiles of strains, stresses and displacements
are shown in Figures 25–27. The following results prove the same aspects highlighted in the reference
papers [120,121]. In particular, the LD4 is in excellent agreement with the reference solution (3D FEM),
whereas the EDZ4 is not able to capture the effective through-the-thickness profiles, especially in terms
of strains and displacements. The discrete model is obtained by setting IN = IM = 25 grid points for
the GDQ solutions. On the other hand, the commercial software Strand7 is employed for the 3D FEM
solution, by using the Hexa20 brick elements. This final example justifies the use of the ESL zig-zag
theories only for three-layered sandwich structures with an inner soft-core.
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7. Discussion

A massive set of parametric investigations has been performed and presented in the paper
to show the effect of the curvilinear paths of the reinforcing fibers on the linear static response of
soft-core sandwich structures. A theoretical framework based on higher-order ESL theories including
the Murakami’s function has been employed. As far as the values of the fiber orientation are
concerned, an innovative and general mathematical formulation has been developed, to describe
more complex curvilinear paths (such as power law, sine-wave, exponential, Gaussian and ellipse
shaped). The following observations can be gathered:

• The soft-core effect is well-captured by means of the Murakami’s function. As highlighted in
previous work [56], this function is required to model the so-called zig-zag effect. These aspects are
extremely clear in the through-the-thickness profiles of strain, stress and displacement components
presented in the paper.

• The higher-order theories employed in this paper provide comparable results. Thus, all these
models can be used to deal with similar structural problems. With respect to first-order models,
the shear correction factor and the plane stress hypothesis can be neglected, and the mechanical
behavior is closer to the three-dimensional one.

• The linear static behavior is affected by the value of the fiber orientation. Therefore, the angle of
the fiber orientation represents a design parameter that can be modified and optimized during
the manufacturing process to obtain the desired structural behavior in terms of static response.

• The boundary conditions in terms of generalized displacements on the shell middle surface,
as well as stress profiles, are well-enforced. In particular, null displacements are obtained for
clamped edges, whereas the normal stress σn coincides with the value of the corresponding
applied load.

• The numerical method employed in the paper represents an accurate tool to deal with similar
structural problems.
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