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Abstract: A multiscale (micro-macro) approach is proposed for the establishment of the full thermal
and induced stress fields in cracked composites that are subjected to heat flow. Both the temperature
and stresses’ distributions are determined by the solution of a boundary value problem with
one-way coupling. At the micro level and for combined thermomechanical loading, a micromechanical
analysis is employed to determine the effective moduli, coefficients of thermal expansion and thermal
conductivities of the undamaged composite. At the macro level, the representative cell method is
employed according to which the periodic damaged composite region is reduced, in conjunction with
the discrete Fourier transform, to a finite domain problem. As a result, a boundary value problem is
obtained in the Fourier transform domain, which is appropriately discretized and solved. The inverse
transform and an iterative procedure provide the full thermal and stress fields. The proposed method
is verified by comparisons with exact solutions. Applications are given for the determination of the
thermal and stress fields in cracked fiber-reinforced polymeric composite, cracked porous ceramic
material and cracked periodically-layered ceramic composite caused by the application of heat flow.
The presented formulation admits however the application of a combined mechanical and heat flux
on cracked composites.

Keywords: fiber-reinforced composites; porous materials; thermal stresses; representative cell
method; high-fidelity generalized method of cells

1. Introduction

There are many books, review articles and papers that are dedicated to the investigation of the
behavior of cracked solids and composites that are subjected to mechanical loadings. Relatively few
papers appeared concerning the induced thermal stresses caused by the application of heat flow in the
presence of cracks and other types of damage. Quantifying these stresses in the presence of defects is
important as they may give information about the locations of high stress concentrations, which can
cause failure. It should be mentioned that in the framework of these problems, the temperature field
distribution is not constant, but rather spatially dependent, which should be determined according to
the considered boundary-value problem. The resulting heat flux caused by the application of heat flow
in a cracked homogeneous material is singular at the crack front, and the temperature is continuous
along the crack line and discontinuous across the crack (insulated crack).

Due to the one-way thermomechanical coupling, the temperature field induces thermal stresses
in the material, which are singular near the crack tip. Examples of some articles in which the effect of
heat flow in cracked materials is investigated are: [1–11] and the references cited therein, as well as
Chapter 10 in the monograph [12]. The analysis of [13] of the singularities at the tip of interfacial cracks
in anisotropic materials subjected to heat flow forms a generalization of the square root singularity
that occurs in homogeneous materials. A recent article in which the extended finite element method
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has been employed for the simulation of the heat flux and thermal stresses in cracked solids has been
presented by [14].

The aforementioned investigations are concerned with cracks in homogeneous materials or
interfacial cracks between two homogeneous materials. When the effect of thermal loading
on composite materials with cracks is sought, the application of these analyses necessitates the
homogenization of the considered multiphase material. As a result of this homogenization, the effect
of the composite’s periodic microstructure is lost. Furthermore, when the homogenization technique is
employed in the analysis of a cracked composite with a periodic microstructure, a repeating unit cell
that represents the entire composite is considered. The introduction of a crack in the repeating unit cell
implies its repeated existence in the entire composite, which obviously is not a realistic situation.

In the present investigation, a multiscale analysis is proposed for the establishment of the full
thermoelastic field caused by the application of remote heat flow on cracked composite materials while
taking into account their microstructure distributions. As a result of the application of thermal loading,
the temperature and heat flux distributions are established by solving the steady state heat equation.
The one-way coupling with the mechanical equations induces thermal stresses in the composite, which
are subsequently determined by solving these equations.

The proposed method of solution consists of a micromechanical analysis, which is followed
by a macromechanical one. In the most general case of a composite subjected to remote
thermomechanical loading, the micromechanical analysis provides the effective thermal conductivities,
elastic moduli and coefficients of thermal expansion of the undamaged composite. This is carried out by
utilizing the high-fidelity generalized method of cells (HFGMC), which has been fully described in [15].
In the framework of the macromechanical analysis, the representative cell method [16] is employed.
According to this method, the composite domain is divided into several rectangular cells with respect
to which the governing and constitutive equations are formulated. This is followed by the application
of the discrete Fourier transform, which reduces the multiple cell problem to the analysis of a single
cell in the transform domain. The transformed temperature and displacement vector are expanded
into a second-order polynomial, and the heat and equilibrium equations, as well as the interfacial and
boundary conditions are imposed in the average (integral) sense. A discretization of the single cell
problem provides the solution in the form of a system of algebraic equations; see [15]. The inversion
of the Fourier transform provides the actual thermal and mechanical fields at the various cells and,
thus, at every desired point of the composite. The effect of crack existence is taken into account by
the continuum damage mechanics considerations combined with the localized damage analysis as
described by [17,18]. It should be noted that in both of these articles, the constant temperature has
been uniformly prescribed in the entire composite.

The proposed approach is verified by comparing its prediction with exact solutions for a crack
embedded in homogeneous materials that are subjected to remote heat flow. The temperature field,
heat flux and the resulting induced stress distributions are shown and discussed in the cases of
fiber-reinforced polymer matrix composite, porous ceramic material and periodically-layered ceramic
composite, all of which are subjected to heat flow.

The present article is organized as follows. In Section 2, the constitutive and governing equations
are presented. This is followed in Section 3 by the method of solution, which is presented in the real
space followed by its formulation in the Fourier transform domain. The solution in the latter domain
utilizes the methods presented in [15]. The inversion of the Fourier transform provides the actual
solution, which requires iterations for convergence. In Section 4, verifications of the proposed method
are presented by comparison with exact solutions. Section 5 provides the results of the application
of the proposed method on three types of composites. Finally, the Conclusion section is given for
a summary and future generalizations.
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2. Constitutive and Governing Equations

Consider a thermoelastic homogeneous orthotropic material. The constitutive equations are given
as follows:

σ = C : ε− ΓT (1)

where σ, ε, C and Γ are the stress, strain, stiffness and thermal stress tensors, respectively. In this
equation, T is the temperature field deviation from a reference temperature. The thermal flux vector q
is related to the temperature gradient via Fourier’s law in the form:

q = −κ ∇T (2)

and κ is the thermal conductivity tensor.
The governing equations are given by:

∇ · σ = 0 (3)

and:

∇ · q = 0 (4)

It should be noted that the temperature field is uncoupled to the mechanical field, but it affects
the latter through the constitutive Equation (1) (one-way thermomechanical coupling).

As discussed in [17], the effect of the crack can be represented, in the framework of the continuum
damage mechanics, by introducing a damage parameter D, which takes the value of zero or one. In the
crack region, D = 1, whereas D = 0 otherwise. As a result, Equations (1) and (2) are reduced to the
following form:

σ = (1− D)C : ε− (1− D)ΓT (5)

and:

q = −(1− D)κ ∇T (6)

As discussed in the next section, Equations (5) and (6) are more conveniently represented
as follows:

σ = C : ε− ΓT − σe (7)

q = −κ ∇T − qe (8)

where:

σe = D (C : ε− ΓT) (9)

qe = −Dκ ∇T (10)

which play the role of eigen stress and eigen heat flux, respectively. Consequently, the damage
parameter D = 1 in the crack region results in traction-free and insulated crack surfaces. It should be
noted that D = 1 in the crack region implies that the crack does not evolve. The proposed method
enables however the crack progression; see [17].
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3. Method of Solution

Consider a composite material with a doubly-periodic microstructure. As an illustration, Figure 1a
shows a composite with a hexagonal array of fibers embedded in the matrix. Also shown is a crack of
length 2a, which connects two adjacent fibers. The composite is subjected to a heat flux q̄ = {q̄1, q̄2}t

(Figure 1a is shown with q̄1 = 0). As a result of the crack existence, the periodicity of the composite is
lost, and consequently, a repeating unit cell (a representative volume element) does not exist. In the
following, we present a method of solution that is based on the representative cell method [16], which
is capable of establishing the full temperature and thermoelastic fields. To this end, let us consider
a rectangular domain −D ≤ X1 ≤ D, −H ≤ X2 ≤ H of the composite, which includes the crack
region. It is assumed that this rectangular domain, which is subjected to the heat flux q̄, is sufficiently
extensive such that the temperature and thermoelastic fields at its boundaries are not influenced by
the crack existence. It should be mentioned that as long as the rectangular domain is sufficiently
extensive, the distribution of the fibers and the location of the crack is arbitrary. It is advisable however
to preserve symmetry (as illustrated by the insets of the figures that are discussed in the following)
in order to obtain symmetrical field distributions. Consequently, the boundary conditions (presently,
the heat flux) that are applied on X1 = ±D and X2 = ±H can be referred to as the far-field boundary
conditions. This region is divided into (2M1 + 1)× (2M2 + 1) cells; see Figure 1b for M1 = M2 = 2.
Every cell is labeled by (K1, K2) with K1 = −M1, ..., M1 and K2 = −M2, ..., M2. In each cell, local
coordinates (X

′
1, X

′
2) are introduced whose origins are located at its center; see Figure 1c.J. Compos. Sci. 2017, 1, x 5 of 21
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Figure 1. (a) A crack of length 2a embedded in a composite material. (b) A rectangular domain
2D × 2H of the composite is divided into repeating cells. These cells are labeled by (K1, K2) with
−M1 ≤ K1 ≤ M1 and −M2 ≤ K2 ≤ M2, and the size of every one of which is 2d× 2h (the figure is
shown for M1 = M2 = 2). (c) A representative cell in which local coordinates (X

′
1, X

′
2) are introduced

whose origin is located at the center. The cell is divided into Nα × Nβ sub-cells.

3.1. Formulation in the Real Domain

The constitutive Equation (7) in cell (K1, K2) can be written as:

σ(K1,K2) = C : ε(K1,K2) − ΓT(K1,K2) − σe(K1,K2) (11)

Figure 1. Cont.
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Figure 1. (a) A crack of length 2a embedded in a composite material. (b) A rectangular domain
2D × 2H of the composite is divided into repeating cells. These cells are labeled by (K1, K2) with
−M1 ≤ K1 ≤ M1 and −M2 ≤ K2 ≤ M2, and the size of every one of which is 2d× 2h (the figure is
shown for M1 = M2 = 2). (c) A representative cell in which local coordinates (X

′
1, X

′
2) are introduced

whose origin is located at the center. The cell is divided into Nα × Nβ sub-cells.

3.1. Formulation in the Real Domain

The constitutive Equation (7) in cell (K1, K2) can be written as:

σ(K1,K2) = C : ε(K1,K2) − ΓT(K1,K2) − σe(K1,K2) (11)

Figure 1. (a) A crack of length 2a embedded in a composite material; (b) A rectangular domain
2D × 2H of the composite is divided into repeating cells. These cells are labeled by (K1, K2) with
−M1 ≤ K1 ≤ M1 and −M2 ≤ K2 ≤ M2, and the size of every one of which is 2d× 2h (the figure is
shown for M1 = M2 = 2); (c) A representative cell in which local coordinates (X

′
1, X

′
2) are introduced

whose origin is located at the center. The cell is divided into Nα × Nβ sub-cells.

3.1. Formulation in the Real Domain

The constitutive Equation (7) in cell (K1, K2) can be written as:

σ(K1,K2) = C : ε(K1,K2) − ΓT(K1,K2) − σe(K1,K2) (11)

If the crack exists in the cell (K1 = 0, K2 = 0) only, it follows that σe(K1,K2) takes the form:

σe(K1,K2) = D
(

C : ε(K1,K2) − ΓT(K1,K2)
)

δK1,0δK2,0 (12)

where δi,j is the Kronecker delta. It is obvious that this last expression can be generalized for the
modeling of cracks that exist in other cells (as long as it is ensured that the size of the rectangular region
is sufficiently large such that the far-field at its boundaries is not affected by the cracks’ existence).

Similarly, constitutive Equation (8) in the cell (K1, K2) can be written as:

q(K1,K2) = −κ ∇T(K1,K2) − qe(K1,K2) (13)

where:

qe(K1,K2) = −Dκ ∇T(K1,K2)δK1,0δK2,0 (14)

The governing Equations (3) and (4) of the materials within the cell (K1, K2) take the form:

∇ · σ(K1,K2) = 0 (15)

∇ · q(K1,K2) = 0 (16)

Next, the continuity of displacements u(K1,K2) and temperature T(K1,K2) between adjacent cells
must be imposed. These imply that (the square brackets do not denote quantity jumps):[

u(d, X
′
2)
](K1,K2) −

[
u(−d, X

′
2)
](K1+1,K2)

= 0,

K1 = −M1, ..., M1 − 1, K2 = −M2, ..., M2 (17)
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[
T(d, X

′
2)
](K1,K2) −

[
T(−d, X

′
2)
](K1+1,K2)

= 0,

K1 = −M1, ..., M1 − 1, K2 = −M2, ..., M2 (18)

and: [
u(X

′
1, h)

](K1,K2) −
[
u(X

′
1,−h)

](K1,K2+1)
= 0,

K1 = −M1, ..., M1, K2 = −M2, ..., M2 − 1 (19)

[
T(X

′
1, h)

](K1,K2) −
[

T(X
′
1,−h)

](K1,K2+1)
= 0,

K1 = −M1, ..., M1, K2 = −M2, ..., M2 − 1 (20)

Similarly, the continuity of tractions t(K1,K2) and the normal components of the heat flux q(K1,K2)

between adjacent cells are fulfilled by requiring that:[
t(d, X

′
2)
](K1,K2) −

[
t(−d, X

′
2)
](K1+1,K2)

= 0,

K1 = −M1, ..., M1 − 1, K2 = −M2, ..., M2 (21)

[
q1(d, X

′
2)
](K1,K2) −

[
q1(−d, X

′
2)
](K1+1,K2)

= 0,

K1 = −M1, ..., M1 − 1, K2 = −M2, ..., M2 (22)

and [
t(X

′
1, h)

](K1,K2) −
[
t(X

′
1,−h)

](K1,K2+1)
= 0,

K1 = −M1, ..., M1, K2 = −M2, ..., M2 − 1 (23)

[
q2(X

′
1, h)

](K1,K2) −
[
q2(X

′
1,−h)

](K1,K2+1)
= 0,

K1 = −M1, ..., M1, K2 = −M2, ..., M2 − 1 (24)

Finally, the boundary conditions have to be imposed on the boundaries ±D and ±H of the
rectangle, which as stated before, must be sufficiently far away such that the effect of the crack is
negligible. The tractions and the normal components of the heat flux on opposite sufficiently remote
sides of this rectangle must be equal. Thus:[

σ1j(d, X
′
2)
](M1,s)

−
[
σ1j(−d, X

′
2)
](−M1,s)

= 0, s = −M2, ..., M2 (25)

[
q1(d, X

′
2)
](M1,s)

−
[
q1(−d, X

′
2)
](−M1,s)

= 0, s = −M2, ..., M2 (26)

and: [
σ2j(x

′
1, h)

](r,M2) −
[
σ2j(X

′
1,−h)

](r,−M2)
= 0, r = −M1, ..., M1 (27)

[
q2(X

′
1, h)

](r,M2) −
[
q2(X

′
1,−h)

](r,−M2)
= 0, r = −M1, ..., M1 (28)
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On the other hand, the displacements and temperature at these opposite sides differ. Their
differences (jumps) are defined by:

u(M1,s)(d, X
′
2)− u(−M1,s)(−d, X

′
2) ≡ Ju

1 , s = −M2, ..., M2 (29)

T(M1,s)(d, X
′
2)− T(−M1,s)(−d, X

′
2) ≡ JT

1 , s = −M2, ..., M2 (30)

and:

u(r,M2)(X
′
1, h)− u(r,−M2)(X

′
1,−h) ≡ Ju

2 , r = −M1, ..., M1 (31)

T(r,M2)(X
′
1, h)− T(r,−M2)(X

′
1,−h) ≡ JT

2 , r = −M1, ..., M1 (32)

These jumps are given by the far-field (which is not affected by the crack existence) as follows:

Ju
1k = 2Dε̄1k, Ju

2k = 2Hε̄2k, k = 1, 2, 3 (33)

where ε̄1k and ε̄2k are the average (far-field) strain of the unperturbed periodic composite. They can be
determined from the micromechanically-established macroscopic (average) constitutive law:

σ̄ = C∗ : ε̄− Γ∗T (34)

where C∗ and Γ∗ are the effective stiffness and thermal stress tensors of the periodic (unperturbed)
composite which can be determined by HFGMC micromechanical analysis [15], and σ̄ are the far-field
applied tractions. When the composite is subjected to a heat flux only (i.e., in the absence of a strain
loading), the average (far-field) strains ε̄ are equal to zero.

Similarly,

JT
1 = 2Dτ̄1, JT

2 = 2Hτ̄2 (35)

where τ̄1 and τ̄2 are the components of the remote temperature gradient. They can be determined from
the micromechanically-established macroscopic (average) Fourier law of the composite:

q̄ = −κ∗τ̄ (36)

with κ∗ being the effective thermal conductivity tensor that can be determined from HFGMC
analysis [19], and q̄ is the far-field applied heat flux.

3.2. Formulation in the Transform Domain

The next stage in the representative cell method consists of the application of the double discrete
Fourier transform. For the displacement vector u(K1,K2) (for example), this transform is defined by:

û(X
′
1, X

′
2, φr, φs) =

M1

∑
K1=−M1

M2

∑
K2=−M2

u(K1,K2)(X
′
1, X

′
2) exp [i(K1φr + K2φs)] (37)

where:

φr =
2πr

2M1 + 1
, r = 0,±1,±2, ...,±M1, φs =

2πs
2M2 + 1

, s = 0,±1,±2, ...,±M2,

The application of this transform to the boundary problem (11)–(32) for the rectangular domain
−D < X1 < D, −H < X2 < H, which is divided into (2M1 + 1)× (2M2 + 1) cells, converts it to the
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problem for the single representative cell −d < X′1 < d, −h < X′2 < h with respect to the complex
valued transforms. The resulting constitutive Equations (11)–(14) take the form:

σ̂ = C : ε̂− ΓT̂ − σ̂e (38)

σ̂e = D
(
C : ε̂− ΓT̂

)
(39)

q̂ = −κ ∇T̂ − q̂e (40)

q̂e = −Dκ ∇T̂ (41)

The governing Equations (15)–(16) reduce to:

∇ · σ̂ = 0 (42)

∇ · q̂ = 0 (43)

Next, the continuity conditions (17)–(28) in the transform domain are:

û(d, X
′
2)− exp(−iφr)û(−d, X

′
2) = 0, −h ≤ X′2 ≤ h (44)

T̂(d, X
′
2)− exp(−iφr)T̂(−d, X

′
2) = 0, −h ≤ X′2 ≤ h (45)

û(X
′
1, h)− exp(−iφs)û(X

′
1,−h) = 0, −d ≤ X′1 ≤ d (46)

T̂(X
′
1, h)− exp(−iφs)T̂(X

′
1,−h), −d ≤ X′1 ≤ d (47)

t̂(d, X
′
2)− exp(−iφr)t̂(−d, X

′
2), −h ≤ X′2 ≤ h (48)

q̂1(d, X
′
2)− exp(−iφr)q̂1(−d, X

′
2), −h ≤ X′2 ≤ h (49)

t̂(X
′
1, h)− exp(−iφs)t̂(X

′
1,−h), −d ≤ X′1 ≤ d (50)

q̂2(X
′
1, h)− exp(−iφs)q̂2(X

′
1,−h), −d ≤ X′1 ≤ d (51)

In all of these equations, r = 0, ...,±M1; s = 0, ...,±M2.
As for the displacements and temperature differences (jumps) that are given by (29)–(32), they

appear in the transform domain as follows:

û(d, X
′
2)− exp(−iφr)û(−d, X

′
2) + δ0,s(2M2 + 1)Ju

1 exp(iφr M1), −h ≤ X
′
2 ≤ h (52)

T̂(d, X
′
2)− exp(−iφr)T̂(−d, X

′
2) + δ0,s(2M2 + 1)JT

1 exp(iφr M1), −h ≤ X
′
2 ≤ h (53)



J. Compos. Sci. 2017, 1, 4 9 of 20

û(X
′
1, h)− exp(−iφs)û(X

′
1,−h) + δ0,r(2M1 + 1)Ju

2 exp(iφs M2), −d ≤ X
′
1 ≤ d (54)

T̂(X
′
1, h)− exp(−iφs)T̂(X

′
1,−h) + δ0,r(2M1 + 1)JT

2 exp(iφs M2), −d ≤ X
′
1 ≤ d (55)

The set of Equations (38)–(55) defines a boundary value problem in the transform domain.
These equations can be solved by the methods that have been presented in detail in Chapter
11 of [15] for functionally-graded materials. Thus, the representative cell domain −d ≤ X

′
1 ≤ d,

−h ≤ X
′
2 ≤ h is divided into several rectangular sub-cells, α = 1, ..., Nα, β = 1, ..., Nβ; see Figure 1c.

The transformed displacement vector and temperature are expanded into second-order polynomials,
and the equilibrium and heat equations, interfacial and boundary conditions are imposed in the
average (integral) sense. This results in a system of algebraic equations, the solution of which provides
the transformed thermal and mechanical fields. The actual fields at any point within the cells (K1, K2)

of the considered rectangular region −D ≤ X1 ≤ D, −H ≤ X2 ≤ H can be determined by the
application of the inverse transform, which for the displacement vector (for example) is given by:

u(K1,K2)(X
′
1, X

′
2) =

1
(2M1 + 1)(2M2 + 1)

M1

∑
r=−M1

M2

∑
s=−M2

û(X
′
1, X

′
2, φr, φs) exp [−i(K1φr + K2φs)] (56)

In the application of this solution, the eigenfield vectors σ̂e and q̂e to be employed in
Equations (38) and (40) are not known. Hence, an iterative solution has to be employed as follows.

1. Start by assuming that σ̂e = 0 and q̂e = 0, and solve the above equations in the
transform domain.

2. Apply the inverse transform formula to compute the thermal and stress fields. The field variables
in the actual space can be employed to compute the current eigenfields σe(K1,K2) and qe(K1,K2).

3. Compute the transforms of σe(K1,K2) and qe(K1,K2), (39) and (41), to be employed in
Equations (38) and (40).

4. Solve again the equations in the transform domain. This procedure should be continued until
the convergence to a desired degree of accuracy is achieved.

The computational efficiency of the present approach can be illustrated by considering the
analysis of the cracked fiber-reinforced material with the fibers forming a hexagonal array, which
will be discussed in the following. This composite region has been divided into 11 × 11 cells
(i.e., M1 = M2 = 5). It should be noted that it is not possible to estimate in advance the size of
the model (which is determined by the values of M1 and M2). In practice, the size of the model is
determined by the requirement that the far-field is not affected by the local damage.

The representative cell has been divided in the framework of the higher-order theory into
Nα = 100 and Nβ = 56 sub-cells (which has been found to provide accurate results). The higher-order
analysis requires the solution of 16 unknowns in each sub-cell (i.e., 32 unknowns in the complex
transform domain). Hence, this discretization requires for each combination of φr, φs, the solution
of a sparse system of 179,200 algebraic equations. A direct numerical solution (e.g., by a finite
element procedure) with the same number of degrees of freedom would require solving a system of
11× 11× 16× 100× 56 ≈ 10× 106 equations, which is very large. Another significant advantage of
the present analysis over a direct computational approach stems from the fact that by increasing the
size of the rectangular region −D ≤ X1 ≤ D, −H ≤ X2 ≤ H (in order to further diminish the crack
effect) within which the computations in the transform domain are carried out (i.e., by increasing
M1 and M2), the number of algebraic equations (179,200 in the discussed example) does not change.
It should be noted however that the computer running time increases with the increase of M1 and M2.

4. Verifications

In [7], an exact solution for the temperature and thermal stresses fields is given for a crack of
length 2a embedded within an infinite homogeneous anisotropic material. The material is subjected
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to a remote heat flux q̄, and the crack is traction-free and insulated such that its surface heat flux is
equal to zero. With the effective heat conductivity, stiffness and thermal stress tensors, κ∗, C∗ and
Γ∗, that characterize the considered homogenized anisotropic material, the solution of [7] can be
implemented to verify the field variation as predicted by the present analysis. The exact expressions
for the temperature and heat flux are given by:

T = 2Re(g′(zt)) (57)

q1 = −2Re
(
κ∗11g′′(zt)

)
, q2 = −2Re

(
µtκ
∗
22g′′(zt)

)
(58)

where:

g(zt) = −
iq̄2a2

4
√

κ∗11κ∗22

[
ln
(

zt +
√

z2
t − a2

)
+

1
a2

(
z2

t − zt

√
z2

t − a2
)]

(59)

and zt = X1 + µtX2 with µt = i
√

κ∗11/κ∗22.
In addition, the thermal stresses in the cracked material can be determined from the

following expression:

σ1k = 2Re

{
2

a(ζk − ζ−1
k )

[Lh]k +
iq̄2a2

4
√

κ∗11κ∗22

}
, k = 1, 2, 3 (60)

In these equations, ζk = (zk +
√

z2
k − a2)/a, zk = X1 + µkX2 and µk are the three roots with the positive

imaginary part of a cubic equation that is given together with L and h in [7].
Consider a unidirectional fiber-reinforced composites that consists of carbon T300 fibers

reinforcing an epoxy matrix. The volume fraction of the reinforcing fibers is v f = 0.5. The properties
of the constituents, as well as the effective properties of the homogenized unidirectional composite,
predicted by the HFGMC micromechanical model, are given in Table 1. Let the axial direction of
this homogenized composite be oriented in the one-direction, and a crack of length 2a/(2d) = 1 is
introduced along this direction; see inset in Figure 2. The homogenized composite is subjected to
a remote heat flux q̄2 = −1 W/m2 in the two-direction. Figure 2 shows a comparison between the
temperature, heat flux and the induced shear stress along the crack line as predicted by the exact
solution of [7] and the present approach. Very good agreement can be observed. It should be noted that
only shear stress σ12 exists along the crack line, whereas σ22 = 0 along this line. This is in agreement
with the result of [20] who showed that in a cracked isotropic material that is subjected to a remote
heat flux, only Mode II deformation exists.

Next, let the axial direction of this homogenized transversely isotropic composite be oriented
in the out-of-plane three-direction, and a crack of length 2a is introduced along the one-direction;
see the inset in Figure 3. In the present situation, the plane X1-X2 is a plane of isotropy. In this case,
the solution of [7] is not applicable since out of the three roots µk, k = 1, 2, 3, two of them coincide,
and in addition, these two coincide with µt (i.e., µ1 = µ2 = µt = 1). It is important however to verify
this situation because in the analysis of the cracked (unhomogenized) fiber-reinforced composites
and porous materials that will be considered in the next section, the axes of symmetry are oriented in
the out-of-plane three-direction. For this case, it is however possible to verify our solution approach
by utilizing the exact solution of [4] for a crack embedded in isotropic material that is subjected to
a remote heat flux.
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Figure 2. Homogenized carbon/epoxy unidirectional transversely-isotropic composite with
a transverse crack, subjected to a remote normal heat flux of q̄2 = −1 W/m2. The axial direction
of the homogenized composite is oriented in the X1-direction. Comparison between the exact solution
of [7] and the present one for the temperature, normal heat flux and shear stress along the crack line.
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Figure 3. Homogenized carbon/epoxy unidirectional transversely-isotropic composite with
a transverse crack, subjected to a remote normal heat flux of q̄2 = −1 W/m2. The axial direction
of the homogenized composite is oriented in the out-of-plane X3-direction. Comparison between the
exact solution of [4] and the present one for the temperature, normal heat flux and shear stress along
the crack line.
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The closed-form solution of [4] for the temperature is given by:

T = − q̄2

κ
Re
{

i
[
z−

√
z2 − a2

]}
− q̄2

κ
X2 (61)

where z = X1 + iX2 and κ is the heat conduction. The heat flux components can be readily determined
from this relation:

q1 = q̄2Re
{

i
[

1− z√
z2 − a2

]}
, q2 = −q̄2Re

{
1− z√

z2 − a2

}
+ q̄2 (62)

The induced thermal stresses are determined from the two complex potentials ϕ(z) and ψ(z)
as follows.

σ11 + σ22 = 4Re
[
ϕ′(z)

]
, σ22 − σ11 + 2iσ12 = 2

[
z̄ϕ′′(z) + ψ′(z)

]
(63)

The expressions of the complex potentials ϕ(z) and ψ(z) are as follows:

ϕ(z) =
ia2(1 + ν)αGq̄2

4κ(1− ν)
ln

z +
√

z2 − a2

2a
(64)

ψ(z) = −ϕ(z)− ia4(1 + ν)αGq̄2

4κ(1− ν)

1√
z2 − a2

1

z +
√

z2 − a2
(65)

where G, ν and α are the shear modulus, Poisson’s ratio and coefficient of thermal expansion of
the isotropic material, respectively. The constants κ, G, ν and α can be readily determined from the
established effective conductivity, stiffness and thermal tensors of the considered composite.

Here, also, let the homogenized composite be subjected to a remote heat flux q̄2 = −1 W/m2

in the two-direction. In Figure 3, comparisons between this exact solution and the present one for
the unidirectional carbon/epoxy composite whose axis of symmetry is oriented in the out-of-plane
X3-direction with a transverse crack are shown. Very good agreements between the two solutions for
the temperature, heat flux and the induced shear stresses along the crack line can be well observed.

5. Applications

In the present section, applications are given for the prediction of the temperature, field, heat
flux and induced thermal stresses in a cracked fiber-reinforced polymer matrix composite, porous
ceramic material and periodically-layered ceramic composite under remote heat flow. In all of these
cases, the actual effects of the microstructure of the composite are accounted to (i.e., not homogenized).
The chosen number of cells that was found to ensure sufficient remoteness from the crack effects is
M1 = M2 = 5.

5.1. A Cracked Fiber-Reinforced Polymer Matrix Composite Subjected to a Remote Heat Flux

Consider a carbon/epoxy fiber-reinforced composite in which the carbon fibers are oriented
in the three-direction and arranged in a hexagonal array. It is assumed that a transverse crack that
connects two adjacent fibers exists; see the inset in Figure 4. The length of the crack is 2a/(2d) = 0.56.
The properties of the carbon T300 fibers and epoxy matrix are given in Table 1, and the fiber volume
ratio is v f = 0.5. The composite is subjected to a remote normal heat flux q̄2 = −1 W/m2.
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Table 1. Material properties of carbon, epoxy, alumina and zirconia constituents (Columns 1, 2, 4 and 5,
respectively). In Column 3, the effective properties of carbon/epoxy composite (v f = 0.5) are presented.
Here, EA, ET , νA, νT , GA, αA, αT , κA and κT denote the axial and transverse Young’s moduli, axial and
transverse Poisson’s ratios, axial and transverse coefficients of thermal expansion, axial and transverse
conductivities, respectively.

Property Carbon Epoxy Homogenized Carbon/Epoxy Alumina Zirconia
T300 v f = 0.5 Al2O3 ZrO2

EA(GPa) 220 3.45 111.9 393 207
ET(GPa) 22 3.45 8.49 393 207

νA 0.3 0.35 0.32 0.27 0.32
νT 0.35 0.35 0.39 0.27 0.32

GA(GPa) 22 1.28 3.16 154.7 78.4
αA(10−6 K−1) −1.3 54 −0.42 8.4 11
αT(10−6 K−1) 7 54 37.1 8.4 11
κA(W/(mK)) 20.5 0.18 10.35 35 2.7
κT(W/(mK)) 1.46 0.18 0.39 35 2.7
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Figure 4. The variations along the crack line of the temperature, normal component of the heat flux
and induced shear stress that develop in the carbon/epoxy fiber-reinforced composite, subjected to
a remote normal heat flux of q̄2 = −1 W/m2.

Figure 4 shows the variation along the crack line of the temperature T, normal heat flux q2 and
the induced thermal shear stress σ12. The effect of the composite microstructure is clearly observed
by the variations of the various field variables. These field variations can be compared with the
corresponding ones that have been shown in Figure 3, where the carbon/epoxy composite was
homogenized, as a result of which, the microstructure effects were ignored. In the latter homogenized
case, for example, the magnitude of the temperature, concentrated at the crack surface, was about
1.4 K, whereas in the actual situation that is shown in Figure 4, it is about 0.9 K. It should be mentioned
that since the matrix crack terminates at the fibers, singularities exist at the fiber-matrix interfaces,
which can be observed in the shear stress variation in Figure 4.

In Figure 5a–c, the full field distribution of the temperature, normal heat flux and the induced
normal thermal stress σ22 are shown in the region −5 ≤ X1/(2d) ≤ 5, −3 ≤ X2/(2h) ≤ 3 are
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shown. It can be observed from Figure 5b that the temperature varies between ±7 K, whereas the full
temperature field in the homogenized case (not shown) exhibits a variation between ±14 K, indicating
here as well the importance of accounting the microstructure effects. Figure 5b shows the effect of the
crack existence on the heat flux with its concentration near its tip. The full field distribution of the
shear stress σ12 is not shown because the most interesting effects exist near the crack tip, which has
been already shown in Figure 4. The distribution of the normal thermal stress σ22 that is shown in
Figure 5c indicates that in the entire vicinity of the crack line, this stress is very small (zero along it),
and it exhibits an anti-symmetric behavior with respect to this line.

(a)

(b)

(c)

Figure 5. Field distributions in the region −5 ≤ X1/(2d) ≤ 5, −3 ≤ X2/(2h) ≤ 3 of the cracked
carbon/epoxy fiber-reinforced composite, (a) Temperature T (K) distribution, (b) normal component of
the heat flux (W/m2) and (c) normal stress σ22 (MPa).
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5.2. A Cracked Porous Ceramic Material Subjected to a Remote Heat Flux

In the next application, cracked porous alumina in which the porosities are distributed such
that they form a hexagonal array is considered; see the inset in Figure 6. The porous alumina is
subjected to a remote normal heat flux q̄2 = −1 W/m2. The properties of the alumina (Al2O3) are
given in Table 1, and the amount of porosity is 0.25. For this uncracked porous material, the HFGMC
micromechanical model predicts the following values of the effective thermal conductivities (that
are needed in Equation (36): κ∗11 = κ∗22 = 20.76 W/(mK). It is assumed that a crack that connects two
adjacent pores exists. It length is 2a/(2d) = 0.7.
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Figure 6. The variations along the crack line of the temperature, normal component of the heat flux
and shear stress that develop in the porous alumina material, subjected to a remote normal heat flux of
q̄2 = −1 W/m2.

The variations along the crack line of the temperature, normal heat flux component q2 and
induced shear stress σ12 are shown in Figure 6. The effect of the porous material microstructure is well
exhibited, and the values of the temperature along this line are extremely low. Since the matrix crack
terminates this time at the pores, no singularities are exhibited by the shear stress at the matrix/pore
interfaces. The full distributions of the temperature, normal heat flux and the induced shear normal
stresses are shown in the region in Figure 7a–d, respectively. Here also, the temperature is relatively
quite low as compared to the resulting temperature in the fiber-reinforced composite. The thermal
shear stress σ12 is antisymmetric with respect to the X2-axis, whereas the normal thermal stress σ22

is antisymmetric with respect to the crack line (X1-axis). It is obvious that a homogenization of the
thermal and induced stress fields of the porous material will result in the loss of all of these details.
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(a)

(b)

(c)

(d)

Figure 7. Field distributions in the region −5 ≤ X1/(2d) ≤ 5, −3 ≤ X2/(2h) ≤ 3 of the cracked
porous alumina material. (a) Temperature T (K) distribution, (b) normal component of the heat flux q2

(W/m2), (c) shear stress σ12 (MPa) and (d) normal stress σ22 (MPa).
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5.3. A Cracked Periodically-Layered Ceramic Composite Subjected to a Remote Heat Flux

As a final application of the proposed approach, consider a periodically-layered ceramic composite
that consists of alumina and zirconia layers of equal widths. The properties of these materials are
given in Table 1. A transverse crack whose length 2a/(2d) = 0.5 is located in the more compliant
zirconia layer; see the inset to Figure 8. This layered composite is subjected a remote normal heat flux
q̄2 = −1 W/m2. For the uncracked layered composite, the HFGMC model predicts the effective axial
and transverse thermal conductivities: κ∗11 = 5 W/(mK), κ∗22 = 18.9 W/(mK).
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Figure 8. The variations along the crack line of the temperature, normal component of the heat flux and
shear stress that develop in the periodically-layered alumina/zirconia, subjected to a remote normal
heat flux of q̄2 = −1 W/m2.

In Figure 8, the variations along the crack line of the temperature, normal heat flux component
q2 and the induced shear stress σ12 are shown The temperature along the crack surface is quite small,
and it is negligibly small along its line in the other layers. The high values of the normal heat flux and
shear stress in the vicinity of the crack tip are well observed (theoretically singular at the crack tip).

The full shear and normal stress fields that developed in the layered composite are shown in
Figure 9 in the region −1.5 ≤ X1/(2d) ≤ 1.5, −1.5 ≤ X2/(2h) ≤ 1.5. The magnitude of the normal
stress is seen to be appreciably higher that the shear stress.
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(a)

(b)

Figure 9. Field distributions in the region −1.5 ≤ X1/(2d) ≤ 1.5, −1.5 ≤ X2/(2h) ≤ 1.5 of the cracked
layered ceramic composite. (a) Shear stress σ12 (MPa) and (b) normal stress σ22 (MPa).

6. Conclusions

A multiscale analysis is offered for the determination of the thermal and mechanical fields in
cracked composites that are subjected to heat flow. This analysis has been verified by comparison with
exact solutions for cracked isotopic and anisotropic thermoelastic materials (the solution of which is
far more complicated than the former). Applications are given for three types of cracked composites,
subjected to heat flow. The derived formulation however is general enough and allows the application
of remote combined thermomechanical loading.

As discussed, the present method has certain advantages over a direct numerical approach.
This stems from the fact that the applied boundary conditions (e.g., the applied heat flux) must
be located at a sufficiently remote distance from the localized effects (e.g., a crack). As a result,
the number of resulting equations when a direct numerical procedure is adopted might be extremely
large. In the present method however, just one discretized cell in the transform domain needs to
be considered. Increasing the remoteness of the applied boundary conditions does not affect the
discretized cell analysis.

Applications of the present analysis have been presented for composites that consist of
a single crack. It is however possible to apply it on composites with multiple cracks; see [21],
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for example. The present formulation has been illustrated for a single crack, which forms a simple
example of localized damage. It is however possible to consider other types of localized damage
in composites, such as cavities, soft and stiff inclusions; see [17]. In addition, the modeling of the
interaction between two types of damage in composites that are subjected to heat flow (e.g., interaction
between a crack and cavity) is possible. The results in the present article were confined to the
application of remote heat flux; the method can be employed however to obtain the thermomechanical
field distributions in damaged composites that are subjected to combined mechanical and heat flow.
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