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Abstract: Carbon fiber-reinforced polymer (CFRP) composites have gradually replaced metals due
to their exceptional strength-to-weight ratio compared to metallic materials. However, the drilling
process often reveals various defects, such as surface roughness, influenced by different drilling
parameters. This study explores the drilling quality of uni-directional CFRP composites, as well
as hybrid Al2O3 alumina and hybrid SiC silicon carbide nano-composites, through experimental
exploration using step, core, and twist drills. Response surface methodology (RSM) and statistical
tools, including main effect plots, ANOVA, contour plots, and optimization techniques, were used to
analyze the surface roughness of the hole. Optimization plots were drawn for optimal conditions,
suggesting a spindle speed of 1500 rpm, feed of 0.01 mm/rev, and a 4 mm drill diameter for achieving
minimum surface roughness. Furthermore, two machine learning models, artificial neural network
(ANN) and random forest (RF), were used for predictive analysis. The findings revealed the robust
predictive capabilities of both models, with RF demonstrating superior performance over ANN and
RSM. Through visual comparisons and error analyses, more insights were gained into model accuracy
and potential avenues for improvement.

Keywords: carbon fiber-reinforced polymer; drilling; response surface methodology; artificial neural
network; random forest

1. Introduction

Among the various classifications of composites, carbon fiber-reinforced polymer
(CFRP) has garnered considerable attention in aerospace circles owing to its exceptional
property of offering a high strength-to-weight ratio [1]. The substantial weight of engine
components in automobiles increases fuel consumption, diminishing efficiency. Conse-
quently, replacing these components with composite materials has been shown to enhance
overall performance [2]. Similarly, weight reductions of 25% have been observed for both
commercial and military aircraft structures, respectively. Notably, in the case of the Boeing
777, a prominent passenger aircraft constructed primarily of carbon fiber epoxy, weight
savings of 15–20% have been achieved. Components fabricated from composites in the
Boeing 777 include flaperons, ailerons, inboard and outboard flaps, landing gear doors,
and engine cowlings [3].

There has been a notable surge in demand for advanced composites with enhanced
performance characteristics in recent years. Nano-composites represent a cutting-edge
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category of materials wherein one or more distinct nanoparticles are incorporated into
the matrix material to further augment performance [4]. Epoxy resin, derived from the
interaction of bisphenol A and epichlorohydrin, has served as a primary matrix material for
the fabrication of these nano-composites for many years [5]. Nano-composites comprising
epoxy and nanoparticle reinforcements have exhibited exceptional mechanical, thermal,
and electrical properties. Key factors such as molecular structure, curing conditions, and the
ratio of epoxy resin to curing agent(s) significantly influence their performance. Nanoparti-
cles are characterized by a high surface area, rendering them invaluable across numerous
applications [6]. Inorganic particles such as alumina (Al2O3) and silicon carbide (SiC) show
high hardness, excellent wear, and temperature resistance, as well as satisfactory chemi-
cal inertness, making them extensively utilized in metallurgical components, composite
fabrication, and electronic industries [7,8].

In a study conducted by Mohanty et al. [9], it was found that incorporating Al2O3
nanoparticles into hybrid carbon and glass fiber-reinforced composites significantly en-
hanced both tensile strength and modulus. Similarly, Priyadarshi et al. [10] investigated the
mechanical characteristics of Al2O3-filled jute epoxy composite under various conditions,
revealing notable improvements such as heightened impact strength (1.902 Joules), aug-
mented flexural strength (72.94 MPa), and a maximum hardness reaching 29.9 Vickers hard-
ness number. Additionally, the authors, in their prior work, reported experimental results
on the enhancement of mechanical properties at different nano-filler loadings (Al2O3 and
SiC) in neat CFRP composite compared to hybrid nano-composites. The maximumHighest
mechanical properties were observed at 1.75 wt.% filler loading for Al2O3 hybrid nano-
composites and at 1.25 wt.% filler loading for SiC hybrid nano-composites [11,12].

Defects such as fiber pull-out, debonding, microcracking, surface roughness, and
delamination occur in the drilled holes after drilling. To determine the extent of drilling-
induced damage, researchers have used a wide range of methods, such as digital image
processing, optical microscopy, C-scan, X-ray, and laser-based imaging, to scan electron
microscopic images. The Taguchi technique and analysis of variance (ANOVA) have been
used in experimental studies, including those conducted by Davim and Reis, [13] to estab-
lish a correlation between surface roughness, feed rate, and cutting speed. Tsao et al. [14]
also suggested that the right tool geometry and cutting parameters might decrease surface
roughness in CFRP composite drilling. Response surface methodology (RSM) is a straight-
forward and efficient method for establishing a relationship between output variables and
machining parameters [15]. RSM was utilized by Palanikumar and Davim [16] to forecast
surface roughness in glass fiber-reinforced polymer (GFRP) composite drilling.

Soft computing techniques serve as valuable supplements to conventional statistical
methods in the analysis of composite drilling processes. Their utilization in this context
aims to tackle the intricate, nonlinear, and ambiguous aspects inherent in process variables.
Through soft computing modeling, researchers can rely on a robust approach that con-
sistently yields thorough, accurate, and dependable results. Recently, researchers have
been using various soft computing techniques, including response surface methodology
(RSM) [17], random forest technique (RF) [18], artificial neural network (ANN) [19], and
design of experiments (DOE) [20]. These methods provide researchers with versatile tools
to navigate the complexities of the drilling process in composites.

Given the typically extensive and high-cost nature of experiments required to assess
the machinability of metals or materials, an effective approach lies in the utilization of
statistically or numerically designed tests, commonly known as design of experiments
(DOE). This methodology enables researchers to strategically plan experimental set-ups,
evaluate the impact of each process parameter, and ultimately minimize the total number
of tests needed to achieve optimal conditions [21].

Jayabal and Natarajan [22] conducted a study to investigate the influence of process
parameters, including drill diameter, spindle speed, and feed rate, on thrust force, torque,
and tool wear during the drilling of coir fiber-reinforced composite materials. Utilizing the
Box–Behnken design and genetic algorithm (GA) techniques, the researchers were able to
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identify the optimal process parameters. Their findings indicated that this approach was
effective in forecasting both main and interaction effects and drilling process output vari-
ables. Moreover, it facilitated the determination of optimal values for drilling parameters.
Therefore, Jayabal and Natarajan concluded that the employed technique demonstrated
practicality in optimizing the drilling process. To predict the delamination and surface
roughness during the drilling of CFRP composite, Enemuoh et al. [23] employed a multi-
layered perceptron neural network (MLPNN) model. They discovered that the predicted
and experimental results for delamination and surface roughness agreed well. Similarly,
to optimize the drilling process output variables during the drilling of the Al/SiCp com-
posite, Karthikaya et al. [24] applied fuzzy logic and genetic algorithm techniques. The
experimental data were trained and simulated using fuzzy logic, and the GA model was
utilized to optimize the process parameters.

It is evident from the literature that the appropriate machining parameters and tool
geometry can lessen drilling-induced damage to CFRP composites. In order to measure
the output variable surface roughness (Ra), this study examines the drilling of hybrid
nano-composites composed of Al2O3, as well as SiC at different cutting parameters (spindle
speed, feed, drill diameter, and drill type). Surface roughness is a crucial factor in machining
processes, influencing product quality and performance of composites. Accurate prediction
models can aid in optimizing machining parameters for desired surface finish. In this study,
along with the experimental and RSM results, two popular machine learning models are
implemented—artificial neural network (ANN) and random forest (RF)—for predicting Ra
in different materials, like Al2O3, SiC, and neat CFRP composites. The implemented models
(ANN, RF) are evaluated based on prediction accuracy, that is, relative error attained for
Ra. Later, a comparative analysis is made against the Ra values obtained from response
surface methodology (RSM) with ANN and RF. RSM is employed to design experiments
with different machine parameters, and main effects plots, contour plots, and optimization
plots aregenerated using experimental results.

2. Material and Methods
2.1. Materials

In this investigation, an unidirectional carbon fiber-reinforced polymer (CFRP) mate-
rial has been employed as a reinforcing agent, along with the utilization of bisphenol-A
epoxy resin and an amine-based hardener serving as the polymer matrix. To enhance the
structural attributes, distinct inorganic nano-fillers, namely Al2O3 and SiC, were carefully
incorporated at varying filler loadings (1, 1.5, 1.75, 2 wt% for Al2O3 and 1, 1.25, 1.5, 2 wt%
for SiC), yielding hybrid nano-composites. The achievement of a homogenous dispersion of
nano-fillers was methodically accomplished through a combined application of sonication
and magnetic stirring methods.

The manufacturing process encompassed the fabrication of both the CFRP and hybrid
nano-composites through a hand lay-up method, succeeded by a compression molding
technique with a curing duration of 24 h at room temperature. The drilling was performed
utilizing a computer numerical control vertical machining center, as represented in Figure 1.
The maximum properties obtained for hybrid nano-composites were at 1.75 wt% for Al2O3
hybrid nano-composites and at 1.25 wt% for SiC hybrid nano-composites, as reported
by authors in their previous work. Drilling was performed for the above hybrid nano-
composites, and their surface roughness was measured.

2.2. Machining Parameters

Table 1 illustrates the selected machining parameters chosen for the investigation. An
experimental design incorporating response surface methodology (RSM) through Minitab
V15 software was employed, utilizing the following machining parameters. Composite
strips measuring 250 mm × 25 mm were precisely cut using an abrasive water jet cutting
machine. A total of 180 holes were drilled, with 60 holes dedicated to each composite
type. Three types of drill geometry were selected, i.e., twist drill, step drill, and core
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drill, as shown in Figure 2. The drill bits were made of solid carbide material, and a
diamond coating was applied using the physical vapor deposition (PVD) method. The
PVD diamond coating provides a higher tool life and improved quality of drilled holes.
Also, it provides resistance to oxidation, corrosion, and wearing of tools. PVD diamond
coating was performed by exposing the cutting tool to the vapor of coating material at
higher temperatures, up to 1000 ◦C, and then allowing it to adhere to the cutting tool.
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Table 1. Various machining parameters selected for drilling.

Sl. No.
Parameters

Spindle Speed (rpm) Feed (mm/rev) Drill Diameter (mm) Drill Type

1 1500 0.01 4 Twist

2 3500 0.02 6 Step

3 5500 0.03 8 Core
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2.3. Surface Roughness Measurement

The surface roughness (Ra) of the drilled hole was measured by using the Taylor-
Hobson Surtronic 3+ instrument (Model: Surtronic 3+, Taylor Hobson Ltd., Leicester, UK),
as shown in Figure 3. Surface roughness was measured at six different locations with a
probe speed of 0.5 mm/s in the transverse direction, up to 4 mm in length. The average
surface roughness value was noted to determine the surface quality of the hole wall.
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2.4. Statistical Tools

RSM serves as a predictive and optimization tool for output variables affected by
multiple factors. The modeling and analysis of data involved the application of RSM
employing a full factorial method. An empirical connection between process parameters
was established using RSM’s central composite design (CCD). Equation (1) illustrates the
correlation between various output parameters (‘y’), such as delamination factor, burr
area, surface roughness, and hole temperature, and the corresponding process parameters
(spindle speed (A), feed (B), drill diameter (C), and type of drill (D).

y = βo + β1 A + β2B + β3C + β4D + β5 A2 + β6B2 + β7C2 + β8D2 + β9 AB + β10 AC + β11 AD + β12BC + β13BD + β14CD + ε (1)

where, β0, β1, β2, . . ., β14 are the regression coefficients and ε is the random error.
This study also employed analysis of variance (ANOVA) to assess the impact of

process parameters on the output variables of the drilling process in both the hybrid nano-
composites and the neat CFRP composite. The objective of ANOVA is to identify the
factors and their combinations that have a substantial influence on the machining operation.
The analysis was conducted with a significance level set at α = 0.05, corresponding to a
confidence level of 95%. Similarly, the impact of different process parameters on surface
roughness values was assessed using main effects plots and contour plots. A main effects
plot illustrates the mean response values for each level of a process parameter, allowing
for a clear understanding of its influence. Comparatively, the main effects plot enables the
assessment of the relative intensity of the impacts of various factors. Likewise, contour plots
offer a 2D surface projection to depict the variation in response. These plots are generated
by simultaneously considering two input factors while maintaining the remaining factors
at their median values. The resulting contour lines connect data points with identical
response values, providing a comprehensive visualization of the surface’s behavior.

2.5. Optimization of Process Parameters Using RSM

The process parameters were optimized through response surface methodology (RSM).
In RSM, the desirability function method is commonly employed for the optimization of
multi-output variables. According to this methodology, any process exhibiting a quality



J. Manuf. Mater. Process. 2024, 8, 67 6 of 20

characteristic beyond the acceptable limits is considered entirely unacceptable. The primary
objective was to identify process parameters that yield the most favorable output variables.
In this investigation, the desirability function approach was utilized to optimize the output
variable within the framework of RSM. The desirability function transforms the output
variable, specifically the surface roughness value, into a dimensionless variable known
as the desirability index (di), as defined in Equation (2). The desirability index ranges
within the closed interval of (0, 1). A higher desirability index value for output variable
indicates a greater contribution to the overall performance by the respective output variable.
The desirability index (di) is a function of the output variables (yi), and each individual
desirability function assigns a number between 0 and 1, where 0 signifies undesirability
and 1 signifies a desirable or ideal value for the output variable.

di =

(
y − ymin

ytarget − ymin

)q

ymin < y < ytarget (2)

In Equation (2), the output variable y is represented, where ymin corresponds to the
lowest value, ytarget denotes the target values, and q stands for the weight. The weight q
can assume either low value (0 < q < 1) or high value (q > 1), depending on the desired
effect. A value of one produces a linear ramp function between the low, target, and high
values. Increasing the weight facilitates moving the result closer to the desired goal. The
comprehensive assessment of product performance involves calculating the geometric
mean of all desirability indices to derive an aggregate (global or composite) desirability
index D, as expressed in Equation (3).

D = (d1 × d2 × d3. . .. . .dm)1/m (3)

In Equation (3), the desired output variable is denoted as ‘m’. An association is
established between the output responses and the various process or machining factors
through the incorporation of a second-degree polynomial regression equation into the
experimental data. Subsequently, the determination of the output variable’s desirability
is executed to gauge the overall desirability. To identify the optimal overall desirability,
the univariate search method is applied, systematically exploring diverse combinations of
machining factors within the specified experimental range.

2.6. Prediction Methods
2.6.1. Artificial Neural Network (ANN)

ANN is a brain-structured computation model. The structure of neurons provides the
computing capability to identify the relations between the input and the output parameters
through the mapping model. The ANN structure consists of 3 layers:

• Input layer: number of input parameters = number of neurons placed in the input layer.
• Hidden layer: a greater number of neurons placed compared to the input layer.
• Output layer: number of output parameters = number of neurons.

A relation will be created by flowing the information between the input layer to the
hidden layer and from the hidden to the output layer. The forward and back propagation
techniques can be implemented for each iteration, that is, for the input–output pair. In the
case of backpropagation, initially, the result “Y” will be calculated. Then, if the desired
results are not met, the weight adjustment needs to be performed backward from the output
layer to the hidden layer and from the hidden layer to the input layer.

2.6.2. Random Forest (RF)

Random forest (RF) is an effective algorithm that fits the ensemble learning family.
It outperforms individual decision trees. RF involves building multiple decision trees,
and later, it combines their predictions. The significance of RF is a measure of feature
importance based on the contribution of each feature involvement in reducing impurity
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(error) across all the developed trees. This flow helps in parameter tuning, interpreting
results, and identifying the insights, thus leading to flexible handling of various kinds of
data. RF supports the parallelization making the training faster as each tree developed
is independent. In the case of prediction, the individual trees are averaged to attain the
final outcome.

3. Results and Discussion

It is well known that surface roughness is one of the key parameters that decide the
quality of the drilled holes and the cost of production. It largely depends on the kind
of material to be drilled, the drill type to be used, and its cutting speed, feed, and the
cutting force produced in drilling. Table 2 represents the regression equations for hybrid
nano-composites and the neat CFRP composite for each drill type.

Table 2. Regression equations from RSM.

Composite Type Drill Type Regression Equation

Al2O3 hybrid nano-composite

Twist
0.9415 + 0.00.020018 × SS + 1.36 × F + 0.06897 × DD − 0.000000×S×SSS − 9.
4 × F × F − 0.002027 × DD × DD + 0.000088 × SS × F − 0.000001 × SS ×

DD − 0.1000 × F × DD

Step
0.8863 + 0.000014 × SS + 1.36 × F + 0.06112 × DD − 0.000000 × SS × SS −
9.4 × F × F − 0.002027 × DD × DD + 0.000088 × SS × F − 0.000001 × SS ×

DD − 0.1000 × F × DD

Core
1.1867 + 0.000016 × SS + 1.05 × F + 0.06012 × DD − 0.000000 × SS × SS −
9.4 × F × F − 0.002027 × DD × DD + 0.000088 × SS × F − 0.000001 × SS ×

DD − 0.1000 × F × DD

SiC hybrid nano-composite

Twist
1.1715 + 0.000011 × SS + 0.98 × F + 0.04702 × DD + 0.000000 × SS × SS −

1.5 × F × F − 0.000788 × DD × DD + 0.000010 × SS × F + 0.000000 × SS ×
DD + 0.0021 × F × DD

Step
1.1656 + 0.000008 × SS + 0.66 × F + 0.03712 × DD + 0.000000 × SS × SS −

1.5 × F × F − 0.000788 × DD × DD + 0.000010 × SS × F + 0.000000 × SS ×
DD + 0.0021 × F × DD

Core
1.4042 + 0.000010 × SS + 0.97 × F + 0.04317 × DD + 0.000000 × SS × SS −

1.5 × F × F − 0.000788 × DD × DD + 0.000010 × SS × F + 0.000000 × SS ×
DD + 0.0021 × F × DD

Neat CFRP composite

Twist
1.5652 + 0.000021 × SS + 1.23 × F + 0.07933 × DD − 0.000000 × SS × SS +

8.9 × F × F − 0.001777 × DD × DD + 0.000015 × SS × F − 0.000001 × SS ×
DD − 0.0479 × F × DD

Step
1.3385 + 0.000020 × SS + 1.08 × F + 0.06688 × DD − 0.000000 × SS × SS +

8.9 × F × F − 0.001777 × DD × DD + 0.000015 × SS × F − 0.000001 × SS ×
DD − 0.0479 × F × DD

Core

1.8969 + 0.000023 × SS + 1.10 × F + 0.07738 × DD − 0.000000 × SS × SS +
8.9 × F × F

− 0.001777 × DD × DD + 0.000015 × SS × F − 0.000001 × SS × DD −
0.0479 × F × DD

From Table 3, it is observed that the surface roughness decreases with the addition
of nanoparticles. The minimum surface roughness was noted for the Al2O3 hybrid nano-
composite with an Ra value of 1.598 µm, followed by the SiC hybrid nano-composite with
an Ra value being 1.783 µm, respectively. In contrast, the maximum Ra was observed for
neat the CFRP composite (2.533 µm). This represents that the nanoparticle acts as a lubricant
during the drilling of the composite by reducing the friction occurring at the tool–workpiece
interaction. Furthermore, as declared in the previous work of the authors, it is proven
that the addition of nanoparticles improves chemical bonding with polymer resin. The
chemical bonding energy of oxygen atoms of Al2O3 with the hydrogen atoms of polymer
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chains is greater compared to the carbon atom of SiC combining with hydrogen atoms of
polymer chains [11,12]. This good bonding between nanoparticles and resin molecules has
shown improved mechanical properties of the hybrid nano-composites further indicating
improved surface finish observed for hybrid nano-composites compared to the neat CFRP
composite, as noted from Table 3. Also, from Table 3, the standard deviation values are less
than 1, demonstrating that all the datasets are closer to mean values of the data set.

Table 3. Comparison of surface roughness (Ra) values obtained from experimental and RSM predictions.

Spindle
Speed (rpm)

Feed
(mm/rev)

Drill Dia
(mm)

Drill
Type

Experimental Ra (µm) RSM-Predicted Ra (µm) Error (%)

Al2O3 SiC Neat Al2O3 SiC Neat Al2O3 SiC Neat

5500 0.01 8 Step 1.292 1.468 1.843 1.288 1.463 1.834 0.31 0.32 0.46

5500 0.01 8 Core 1.585 1.774 2.51 1.588 1.764 2.494 −0.21 0.54 0.65

5500 0.02 6 Core 1.543 1.723 2.416 1.544 1.710 2.412 −0.09 0.75 0.16

1500 0.01 4 Twist 1.216 1.391 1.893 1.216 1.373 1.891 0.01 1.27 0.10

3500 0.02 6 Step 1.224 1.411 1.751 1.226 1.402 1.745 −0.13 0.67 0.33

1500 0.01 4 Core 1.417 1.576 2.235 1.420 1.589 2.217 −0.19 −0.83 0.82

3500 0.01 6 Step 1.203 1.395 1.735 1.218 1.395 1.734 −1.23 0.01 0.05

1500 0.01 4 Step 1.134 1.317 1.612 1.123 1.320 1.612 0.94 −0.24 0.03

3500 0.02 6 Twist 1.343 1.481 2.067 1.342 1.484 2.053 0.08 −0.18 0.67

5500 0.02 6 Twist 1.371 1.512 2.097 1.369 1.506 2.084 0.11 0.39 0.63

5500 0.03 8 Twist 1.435 1.612 2.192 1.441 1.588 2.194 −0.45 1.49 −0.07

5500 0.03 4 Core 1.478 1.651 2.317 1.486 1.649 2.320 −0.56 0.13 −0.14

1500 0.01 8 Core 1.559 1.731 2.437 1.553 1.724 2.433 0.40 0.40 0.16

3500 0.01 6 Core 1.513 1.684 2.357 1.516 1.680 2.366 −0.20 0.24 −0.39

3500 0.03 6 Step 1.224 1.419 1.768 1.232 1.408 1.758 −0.62 0.79 0.56

1500 0.03 4 Core 1.432 1.61 2.249 1.428 1.608 2.242 0.30 0.14 0.29

5500 0.03 4 Twist 1.294 1.442 1.983 1.297 1.437 1.989 −0.22 0.32 −0.31

3500 0.02 6 Core 1.527 1.694 2.381 1.521 1.690 2.378 0.40 0.26 0.14

5500 0.01 4 Core 1.466 1.637 2.289 1.471 1.629 2.293 −0.35 0.46 −0.19

3500 0.02 6 Core 1.527 1.694 2.381 1.521 1.690 2.378 0.40 0.26 0.14

3500 0.02 8 Step 1.283 1.457 1.824 1.280 1.454 1.820 0.22 0.22 0.20

5500 0.03 8 Core 1.598 1.783 2.533 1.595 1.784 2.517 0.16 −0.06 0.64

3500 0.03 6 Twist 1.362 1.495 2.078 1.348 1.493 2.068 1.03 0.12 0.50

1500 0.03 8 Twist 1.395 1.547 2.149 1.391 1.543 2.140 0.30 0.28 0.43

3500 0.02 6 Core 1.527 1.694 2.381 1.521 1.690 2.378 0.40 0.26 0.14

3500 0.02 6 Twist 1.343 1.481 2.067 1.342 1.484 2.053 0.08 −0.18 0.67

1500 0.03 8 Step 1.275 1.442 1.815 1.267 1.444 1.807 0.64 −0.11 0.42

1500 0.01 8 Step 1.267 1.435 1.794 1.261 1.431 1.786 0.51 0.29 0.45

5500 0.01 8 Twist 1.423 1.585 2.175 1.428 1.568 2.168 −0.35 1.07 0.33

1500 0.02 6 Core 1.492 1.672 2.342 1.497 1.669 2.343 −0.36 0.17 −0.04

3500 0.02 6 Step 1.224 1.411 1.751 1.226 1.402 1.745 −0.13 0.67 0.33

1500 0.03 4 Step 1.146 1.326 1.633 1.138 1.333 1.637 0.73 −0.50 −0.24

3500 0.02 6 Core 1.527 1.694 2.381 1.521 1.690 2.378 0.40 0.26 0.14

1500 0.03 4 Twist 1.227 1.397 1.925 1.230 1.392 1.919 −0.26 0.34 0.29

1500 0.03 8 Core 1.535 1.742 2.454 1.553 1.743 2.455 −1.17 −0.05 −0.04

3500 0.02 8 Core 1.573 1.755 2.479 1.573 1.754 2.474 −0.02 0.06 0.22

3500 0.02 6 Core 1.527 1.694 2.381 1.521 1.690 2.378 0.40 0.26 0.14

3500 0.02 6 Step 1.224 1.411 1.751 1.226 1.402 1.745 −0.13 0.67 0.33
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Table 3. Cont.

Spindle
Speed (rpm)

Feed
(mm/rev)

Drill Dia
(mm)

Drill
Type

Experimental Ra (µm) RSM-Predicted Ra (µm) Error (%)

Al2O3 SiC Neat Al2O3 SiC Neat Al2O3 SiC Neat

3500 0.02 8 Twist 1.412 1.562 2.164 1.412 1.556 2.153 −0.01 0.40 0.50

3500 0.03 6 Core 1.535 1.712 2.397 1.524 1.699 2.391 0.73 0.76 0.26

5500 0.03 8 Step 1.302 1.484 1.862 1.301 1.477 1.857 0.05 0.49 0.26

3500 0.02 6 Twist 1.343 1.481 2.067 1.342 1.484 2.053 0.08 −0.18 0.67

3500 0.02 4 Core 1.451 1.625 2.261 1.452 1.619 2.267 −0.08 0.37 −0.28

5500 0.01 4 Step 1.169 1.362 1.682 1.167 1.353 1.676 0.18 0.69 0.35

3500 0.02 6 Step 1.224 1.411 1.751 1.226 1.402 1.745 −0.13 0.67 0.33

1500 0.02 6 Step 1.192 1.389 1.727 1.206 1.385 1.717 −1.19 0.28 0.60

3500 0.01 6 Twist 1.327 1.472 2.035 1.334 1.474 2.041 −0.53 −0.13 −0.27

3500 0.02 6 Core 1.527 1.694 2.381 1.521 1.690 2.378 0.40 0.26 0.14

5500 0.02 6 Step 1.258 1.429 1.781 1.245 1.418 1.774 1.02 0.78 0.40

3500 0.02 6 Twist 1.343 1.481 2.067 1.342 1.484 2.053 0.08 −0.18 0.67

3500 0.02 6 Twist 1.343 1.481 2.067 1.342 1.484 2.053 0.08 −0.18 0.67

5500 0.03 4 Step 1.187 1.371 1.708 1.188 1.366 1.703 −0.10 0.38 0.31

5500 0.01 4 Twist 1.289 1.423 1.962 1.275 1.418 1.960 1.05 0.37 0.12

3500 0.02 4 Twist 1.245 1.415 1.943 1.256 1.405 1.939 −0.85 0.68 0.21

1500 0.01 8 Twist 1.389 1.525 2.127 1.385 1.524 2.115 0.32 0.09 0.56

3500 0.02 6 Step 1.224 1.411 1.751 1.226 1.402 1.745 −0.13 0.67 0.33

3500 0.02 6 Step 1.224 1.411 1.751 1.226 1.402 1.745 −0.13 0.67 0.33

3500 0.02 6 Twist 1.343 1.481 2.067 1.342 1.484 2.053 0.08 −0.18 0.67

1500 0.02 6 Twist 1.312 1.457 1.994 1.314 1.461 2.023 −0.19 −0.30 −1.43

3500 0.02 4 Step 1.157 1.345 1.651 1.155 1.343 1.656 0.18 0.15 −0.30

Standard deviation 0.133 0.131 0.270 0.133 0.132 0.270 0.494 0.412 0.367

3.1. Analysis of Main Effects Plot

The effect of drilling parameters is represented by the main effects plot for the hybrid
nano-composites and the neat CFRP composite, as shown in Figure 4a–c. It can be observed
that all the parameters significantly impact the surface roughness of the hole. For the Al2O3
hybrid nano-composite, the surface roughness is observed to be at a minimum for lower
spindle speed, moderate feed, and lower drill diameter for step drill (Figure 4a). Similar
results are noticed for the SiC hybrid nano-composite and neat CFRP composites with
minimum surface roughness at lower spindle speed, feed, and drill diameter for step drill
(Figure 4b). From the observation made, it is noted that the contribution of spindle speed,
drill diameter, and drill type on surface roughness is more as compared to the feed of
the drill tool. The surface roughness obtained is lower at a lower spindle speed and drill
diameter (Figure 4c). The results are due to the lower heat generated at a lower spindle
speed at the tool–workpiece interface.

3.2. ANOVA Analysis

ANOVA analysis (Table 4) shows the influence of process parameters on surface
roughness. Table 4 shows that the contribution on surface roughness of drill type is 84.75,
84.70, and 92%, respectively, for the hybrid Al2O3 and SiC composites as well as the neat
CFRP composite. The next effective parameter having an influence on surface roughness is
drill diameter, with a 12.96, 13.10, and 7% contribution, respectively, followed by spindle
speed, with a contribution of 1.57, 1.58, and 0.72%, respectively. The contribution of feed
on surface roughness is less than 0.2% for all the composites.
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nano-composite, and (c) neat CFRP composite.

Table 4. ANOVA table for surface roughness at dry drilling condition.

Source
Al2O3 Hybrid Nano-Composite SiC Hybrid Nano-Composite Neat CFRP Composite

F-Value p-Value Contribution F-Value p-Value Contribution F-Value p-Value Contribution

SS (rpm) 271.56 0.000 1.57% 375.32 0.000 1.58% 439.08 0.000 0.72%

F (mm/rev) 17.07 0.000 0.10% 51.13 0.000 0.21% 67.15 0.000 0.11%

DD (mm) 2237.39 0.000 12.96% 3115.81 0.000 13.10% 4294.96 0.000 7.00%

D 7317.61 0.000 84.75% 10,072.15 0.000 84.70% 28,227.18 0.000 92.00%

Square 6.51 0.001 0.11% 0.96 0.423 0.01% 3.88 0.015 0.02%

SS (rpm) × S (rpm) 0.01 0.920 0.05% 0.09 0.768 0.00% 0.19 0.666 0.01%

F (mm/rev) × F (mm/rev) 0.12 0.730 0.01% 0.00 0.948 0.00% 0.09 0.761 0.00%

DD (mm) × DD (mm) 8.96 0.005 0.05% 1.89 0.177 0.01% 5.90 0.019 0.01%

2-Way Interaction 5.16 0.000 0.27% 5.65 0.000 0.21% 6.13 0.000 0.09%

SS (rpm) × F (mm/rev) 1.22 0.277 0.01% 0.02 0.878 0.00% 0.03 0.866 0.00%

SS (rpm) × DD (mm) 6.35 0.016 0.04% 0.22 0.644 0.00% 1.79 0.189 0.00%

SS (rpm) × D 2.58 0.088 0.03% 1.59 0.217 0.01% 1.00 0.378 0.00%

F (mm/rev) × DD (mm) 1.59 0.215 0.01% 0.00 0.975 0.00% 0.31 0.579 0.00%

F (mm/rev) × D 0.53 0.593 0.01% 0.76 0.473 0.01% 0.09 0.910 0.00%

DD (mm) × D 15.53 0.000 0.18% 22.96 0.000 0.19% 25.42 0.000 0.08%

R-square value 99.76 99.82 99.93

R-square adjusted value 99.66 99.75 99.82

SS—spindle speed; F—feed; DD—drill diameter; D—drill type.
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3.3. Contour Plot Analysis

Contour plots were created to assess surface roughness for hybrid nano-composites
and the neat CFRP composite. Figure 5a indicates that, in the case of the Al2O3 hybrid
nano-composites, superior surface finish in drilled holes can be attained by employing
a 4 mm drill diameter, spindle speeds below 1750 rpm, and a feed under 0.02 mm/rev.
Similarly, for the SiC hybrid nano-composites (Figure 5b), optimal surface roughness results
are achieved with a 4 mm drill diameter, spindle speeds lower than 2000 rpm, and a feed
below 0.03 mm/rev. Likewise, for the neat CFRP composite (Figure 5c), a reduction in
surface roughness is observed when maintaining spindle speeds below 2000 rpm, a feed
under 0.025 mm/rev, and a 4 mm drill diameter.
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3.4. Optimization of Process Parameters

Optimization techniques have greatly influenced the choice of diverse drilling process
parameters. Therefore, optimizing these parameters is imperative in the composite drilling
process. Through this optimization, researchers have observed enhancements in the quality
of drilled holes and prolonged tool life. Optimization plots obtained for Al2O3 and SiC
hybrid nano-composites as well as the neat CFRP composite are represented in Figure 6.
The optimum cutting conditions for surface roughness are a spindle speed of 1500 rpm,
feed of 0.01 mm/rev, drill diameter of 4 mm, and drill type step drill. From the optimization
plots, it is observed that the overall desirability index (D) of the surface roughness is 0.9963.
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3.5. Confirmation Test

Table 5 represents the confirmation test results, including the experimental and pre-
dicted values of the drilling process output variable (surface roughness) of the neat CFRP
and hybrid nano-composites. The test was performed using the step, twist, and core drill
at the above optimum input process parameters. In the comparison of experimental and
predicted values from Table 5, it is observed that the deviation obtained is less than 3%.
The values obtained from the confirmation test also showcase that the experimental values
obtained are less than the predicted values.

Table 5. Comparison of experimental and RSM-predicted values of surface roughness from the
confirmation test performed.

Optimum Input Process Parameters
Composite Type Experimental

Value
RSM-Predicted

Value
Error (%)

SS (rpm) F (mm/rev) DD (mm) D

1500 0.01 4 Step

Al2O3 hybrid
nano-composite 1.127 1.123 0.28

SiC hybrid nano-composite 1.332 1.321 0.81

Neat CFRP composite 1.642 1.613 1.76

SS—spindle speed; F—feed; DD—drill diameter; D—drill type.

3.6. Validation Test

To check the adequacy of the developed regression models from RSM, the validation
test was performed based on the different sets of input process parameters, as shown in
Table 6, that were not used in performing the experiment earlier but fall within the defined
range of experiments. The results obtained from the validation experiment are displayed in
Table 7. The experimental and RSM-predicted values appropriately agree with each other,
and the percentage error obtained is also represented.

Table 6. Input process parameters selected for validation test.

Experiment No. Spindle Speed
(rpm) Feed (mm/rev) Drill Diameter

(mm) Drill Type

1 1500 0.02 4 Twist

2 5500 0.03 6 Step

3 1500 0.01 8 Core

Table 7. Validation test results of surface roughness performed for hybrid nano-composites and neat
CFRP composite.

Composite Type

Optimum Input Process Parameters
Experimental

Value
RSM-Predicted

Value Error (%)
SS (rpm) F (mm/rev) DD

(mm) D

Al2O3 hybrid nano-composite

1500 0.02 4 Twist 1.224 1.310 7.03

5500 0.03 6 Step 1.253 1.285 2.55

1500 0.01 8 Core 1.553 1.502 3.28

SiC hybrid nano-composite

1500 0.02 4 Twist 1.383 1.368 1.08

5500 0.03 6 Step 1.424 1.345 5.55

1500 0.01 8 Core 1.724 1.716 0.46

Neat CFRP composite

1500 0.02 4 Twist 1.904 1.853 2.68

5500 0.03 6 Step 1.787 1.685 5.71

1500 0.01 8 Core 2.433 2.498 2.67

SS—spindle speed; F—feed; DD—drill diameter; D—drill type.
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3.7. Prediction Output

The results obtained from both models (ANN and RF) are presented in Table 8. These
tables include predicted Ra values and the errors associated with each prediction for differ-
ent machining parameters. By analyzing the results obtained from Table 8, the table shows
predicted surface roughness (Ra) values from both the artificial neural network (ANN)
and random forest (RF) models across diverse drilling scenarios, revealing commendable
overall performance. Both models demonstrate their effectiveness in predicting surface
roughness, underscoring their utility in understanding complex relationships between
drilling parameters and material characteristics. While variations in prediction errors were
observed across different combinations of spindle speed, feed, drill diameter, and drill type,
the models generally exhibited robust predictive capabilities. This suggests the viability of
ANN and RF models in capturing nuanced patterns and trends in surface roughness out-
comes, offering valuable insights for optimizing drilling processes in composite materials.
The prediction results that were attained showcase that RF outperforms ANN and RSM.
Figures 7–9 represent the visual comparison of ANN and RF predictions for Al2O3, SiC,
and neat CFRP composites. These figures clearly show how well each model performed in
predicting surface roughness (Ra) across various conditions. Further, to assess the accu-
racy of the models, Figures 10–12 illustrate the ANN and RF error predictions concerning
the RSM-predicted Ra values. This error analysis provides insights into areas where the
models may require refinement and highlights potential areas for improvement. Table 8
also provides an insight into the relative error attained for Ra through the statistical RSM
model and machine learning models (ANN and RF). The relative error attained through
the implementation of RF is comparatively lower than with ANN and RSM. The reason
for the best attainment of results is due to the nature of the support of parallelization (i.e.,
combining multiple decision trees leads to a reduction of overfitting of the model) and
the nature of providing better insights into feature relationships. In this case, ANN is
computationally expensive and very sensitive to hypermeters (hyperparameter tuning
is challenging).
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Table 8. Comparison of surface roughness values obtained from ANN and RF predictions and relative error scale with respect to RSM prediction.

Spindle
Speed
(rpm)

Feed
(mm/rev)

Drill
Diameter

(mm)

Drill
Type

ANN
Predicted

Ra
(Al2O3)

ANN
Predicted
Ra (Sic)

ANN
Predicted
Ra (Neat)

RF
Predicted

Ra
(Al2O3)

RF
Predicted
Ra (Sic)

RF
Predicted
Ra (Neat)

Error
ANN

(Al2O3)

Error
ANN
(Sic)

Error
ANN
(Neat)

Error RF
(Al2O3)

Error RF
(Sic)

Error RF
(Neat)

5500 0.01 8 1 1.456352 1.571367 2.069188 1.28377 1.45562 1.82663 13.07 7.41 12.82 0.33 0.5 0.4

5500 0.01 8 0 1.702711 1.860966 2.782625 1.5858 1.76628 2.494 7.22 5.5 11.57 0.14 0.13 0

5500 0.02 6 0 1.517819 1.710853 2.380019 1.53677 1.70136 2.39969 1.7 0.05 1.33 0.47 0.51 0.51

1500 0.01 4 2 1.293901 1.492233 1.935694 1.23783 1.38834 1.91747 6.41 8.68 2.36 1.8 1.12 1.4

3500 0.02 6 1 0.990383 1.239939 1.328297 1.226 1.402 1.745 19.22 11.56 23.88 0 0 0

1500 0.01 4 0 1.486014 1.643242 2.497839 1.45184 1.62345 2.27398 4.65 3.41 12.67 2.24 2.17 2.57

3500 0.01 6 1 1.209693 1.279833 1.529487 1.22147 1.39773 1.73778 0.68 8.26 11.79 0.28 0.2 0.22

1500 0.01 4 1 1.127849 1.31431 1.777092 1.13339 1.32767 1.62793 0.43 0.43 10.24 0.93 0.58 0.99

3500 0.02 6 2 1.363549 1.498434 2.009733 1.34172 1.48377 2.0527 1.61 0.97 2.11 0.02 0.02 0.01

5500 0.02 6 2 1.328551 1.388244 2.140685 1.35766 1.49629 2.07034 2.95 7.82 2.72 0.83 0.64 0.66

5500 0.03 8 2 1.490139 1.638373 2.305222 1.43205 1.5773 2.18138 3.41 3.17 5.07 0.62 0.67 0.58

5500 0.03 4 0 1.506602 1.762022 2.394908 1.47622 1.64163 2.30721 1.39 6.85 3.23 0.66 0.45 0.55

1500 0.01 8 0 1.660435 1.980778 2.678755 1.56443 1.75276 2.47348 6.92 14.89 10.1 0.74 1.67 1.66

3500 0.01 6 0 1.470755 1.69469 2.362745 1.52385 1.69013 2.37947 2.98 0.87 0.14 0.52 0.6 0.57

3500 0.03 6 1 1.17039 1.26903 1.51443 1.2299 1.40707 1.75407 5 9.87 13.85 0.17 0.07 0.22

1500 0.03 4 0 1.470053 1.636276 2.388436 1.44558 1.62352 2.26901 2.94 1.76 6.53 1.23 0.97 1.2

5500 0.03 4 2 1.299501 1.497535 2.085393 1.28589 1.42999 1.97819 0.19 4.21 4.85 0.86 0.49 0.54

3500 0.02 6 0 1.53751 1.716213 2.35087 1.521 1.69 2.378 1.09 1.55 1.14 0 0 0

5500 0.01 4 0 1.550188 1.641287 2.362509 1.47563 1.63718 2.30393 5.38 0.75 3.03 0.31 0.5 0.48

3500 0.02 6 0 1.53751 1.716213 2.35087 1.521 1.69 2.378 1.09 1.55 1.14 0 0 0

3500 0.02 8 1 1.122149 1.378606 1.602812 1.27283 1.44604 1.80487 12.33 5.19 11.93 0.56 0.55 0.83

5500 0.03 8 0 1.586365 1.761309 2.602341 1.58391 1.77032 2.49542 0.54 1.27 3.39 0.7 0.77 0.86

3500 0.03 6 2 1.336592 1.438408 2.003405 1.34641 1.49066 2.06407 0.85 3.66 3.12 0.12 0.16 0.19

1500 0.03 8 2 1.468507 1.708831 2.232491 1.39783 1.55035 2.15086 5.57 10.75 4.32 0.49 0.48 0.51

3500 0.02 6 0 1.53751 1.716213 2.35087 1.521 1.69 2.378 1.09 1.55 1.14 0 0 0

3500 0.02 6 2 1.363549 1.498434 2.009733 1.34172 1.48377 2.0527 1.61 0.97 2.11 0.02 0.02 0.01

1500 0.03 8 1 1.26572 1.448932 1.942375 1.27066 1.44708 1.80806 0.1 0.34 7.49 0.29 0.21 0.06

1500 0.01 8 1 1.300653 1.442074 2.009445 1.26474 1.4374 1.79518 3.14 0.77 12.51 0.3 0.45 0.51

5500 0.01 8 2 1.475928 1.613553 2.284549 1.42778 1.56828 2.17075 3.36 2.91 5.38 0.02 0.02 0.13
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Table 8. Cont.

Spindle
Speed
(rpm)

Feed
(mm/rev)

Drill
Diameter

(mm)

Drill
Type

ANN
Predicted

Ra
(Al2O3)

ANN
Predicted
Ra (Sic)

ANN
Predicted
Ra (Neat)

RF
Predicted

Ra
(Al2O3)

RF
Predicted
Ra (Sic)

RF
Predicted
Ra (Neat)

Error
ANN

(Al2O3)

Error
ANN
(Sic)

Error
ANN
(Neat)

Error RF
(Al2O3)

Error RF
(Sic)

Error RF
(Neat)

1500 0.02 6 0 1.469299 1.639699 2.438071 1.50356 1.67446 2.3521 1.85 1.76 4.06 0.44 0.33 0.39

3500 0.02 6 1 0.990383 1.239939 1.328297 1.226 1.402 1.745 19.22 11.56 23.88 0 0 0

1500 0.03 4 1 1.238851 1.350103 1.749304 1.14411 1.33714 1.64055 8.86 1.28 6.86 0.54 0.31 0.22

3500 0.02 6 0 1.53751 1.716213 2.35087 1.521 1.69 2.378 1.09 1.55 1.14 0 0 0

1500 0.03 4 2 1.423592 1.554698 2.309336 1.25528 1.40284 1.94098 15.74 11.69 20.34 2.06 0.78 1.15

1500 0.03 8 0 1.627112 1.749065 2.587803 1.55896 1.75057 2.46465 4.77 0.35 5.41 0.38 0.43 0.39

3500 0.02 8 0 1.629802 1.823364 2.413243 1.56664 1.7523 2.47004 3.61 3.95 2.46 0.4 0.1 0.16

3500 0.02 6 0 1.53751 1.716213 2.35087 1.521 1.69 2.378 1.09 1.55 1.14 0 0 0

3500 0.02 6 1 0.990383 1.239939 1.328297 1.226 1.402 1.745 19.22 11.56 23.88 0 0 0

3500 0.02 8 2 1.444109 1.531701 2.131912 1.40664 1.5507 2.15089 2.27 1.56 0.98 0.38 0.34 0.1

3500 0.03 6 0 1.572901 1.665941 2.315238 1.52149 1.69308 2.38152 3.21 1.95 3.17 0.16 0.35 0.4

5500 0.03 8 1 1.319746 1.502715 2.03471 1.2895 1.46505 1.83691 1.44 1.74 9.57 0.88 0.81 1.08

3500 0.02 6 2 1.363549 1.498434 2.009733 1.34172 1.48377 2.0527 1.61 0.97 2.11 0.02 0.02 0.01

3500 0.02 4 0 1.395865 1.6597 2.264282 1.45666 1.62613 2.27745 3.87 2.51 0.12 0.32 0.44 0.46

5500 0.01 4 1 1.228172 1.294105 1.741528 1.16271 1.35276 1.67171 5.24 4.35 3.91 0.37 0.02 0.26

3500 0.02 6 1 0.990383 1.239939 1.328297 1.226 1.402 1.745 19.22 11.56 23.88 0 0 0

1500 0.02 6 1 1.005 1.062691 1.638218 1.22567 1.40241 1.74332 16.67 23.27 4.59 1.63 1.26 1.53

3500 0.01 6 2 1.371796 1.362519 1.885923 1.33754 1.47839 2.0446 2.83 7.56 7.6 0.27 0.3 0.18

3500 0.02 6 0 1.53751 1.716213 2.35087 1.521 1.69 2.378 1.09 1.55 1.14 0 0 0

5500 0.02 6 1 0.994668 1.141733 1.600672 1.22443 1.40565 1.74993 20.11 19.48 9.77 1.65 0.87 1.36

3500 0.02 6 2 1.363549 1.498434 2.009733 1.34172 1.48377 2.0527 1.61 0.97 2.11 0.02 0.02 0.01

3500 0.02 6 2 1.363549 1.498434 2.009733 1.34172 1.48377 2.0527 1.61 0.97 2.11 0.02 0.02 0.01

5500 0.03 4 1 1.243497 1.358665 1.831364 1.17602 1.36168 1.68777 4.67 0.54 7.54 1.01 0.32 0.89

5500 0.01 4 2 1.362128 1.524907 2.033442 1.26568 1.41161 1.95207 6.83 7.54 3.75 0.73 0.45 0.4

3500 0.02 4 2 1.130603 1.433997 2.015887 1.25715 1.40698 1.94287 9.98 2.06 3.97 0.09 0.14 0.2

1500 0.01 8 2 1.509835 1.539907 2.257786 1.40215 1.54727 2.14824 9.01 1.04 6.75 1.24 1.53 1.57

3500 0.02 6 1 0.990383 1.239939 1.328297 1.226 1.402 1.745 19.22 11.56 23.88 0 0 0

3500 0.02 6 1 0.990383 1.239939 1.328297 1.226 1.402 1.745 19.22 11.56 23.88 0 0 0

3500 0.02 6 2 1.363549 1.498434 2.009733 1.34172 1.48377 2.0527 1.61 0.97 2.11 0.02 0.02 0.01

1500 0.02 6 2 1.306254 1.408035 1.996562 1.32548 1.46827 2.0353 0.59 3.63 1.31 0.87 0.5 0.61

3500 0.02 4 1 1.034241 1.328674 1.478657 1.14936 1.34206 1.65323 10.46 1.07 10.71 0.49 0.07 0.17
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4. Conclusions

In this study, an investigation on drilling was conducted using three distinct drill types
(step, twist, and core drill) on both neat CFRP and hybrid Al2O3 and SiC nano-composites.
A total of 60 holes were drilled in each composite type. Based on the experimental findings,
the following conclusions can be drawn:

• The input drilling parameters namely spindle speed, feed, drill diameter, and drill type
significantly influenced the surface roughness of the investigated nano-composites.
The maximum surface roughness value was observed for a higher drill diameter of
8 mm, followed by 6 and 4 mm drill diameters.

• The minimum surface roughness was observed for the Al2O3 hybrid nano-composite,
followed by the SiC hybrid nano-composite, and maximum surface roughness was
noted for the neat CFRP composite.

• Surface roughness increases with increasing spindle speed, feed, and drill diameter, and
the drill type step drill has shown better performance in reducing surface roughness.

• ANOVA results indicated that the drill type followed by drill diameter showed a
higher percentage contribution to surface roughness.

• The optimization of surface roughness was evaluated using the desirability function ap-
proach. From the optimization plot, it was possible to determine the surface roughness
by redefining the values of input process parameters within the experimental range.
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• The experimental results obtained during the drilling of the hybrid nano-composites
and the neat CFRP composite using a step drill, core drill, and twist drill adequately
correspond with the RSM-predicted values.

• The comparative analysis of ANN and RF predictions for the hybrid nano-composites
and the neat CFRP composite provides visual insights into the performance of each
model across different materials.

• The relative error predictions of both ANN and RF concerning the RSM-predicted Ra
values, while comparing the results, shows that RF outperforms ANN and RSM due
to its interpretability nature.

• The optimized drilling parameters along with the machine learning approach can
be employed to other composites, such as glass, Kevlar, and polyimide fiber, for
determining their surface roughness qualities.
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