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Abstract: This study presents a comprehensive investigation and modeling of the ignition delay time
(td) in wire-EDM (WEDM). The research focuses on the influence of gap distance, discharge energy,
and piece height on the stochastic distributions of td, providing important insights into the complex
properties of these distributions. Observations indicate that these parameters exert significant yet
intricate influences on td, with a particular emphasis on the gap distance. A critical value was
identified, around 8 µm to 10 µm, that divides the stochastic behavior. To capture the binomial nature
of td, a mixture probability model consisting of two Weibull distribution curves was developed
and validated through extensive experimentation and a data analysis. The model demonstrated
strong agreement with observed cumulative probability curves, indicating its accuracy and reliability
in predicting td. Further, a sensitivity analysis revealed regions of fast change, emphasizing the
challenges and importance of careful parameter selection in control of WEDM processes. The findings
of this study contribute to a deeper understanding of WEDM processes and provide a modeling
approach for predicting td. Future research directions include refining the model by incorporating
additional input parameters, investigating the influence of other process variables on td.

Keywords: electrical discharge machining (EDM); ignition delay time; wire-EDM (WEDM); Weibull
distribution

1. Introduction

Wire Electrical Discharge Machining (Wire-EDM) represents a non-traditional, sophis-
ticated manufacturing technique characterized by the application of electrical discharges
for machining conductive workpieces immersed in a dielectric medium, typically deionized
water. In the process, electrical discharges are produced in the interface between the wire
electrode and the workpiece, both separated by a gap of a few micrometers containing the
dielectric medium. Depending on the characteristics of voltage over time in this interface,
the discharges are generally categorized into normal discharges or short circuits. Normal
discharges facilitate a stable cutting environment and minor roughness, whereas short
circuits and arcing result in adverse effects. The classification of discharges is important for
an optimal understanding and control of the Wire-EDM process.

This classification is done through the evaluation of the voltage behavior before, td,
and during the discharge. Liao et al. [1], for example, have developed a pulse discrimination
system for Wire-EDM. They have studied, among others, the distribution of td of normal
discharges during a specific sampling period. Moreover, Qin et al. [2] have developed a
real-time gap state discrimination method to enable stable processing.

The precise mechanism that drives the dielectric fluid breakdown in EDM is still an
area of ongoing scientific inquiry. Multiple theories have been proposed to shed light on
the process leading to a discharge, incorporating ideas like the formation of gas bubbles via
electrolysis and subsequent plasma generation within these bubbles, the inception of charge
avalanches, and the establishment of particle chains [3–5]. However this phenomenon
takes place, it has a strong connection to td, which is a critical parameter in managing the
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Wire-EDM process. The td is commonly used to estimate the conditions within the working
gap, and the behavior of EDM systems [2,6]. Morimoto and Kunieda [7] have studied the
effect of the gap width, concentration of debris particles, and the machining area on td for
die-sinking EDM. They have quantified the influences using Laue plots, which supposes
the assumption of exponential behavior for td. They have also observed that the td for
single pulses is distinctly longer compared to actual machining. In a follow up work [6],
they have simulated the die-sinking EDM process using an exponential distribution for the
td, shown in Equation (1).

td,ave = 8.2 · 1012(
g8.8 · r2.9

a1.2 · c1.6 ) (1)

where td,ave is the average ignition delay time and c, g, r and a are the concentration of
debris particles, gap width, debris particles diameter, and machining area, respectively.

Other researchers have also investigated the influences on discharge location and
td. This includes the debris concentration in the dielectric medium [3,8], the pause
time between consecutive discharges, and the spatial distance between the tool and
workpiece [4,9].

An abundant amount of research goes into the implications of discharge intensity on
multiple aspects of Wire-EDM, like its impact on the surface texture of used wires [10],
workpiece surfaces [11,12], surface roughness [13,14], and the size and volume of debris
produced by discharge [15]. But the stochastic aspect of discharge generation has not been
thoroughly studied.

In more recent work, such as that by Wang et al. [9], td measurements in Wire-EDM
have been conducted, investigating the effect of surface roughness, gap distance, and flush-
ing pressure in continuous machining. However, a model that predicts the factors impacting
the discharge type, mean td, and its distribution in Wire-EDM is notably missing. Develop-
ing a reliable theoretical framework requires the collection of a significant quantity of data
and a thoughtful consideration of the interrelationships among the various factors.

The present study aims to fill this gap in the current literature by systematically
exploring the factors affecting discharge type, mean td, and its distribution in Wire-EDM,
all the while taking into account the complex interplay among the explaining factors. This
study gathers statistically significant data and constructs a comprehensive model capable
of predicting spark distribution across numerous discharges. Such a model could also
prove to be useful in the future for optimizing the process and for technology choice.

2. Materials and Methods
2.1. Instrumentation

The experiments were conducted on an AgieCharmilles CUT E 350 Wire-EDM ma-
chine, which is a well-established and widely used electrical discharge machining platform.
The purpose of these experiments was to investigate the discharge delay time, td, in the
EDM process, which plays a crucial role in process control and optimization. To accurately
record the voltage levels of the wire during the machining process, a LECROY WaveRunner
604Zi oscilloscope was employed. Two cables connected the wire contacts to the oscillo-
scope, while one additional wire was connected to the machine table, recording the ground
potential. Figure 1 presents a scheme of the voltage curve acquisition setup.

2.2. Machine Setup and Materials

Three series of experiments were conducted using workpieces made from
1.2379/X155CrVMo12-1 steel blocks, which is a widely used material in the manufacturing
industry. Blocks of different heights were prepared to assess the effect of workpiece height
on the discharge delay time. Prior to experimentation, the EDM machine was meticulously
prepared to ensure accurate measurements and reliable outcomes. The workpieces were
carefully cut and trimmed using the EDM machine itself, achieving surfaces with minimal
roughness, Ra of 0.3 µm. This step was crucial to provide a consistent and well-defined
experimental platform. The workpieces are left clamped throughout the entire experiment
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sequence, reducing potential alignment issues and enabling the use of the internal machine
scales for accurate measurement. Table 1 summarizes the expected maximum surface
deviation, given by the machine manufacturer, and the surface roughness.

Lower

Upper contact

Wire

Machine

workpiece

contact
table

Figure 1. EDM experimental setup to record Voltage curves, illustrating the connections between the
machine, workpiece, and oscilloscope.

Table 1. The maximum expected surface deviation and roughness for various workpiece heights.

Piece Height Flatness Tolerance Surface Roughness (Ra)

5 mm 1.2 µm 0.3 µm
10 mm 1.4 µm 0.3 µm
20 mm 1.9 µm 0.3 µm
50 mm 2.8 µm 0.3 µm

100 mm 3.8 µm 0.3 µm

To ensure the reliability and reproducibility of the experiments, several measures were
taken. The consumables, such as the ionic resin, the filters, and the electric contacts, were
replaced before the start of the experiments. The conductivity of the water was closely
monitored and maintained within the range of 9–11 µS/cm during the preparation of
the specimens and during the experiments. Additionally, the same spool of 0.2 mm of
brass wire, produced by Thermocompact, was used through all experiments to prevent
unexpected influences. To minimize the wire vibrations, the wire tension is set to 20 N.

The oscilloscope’s setup was configured to use a timescale of 20 ms/div and a sample
rate of 106 samples per second. This allowed for the measurement of td values up to a
maximum of 180 ms. Under these conditions, the acquisition has a inaccuracy of 1 µs in
time and 1 V in voltage. For the measurements, the wire travels parallel to the workpiece
surface at a defined distance, as in a typical trim cut.

For the data acquisition, the wire travels at least 5 mm; this distance is punctually
adjusted to have at least 400 acquisitions per experiment, which would allow a high
statistical robustness. The wire travels at the maximum speed allowed: 40 mm/min.
At the end of the experiment, the wire is moved forward by 0.5 mm to avoid any potential
influence from the previous discharges. Then, new parameters are loaded and a new
section is acquired.

Finally the waiting time between subsequent pulses was set to 409 µs, the maximum
allowed by the machine, which should be ample time to deionize any remaining free ions
and give some time to flush away debris generated in the last discharge.

2.3. Data Classification and Discharge Delay Time Measurement

Recorded voltage curves are classified into short circuits and normal discharges, as the
discharge delay time is exhibited only by normal discharges. Subsequently, the beginning
and end of the open voltage are defined to determine the duration.
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The classification of the curves is done with the help of a Principal Component Anal-
ysis (PCA), which is a dimension reduction technique. Figure 2 shows the data of one
experiment reduced to three dimensions. It is rather easy to see two clusters, one containing
short circuits and the other normal discharges. Through a simple K-means clusterization,
the voltage curves are then classified.
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Figure 2. Principal Component Analysis (PCA)−driven dimensionality reduction and K-means
clusterization of EDM voltage curves into short circuit and discharge.

The process of extracting td from the curve involves identifying the beginning and the
end of the open voltage. The open voltage is set at −85 V.

The start of the open voltage is determined by identifying the moment that the voltage
goes below −35 V, while the end of the open voltage is defined as the first point where
the curve crosses upwards above −70 V. This way, a td can be determined for each voltage
curve acquired.

3. Gap Variation

The gap variation experiment is done because the gap distance is believed to be the
most important parameter for td. In the literature, the strong influence of the distance
between the two electrodes on the td distribution is noted [3,4,6,7,9]. With this experiment,
some basic concepts for the modeling can also be established.

The experimental setup is done with a h = 10 mm high piece, along with i = 17.9 mJ
of spark energy. The gap distance was varied from d = 2 µm to d = 16 µm, and the
standard data cleansing steps were applied to classify the voltage curves and extract the td
for the normal discharges.

Firstly, the discharge types in relation to the gap distance: the results show a clear
trend in the distribution of discharge types with respect to the gap distance. For gap
distances of 2–4 µm, the percentage of normal discharges is below 2.5%, which could imply
some difficulties in modeling td at this range. However, as the gap distance increased,
the percentage of normal discharges rapidly increased, reaching over 97.5% for a gap
distance of 10 µm. After a gap distance of 15 µm, all discharges were normal discharges.
Figure 3 illustrates this relationship.

After 20 µm, there are few sparks, i.e., the open voltage extends through the whole
900 µs window and no spark takes place.

Secondly, at around a gap distance of 8 µm to 10 µm, a change in behavior occurs.
When plotting the td distributions in histograms for gap distances of 3–8 µm, the probability
distribution tends to have a decreasing function with a peak in the lower time interval
range, as shown in Figure 4 on the left.

With a gap distance of 10 µm or more, the behaviour of the system suddenly changes
to a clear bimodal distribution, which means a probability curve that has two distinct peaks.
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Figure 4 on the right illustrates this. The first probability peak is similar to the lower gap
width range, and a more prominent probability peak surges at 100–175 µs. With a further
increasing gap distance, the first peak becomes less prominent, but it never fully disappears,
even at a gap distance of 16 µm.

gap width [  m]
2 4 6 8 10 12 14 16

0
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100
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]

discharge
short circuit

Proportion of spark types

Figure 3. Distribution of discharges and short circuits as a function of gap distance.

Figure 4. Histogram of the recorded ignition delay time over gap distances from 3 µm to 8 µm on the
left, and from 8 µm to 16 µm on the right.

4. Factorial Design

A full factorial analysis was conducted to investigate the combined influences of
the spark energy, gap distance, and piece height. Such a design allows for a thorough
exploration of the entire experimental space.

The objective is to develop a numerical model to predict the behavior of the ignition
delay time across the full range of machine parameters.

The experimental parameters and their respective levels are listed in Table 2.

Table 2. Parameters and level for the factorial design.

Parameter Levels

Gap distance 4 µm, 8 µm, 10 µm, 12 µm, 14 µm, 16 µm, 20 µm
Spark energy 0.32 mJ, 1.14 mJ, 17.9 mJ
Piece height 5 mm, 10 mm, 20 mm, 50 mm, 100 mm
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The gap distance is selected based on the knowledge that beyond 20 µm, nearly no
sparks occur, and below 4 µm, predominantly short circuits are observed. The energy levels
were chosen based on common cutting strategies related to a first, second, and third cut.
The energy value, quantified in mJ, for each level is calculated via the numerical integration
of the electrical current multiplied by the burning voltage. This calculation is performed
across several hundred observations. The median of these integrative measurements is
then utilized as the representative energy value for the respective level and an associated
uncertainty can also be calculated. The uncertainty in the energy will be used in the
validation section.

The experimental design is comprised of 105 experiments. Additionally, six exper-
iments with random levels inside the search space were also conducted to validate the
model and will be addressed in the next section.

In the process of collecting td values across various parameter combinations, it be-
came apparent that the underlying structure of the data exhibited a pronounced bimodal
character. This observation underscores the necessity for a model of greater complexity
to accurately capture these nuanced dependencies. Furthermore, it was noted in several
instances that the voltage remained open for the entire observation window of 900 µs, with-
out any spark being observed. This distinct pattern of behavior is illustrated in Figure 5.

A clear influence of gap distance on the shape of the captured distributions is observed.
In general, the average td increases with the gap increase. A critical gap value can be
observed again, after which the behavior changes drastically from monotonic to bimodal.
Figure 5 also presents this change between 8 µm and 10 µm.
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Figure 5. Experimental cumulative distribution function showing the influence of the gap on td.

The influence of the spark energy on the td distributions is not clear. Figure 6 shows
this difficulty, having the 1.14 mJ energy curve similar to the lower energy on the left and
to the higher energy on the right. In general, it can be stated that the mean td decreases
with increasing intensity.

An influence of the piece height on td is undeniable. On a general level, the smaller
mean td is found in the range between 10 mm and 50 mm. But it does not follow a clear
general trend, as shown in Figure 7.
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Figure 6. Experimental cumulative distribution function through different energies for piece height
100 mm and gap distance of 20 µm, on the left, and for piece height 20 mm and gap distance of 14 µm,
on the right.
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the td-distribution.

5. Ignition Delay Time Modeling

To accommodate the bimodal distributions revealed by the previous observations, it is
necessary to employ a mixture probability model. This study employs a superposition of
two probability distributions to capture this behavior.

Weibull and exponential distributions are commonly used to describe td in the liter-
ature [4–8,16]. According to the acquired data, an exponential distribution is inadequate
due to its highest probability strictly at zero. Hence, modeling is continued using Weibull
distributions.

The conceptualization of the superposition of two probability distributions are found
in Equation (2):

td(t) = αWb1(λ1, k1, t) + (1− α)Wb2(λ2, k2, t). (2)

In the above, Wb represents a Weibull distribution with parameters k and λ, both
spanning (0, inf); α is the mixing parameter, constrained within (0, 1).

An interpretation for the mixture distribution is that it characterizes two parallel
failure modes of the dielectric.

Each of the describing parameters (α, λ1, k1, λ2, k2) is influenced by the gap distance,
spark energy, and piece height.

Developing and fitting a model for each of the five parameters pose challenges due to
the presence of numerous uncertain influences.

Numerous attempts were made to establish models using distinct functions to predict
the parameters directly by studying the behavior of the recorded data relative to the input.
Unfortunately, these were not successful. A different approach is necessary to tackle
this problem.
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Inspired by the modeling done by Morimoto and Kunieda [6], in which td is mod-
eled by the multiplication of the independent variables, the model presented here also
aims to multiply the independent variables. To capture the complex behavior presented,
the variables are transformed into functions.

This way, each of the describing parameters are written as a composition of separated
functions, being each dependent on one single input variable. Considering λ1 as an
example, these describing parameters are rewritten as Equation (3):

λ1(d, e, h) = gd(d) · gi(i) · gh(h). (3)

Here, d is the gap distance in [µm], i is the spark energy in [mJ], and h is the piece
height in [mm].

Even though their shape is unknown, they must assume a value at each observation
point. Thus, gd must return a value at each of the seven gap distances. The same applies to
the other two functions gi and gh.

To find the values that those three functions should assume that best match each of the
observations points, these values will support the choice for the shape for each function.

Figure 8 shows the found values for λ1, for the three functions. In this case, an expo-
nential function was chosen for gd and a second degree function was chosen for gi. gh has
shown an irregular pattern. Since no adequate function was found to model gh, a linear
interpolation with five supporting points is used. The choice was made keeping in mind
that these values cannot be less than zero, else the Weibull becomes undetermined.
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Figure 8. Values for the functions gd, gi, and gh composing λ1 at the design levels.

The same procedure is done for the other functions α, b1, a2, and b2. The functions for
the gap distance assume different shapes, while for the spark energy, a polynomial shape is
used and for the piece height, a linear interpolation with five supporting points is used.

A genetic algorithm for the initial fitting was used, followed by a trust-region-reflective
algorithm for the final solution, which is shown in Table 3:

Table 3. Functions that compose the td model.

Function Gap Distance (d) Spark Energy (i) Piece Height (h)

5 mm→ 1.88 · 103

10 mm→ 6.387 · 10−2

α 0.0122 d2.21 0.0267 i2 + 0.657 i + 2.19 20 mm→ 2.237 · 102

50 mm→ 2.929 · 103

100 mm→ 2.248 · 103
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Table 3. Cont.

Function Gap Distance (d) Spark Energy (i) Piece Height (h)

5 mm→ 1.856
10 mm→ 9.426 · 10−1

a1 1.56 e0.144 d 0.445 i2 − 9.47 i + 54.6 20 mm→ 1.605 · 10−1

50 mm→ 1.026 · 10−1

100 mm→ 2.242 · 10−1

5 mm→ 9.679 · 10−3

10 mm→ 7.164 · 10−3

b1 0.157 e0.180 d −3.16 i2 + 55.8 i + 58.7 20 mm→ 2.146 · 10−2

50 mm→ 1.970 · 10−2

100 mm→ 2.198 · 10−2

5 mm→ 5.001 · 102

10 mm→ 3.826 · 10−16

a2 1640 d2 + 642 d + 268 −704 i2 + 34000 i + 74.96 20 mm→ 3.333 · 10−1

50 mm→ 2.208 · 102

100 mm→ 2.559 · 102

5 mm→ 9.799 · 102

10 mm→ 4.985 · 102

b2 3.266 105 e−1.57 d 88.03 i2 + 271 i− 42.15 20 mm→ 4.367 · 10−14

50 mm→ 4.867 · 102

100 mm→ 5.153 · 102

The gap distance is given in µm, spark energy is given in mJ, and piece height is given
in mm.

Figure 9 shows the observed cumulative probability curves and the model prediction
for a 100 mm high piece and 1.14 mJ spark energy for different gap distances.

Piece height 100 mm; Spark energy 1.14mJ

4  m Exp
4  m Model
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Figure 9. Comparison of modeled and observed distributions for a 100 mm high workpiece with a
spark energy of 1.14 mJ.

Due to an uneven number of observations at each level, the error function was mod-
ified. It is not evaluated at every observation, but rather at every microsecond. This
way, a normalization step is circumvented. The following Equation (4) shows the used
error function:

ferror =
899 µs

∑
t=0 µs

(ecd f (t)− td(t))2. (4)

ecd f represents the experimental cumulative distribution function.
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6. Sensitivity Analysis

Exploring the sensitivity of the model through a comprehensive analysis allows for
the investigation of regions where changes in input parameters significantly impact the
probability curves. By systematically evaluating parameter sensitivity, researchers can
identify the most influential factors driving the model’s response and gain critical insights
into its behavior.

The sensitivity analysis involves varying one parameter at a time while keeping others
constant, allowing for the isolation of individual parameter effects on the model’s response.
In this case, the gap distance and spark energy vary while keeping the piece height constant.

To do this analysis, the curves at a range of different energies and gap distances are
determined. It is also necessary to define a scalar distance between the curves. It will be
defined similar to the error function. The error is calculated as follows:

V =
899 µs

∑
t=0 µs

(td|i,d(t)− td|i+1,d+1(t))
2 (5)

where td|i,d(t) is the ignition delay time probability for a given energy and gap, while
td|i+1,d+1(t) is the ignition delay time probability at the next energy and gap step. Figure 10
shows the sensitivity maps for changes of discharge energy and gap distance for each
piece height.
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The formation of two regions, in all different piece heights, can be seen, in which
the probability curve quickly changes by small input changes. These regions, due to the
intrinsic uncertainty of the input variables, should yield difficult to control regions for
systems that use the ignition delay time to define the feed rate.

7. Validation Points

To perform the validation, four points were chosen based on the sensitivity maps
and two more points. From the sensitivity maps, two of the four validation points are in
the stable blue region and two points are in the yellow region.

The validation points are analyzed by plotting the observed cumulative probability
of the experiment, the model’s outcome, and a reverse fitting curve. The reverse fitting
involves searching for the optimal gap distance and energy values for a given piece height
though a numerical search. This way, it is possible to evaluate if possible deviations from
the observations arise due to uncertainty in the gap distance or spark energy.

The validation points are shown in the following Table 4:

Table 4. Validation points and the respective uncertainty.

Piece Height [mm] Spark Energy [mJ] Gap Distance [µm]

5 4.8± 1.53 19± 1.17
10 5.3± 1.69 10± 1.39
20 0.89± 0.29 17± 1.85

100 10.3± 3.32 5± 3.78
73 0.89± 0.29 9± 2.90
73 17.9± 5.74 8± 2.90

The observed cumulative probability curve can be plotted alongside the model’s result
to visually evaluate the model.

Figures 11 and 12 display the cumulative distribution for the validation experiments
(blue), the model’s result (orange), and the reverse fitting with optimal values to match the
observations (yellow).
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Figure 11. Validation of model predictions for a 100 mm and 20 mm high workpiece.

These figures show that the best fit still falls in the uncertainty of the input variables,
supporting the usefulness of the model.

Even for a piece height at an unseen level, 73 mm, the model seems to capture the
curve behavior and the reverse fitting results in values inside of the error of the inputs,
as can be seen in Figure 13.
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Figure 12. Validation of model predictions for a 5 mm and 10 mm high workpiece.
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Figure 13. Validation of model predictions for a 73 mm high workpiece.

8. Conclusions

In this study, a comprehensive investigation on the ignition delay time in WEDM was
conducted and a model to predict ignition delay time (td) based on various input parameters
was developed. The research focused on understanding the influence of gap distance, spark
energy, and piece height on the distributions of td and developing a predictive model that
captures the complex properties of these distributions.

Through extensive experimentation and data analysis, distinct patterns in the td distri-
butions based on the input parameters were identified. Specifically, the gap distance was
found to exert a significant influence on td, with a critical gap value separating the distribu-
tions into two distinct modes. For gap distances below around 10 µm, the td had a dominant
monotonic decreasing behavior, while above this threshold, bimodal distributions prevail.
This presents a practical difficulty for the control of the WEDM process and emphasizes the
importance of optimizing the gap distance to enhance machining performance.

Furthermore, the spark energy exhibited erratic effects on td distributions, with varying
degrees of influence observed. The relationship between spark energy and td was not linear
or straightforward, indicating the complex nature of the EDM process and the need for
careful consideration of energy settings.

Additionally, the piece height demonstrated undeniable influences on td distribu-
tions, although without a clear overall trend. The impact of piece height on the td varied
across different parameter combinations. Further research is necessary to explore these
relationships in greater detail.

To model the td distributions, a superposition of two probability distributions was
employed using two Weibull probability curves. The choice of a mixture model was
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motivated by the observed bimodal nature of the td distributions, with distinct peaks
corresponding to different discharge modes.

Additionally, a sensitivity analysis was conducted, aiming to explore the regions
where changes in input parameters significantly affected the td probability curves. Through
systematic variations of individual parameters while keeping others constant, the most
influential factors driving the model’s response were identified. The resulting sensitivity
maps provided critical insights into the behavior of the system and revealed regions of
difficult feed rate control. Small changes in input parameters led to significant variations in
td. These findings highlight the challenges associated with using td for defining feed rates
in practical applications and emphasize the importance of careful parameter selection and
control in EDM processes.

In conclusion, this study has contributed to a deeper understanding of the ignition
delay time in WEDM and has presented a modeling approach for predicting td based on
gap distance, spark energy, and piece height. The developed model can serve as a valuable
tool for optimizing WEDM processes and determining machining parameters that should
avoid unstable cutting conditions, if the td is used to guide the feed rate.

Future research endeavors could focus on explaining the effect of the machining area
on the td or refining the model by incorporating additional input parameters, investigating
the influence of other process variables on the td. Another interesting area would be the
use of such models for simulating the cutting process.
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