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Abstract: Warm forming is widely used to enhance the formability of aluminum alloy sheets. In warm
deep drawing, the process variables significantly affect frictional characteristics at the tool–blank
interface. It has been a conventional approach to use a constant value of friction coefficients in the
finite element (FE) simulations. However, this can occasionally result in suboptimal accuracy of the
predictions. In the present work, strip drawing tests were carried out on AA5182 aluminum alloy
sheets to investigate the effect of important process variables, namely, temperature, contact pressure,
and drawing speed, on the friction coefficient in the warm forming temperature range (100–250 ◦C)
under lubricated condition. The results obtained from the strip drawing tests were used for defining
the friction conditions in the simulation of warm deep drawing of cylindrical cups incorporating
the variation of the friction coefficient with contact pressure and speed at different temperatures.
The Barlat89 yield criterion was used to define the effect of anisotropy in the material. The Voce
hardening law and Cowper–Symonds model were used to incorporate the effect of strain hardening
and strain rate, respectively, in the simulation. Drawability and peak force were compared with the
predictions when a constant friction coefficient was assumed. Warm deep drawing experiments were
conducted to validate the predicted drawability and load–displacement curves. It is clearly observed
that the accuracy of prediction of the limiting drawing ratio and peak load through simulations is
improved by incorporating the effect of pressure and speed on friction coefficient as it captures the
local variations of friction during warm deep drawing precisely, rather than assuming a constant
average friction coefficient at all the tool–blank contact areas.

Keywords: sheet metal forming; friction; strip drawing test; warm deep drawing

1. Introduction

Aluminum alloys have proven to be an ideal choice for lightweighting in the automo-
tive industry due to their higher strength-to-weight ratio than steels and good mechanical
properties [1]. Complex sheet metal parts are required for automotive applications [2], and
these are manufactured by processes such as deep drawing, stretch forming and bending [3].
Deep drawing is one of the most important sheet metal-forming processes, and it involves
radial drawing of a blank into the die cavity with a punch. Deep drawing is primarily used
to create parts with large depth, such as fuel tanks, oil sumps, gas cylinders, automotive
panels etc. As the blank material in the flange region slides over the dies during deep
drawing, friction between the blank and the tools affects drawability, uniformity of strain
distribution, and drawing load [4]. However, the aluminum alloys have limited formability
at ambient temperature. This can be increased by forming at elevated temperatures [5].
Jang et al. [6] studied the tensile deformation behavior of AA5182 aluminum alloy in the
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warm working temperature range of 150–350 ◦C and found that the drawability increased
in warm deep drawing. Satish et al. [7] also observed a significant effect of temperature
and punch speed on formability of this alloy in the temperature range of 200–300 ◦C.

However, the frictional characteristics in deep drawing are very critical in warm form-
ing because temperature, sliding speed, lubrication, and binder force affect the interface
friction in the flange and die corner regions. The friction and galling in forming processes
are known to be affected by various parameters in the sliding contact region, including
contact pressure [8,9], sliding velocity, temperature, tool geometry, pre-straining [10], the
sliding surfaces of the contact pair [11], and lubricant [12,13]. The adhesion of aluminum
alloys to tool surfaces is enhanced during warm forming. This causes increased friction,
degrades the surface quality of the formed part, and damages the tool. As a result, lubri-
cation and application of coatings has been a standard practice to reduce metal adhesion,
tool wear, and friction [14]. Januszkiewicz et al. [15] studied the friction and wear behavior
of AA5182 aluminum alloy ring rubbing against an SAE (AISI) 52100-type bearing steel
ball at various temperatures (up to 300 ◦C) and different applied forces (4 N and 24 N)
in a ball-on-ring friction tester. The authors noticed a transfer layer growing on the tool
surface and severe scratches on AA5182 at a critical temperature of 230 ◦C. The findings
demonstrated that temperature significantly impacts adhesion and wear.

In the field of sheet metal forming, numerical simulation has become essential for
predicting the necessary parameters to successfully form a component. This greatly reduces
the time and effort required during the trial phase [16]. The literature contains numerous
instances of research findings examining the accuracy of these simulations, encompassing
analyses of material modeling, boundary conditions, tribological factors, and damage
models [17]. Material modeling has received significant attention from researchers over
the past two decades [18,19], while relatively little work has been documented regarding
the tribological aspects of the deep drawing process. Conventionally, the assumption of a
constant friction coefficient based on Coulomb’s law is the prevailing practice in simula-
tions. However, an improved version of Coulomb’s law considers variations in the friction
coefficient based on contact pressure and sliding velocity. Alaitz Zabala [20] illustrated
the intricate nature of tribological systems and their impact on forming simulations, high-
lighting the necessity of incorporating the influence of process variables on the friction
coefficient. Utilizing advanced friction models [21,22], it is possible to predict real-time
friction coefficient values in simulations rather than assuming a uniform friction coefficient
for all the elements of a blank. These models calculate friction coefficients for predefined
process parameters that include local contact pressure, relative sliding velocity, plastic
strain in the sheet material, and interface temperature.

The parameters used in friction testing must be similar to the actual forming process
parameters for reliable estimation of the friction coefficient. The contact condition in strip
drawing tests is similar to that encountered in the flange region during deep drawing [23].
Therefore, in the present work, strip drawing tests were carried out to investigate the effect
of important process variables on the friction coefficient under lubricated conditions in the
warm deep drawing temperature range of AA5182 aluminum alloy sheets. The friction
coefficient was determined for different contact conditions by varying temperature, con-
tact pressure, and drawing speed. The results obtained from the strip drawing tests were
subsequently used as input for defining the friction conditions in the finite element (FE) sim-
ulation of warm deep drawing of cylindrical cups, accounting for the variation in the friction
coefficient with contact pressure and speed at different temperatures. The Barlat89 yield
criterion was used to define the effect of anisotropy in the material. The Voce hardening
law and Cowper–Symonds model were used to incorporate the effect of strain hardening
and strain rate, respectively, in the simulation. The simulation results obtained by using the
variable friction coefficient were compared with those obtained when a constant friction
coefficient was assumed to predict the drawability. Warm deep drawing experiments were
conducted to validate the predicted drawability and load–displacement curves.
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2. Materials and Methods

Specimens of 1.15 mm-thick AA5182 (Al–Mg–Mn) alloy sheets in fully annealed
condition were used in the present work. This grade of aluminum is widely used in
the automobile industry for sheet metal stamping due to its high work-hardening ability.
The arithmetic average roughness (Ra) of the specimens determined using Talysurf was
0.95 ± 0.05 µm.

2.1. Strip Drawing Tests

Strip drawing experiments were conducted on AA5182 alloy sheet specimens to
determine the effects of temperature, drawing speed and contact pressure on the coefficient
of friction. In this test, a strip of size 500 mm × 65 mm was drawn between two flat dies
after applying a predefined normal force (N) on the strip, as shown in Figure 1a. The strip
drawing tests were performed at LFT, FAU Erlangen, Germany. The experimental setup
used for the determination of the friction coefficient is shown in Figure 1b. The strip was
pulled by holding one end with wedge grips over a displacement of 200 mm at a constant
speed, and the draw force (F) was measured. Frictional force (Ff) acts on both sides of the
strip. The friction coefficient was calculated using half the ratio of the draw force to the
normal force. Flat dies of cross-section area 100 mm × 55 mm made up of high-carbon,
high-chromium tool steel were used in the tests. The die surfaces had an arithmetic average
roughness (Ra) of 0.30 ± 0.05 µm after being ground and polished. The dies and the
samples were cleaned with acetone before performing every experiment to remove any
dirt that might affect the friction coefficient measurement. Oil-based lubricants KTL N16
and SHF 430 were used for testing at ambient and elevated temperatures, respectively. The
amount of lubricant used was equivalent to 2.0 g/m2, which is the amount typically used
in sheet metal stamping operations.
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Figure 1. (a) Schematic of strip drawing test and (b) the strip drawing machine used for determination
of friction coefficient.

The dies were preheated by cartridge heaters. Insulating isolation plates and cooling
plates were installed to keep the surrounding electrical and mechanical components from
overheating. When the required temperature of the dies was reached, the strip was heated
to a sufficiently high temperature, taking into account the loss of temperature while placing
it between the dies. Insulations was provided around the heating system to minimize
the heat loss. The temperature was continuously measured using a thermocouple and
maintained within ±5 ◦C of the required temperature during the test. Although the
recrystallization temperature of aluminum alloys is generally in the range of 300 ◦C–400 ◦C,
the strength decreases significantly beyond 300 ◦C. Thus, to balance both strength and
ductility, the recommended warm forming temperature of aluminum alloys is in the range
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of 100 ◦C–250 ◦C. Thus, the strip drawing tests in this work were carried out at 25 ◦C,
100 ◦C, 125 ◦C, 150 ◦C, and 250 ◦C at different combinations of contact pressure and
drawing speed. The blank holding pressure applied in the flange area during warm deep
drawing of AA5182 aluminum alloys usually varies from 1.5 MPa–2.5 MPa. To study
the effect of blank holding pressure on the friction coefficient in warm deep drawing at
150 ◦C and 250 ◦C, the strip drawing tests were carried out at contact pressures of 1.3 MPa,
1.8 MPa, and 2.3 MPa by varying the normal force (7.5 kN, 10 kN 12.5 kN) for a contact area
of 5500 mm2. The strips were drawn by varying the speed (2.5 mm/s, 5 mm/s, 10 mm/s)
to capture the effect of speed also on the tribological behavior at 150 ◦C and 250 ◦C. The
experiments were repeated three times for each combination of parameters to ensure the
reproducibility of the results. The average friction coefficient was determined from the
force–displacement data obtained over the sliding distance range of 50 mm–150 mm.

2.2. Warm Deep Drawing Simulation

The finite element simulations were carried out using the commercially available
LS-Dyna software. Postprocessing of the results was conducted using DynaForm software.
The finite element simulation of a flat bottom cylindrical cup deep drawing of AA5182 alloy
blanks with a punch of 50 mm diameter was carried out with blank temperatures of 200 ◦C
and 250 ◦C. The FE model used for the simulation is shown in Figure 2. The specifications
for the tool and the workpiece dimensions, along with the process parameters, are shown
in Table 1. Belytschko–Tsay elements of initial size 1.5 mm were used for meshing the blank
with five integration points. To improve the accuracy of simulation results, a refining mesh
option with a maximum refinement level of 5 was used.

The tools (die, binder, and punch) were modeled as rigid bodies to prevent deflection
of the tools and the blank as a deformable body for the simulations. Circular blanks of
105 mm, 110 mm, 115 mm and 120 mm diameter were used in the simulations. A gap equal
to blank thickness was provided between the binder and the die to avoid penetration of
blank surface with the tool surface. The predictions from the FE model have been validated
with earlier published work [7] on the same alloy.
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Table 1. Dimensions of the tools and the blanks and the process parameters.

Parameter Value

Punch diameter 50 mm

Punch corner radius 10 mm

Die diameter 56 mm

Die corner radius 6 mm

Blank diameters 105 mm, 110 mm, 115 mm and 120 mm

Blank thickness 1.15 mm

Initial blank holding pressure 0.6 MPa

Punch travel (maximum) 50 mm

Punch speed 10 mm/s

2.2.1. Friction Conditions

Forming one-way surface to surface was used to define the contact at the tool–blank
interfaces. To avoid undesirable oscillation in contact during simulations, a 20% viscous
damping coefficient was used. Two different methods to define the friction coefficient
were used in this work. The first one is the standard method, where a constant value
was defined for the friction coefficient (0.2 for 200 ◦C and 0.25 for 250 ◦C [24]) whereas in
the second method, the variation in friction coefficient with speed and contact pressure
obtained from the strip drawing tests performed at elevated temperatures was incorporated
in the FE simulation. The friction coefficient determined at 200 ◦C and 250 ◦C at three
contact pressures (1.3 MPa, 1.8 MPa, and 2.3 MPa) and speeds (2.5 mm/s, 5 mm/s, and
10 mm/s) were defined as inputs in the simulation.

2.2.2. Material Model

The mechanical properties of the alloy were determined by performing uniaxial tensile
tests as per ASTM E8M [7]. Constant strain rate tests were conducted at two temperatures—
200 ◦C and 250 ◦C. At elevated temperatures, the flow stress is influenced by both strain
and strain rate, so at each of the temperatures, the samples were tested at three strain
rates—0.001, 0.01, and 0.1 s−1—to investigate the effect of strain rate on the flow curves.

In the warm deep drawing simulation, the Voce–Cowper–Symonds model is used to
define the flow curves. In this model, the flow stress is predicted at a quasistatic strain rate
using Voce’s law, and the strain rate sensitivity is incorporated using the Cowper–Symonds
strain rate sensitivity factor. The Voce hardening law [25] is used to predict the quasistatic
flow stress

(
σs

f

)
at any level of plastic strain (εp

)
, as given by Equation (1):

σs
f
(
εp
)
= a− b e−d εp (1)

where, a, b, and d are material constants. These constants were determined by the least
squares method using the stress–strain data obtained from the tensile tests performed at
quasistatic strain rate (0.001 s−1).

The Cowper–Symonds model [26] scales the flow stress (σf) determined at the qua-
sistatic strain rate by a factor, as given in Equation (2):

σf
(
εp,

.
εp
)
= σs

f
(
εp
)1 +

( .
εp

C

) 1
P
 (2)

where C and P are Cowper–Symonds strain rate parameters. These parameters were
determined by least squares method using the experimental results obtained at large strain
rates (0.01 s−1 and 0.1 s−1).
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The constants (a, b, d, C, and P) determined for 1.15 mm thick AA5182 sheet at 200 ◦C
and 250 ◦C are shown in Table 2. By combining the Voce hardening law with the Cowper–
Symonds model, the flow curve was extrapolated to a plastic strain of 1.0, as shown in
Figure 3.

Table 2. Voce–Cowper–Symonds model parameters for AA5182 at 200 ◦C and 250 ◦C.

Temperature a (MPa) b (MPa) d C (s−1) P

200 ◦C 249.8 123.5 3.6 4.36 3.03

250 ◦C 169.2 73.9 3.8 0.74 2.88
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The Barlat89 nonquadratic anisotropic yield criterion [18] was used in the FE simula-
tion of warm deep drawing to incorporate the effect of anisotropy in the yielding behavior
of the material. It is given by Equation (3):

a|K1 + K2|M + a|K1 − K2|M + c|2K2|M = 2σM (3)

where M is a material exponent, which was taken to be 8, as suggested for FCC materials.
K1 and K2 are the invariants of the stress tensor and can be obtained using Equation (4) and
Equation (5), respectively:

K1 =
σ11 + hσ22

2
(4)

K2 =

√(
σ11 − hσ22

2

)2
+ (pσ12)

2 (5)

where, a, c, h, and p are the anisotropic coefficients. These coefficients can be found [18]
using the plastic strain ratios (ro, r45, and r90) determined through tensile tests performed
at 0◦, 45◦, and 90◦ to the rolling direction [27] at elevated temperatures at a strain rate of
0.001 s−1 (Table 3). The values of M, ro, r45, and r90 are given as input in the MAT36 material
model in LS-Dyna, and the coefficients of the Barlat89 yield criterion were determined by
the software using the above equations.
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Table 3. Mechanical properties of AA5182 at 200 ◦C and 250 ◦C at 0.001 s−1.

Temperature YS (MPa) UTS (MPa) r0 r45 r90

200 ◦C 117 156 0.64 0.81 0.75

250 ◦C 98 114 0.68 0.84 0.72

2.3. Deep Drawing Experiments

To verify the simulation results with constant friction and variable friction conditions
in warm deep drawing, Swift flat-bottomed cup deep drawing tests [28] were performed
using 1.15 mm-thick circular blanks of AA5182 alloy using a 50 mm-diameter flat-bottomed
cylindrical punch. Blanks of varying diameter from 105 mm to 120 mm were used in the
deep drawing experiments at 200 ◦C and 250 ◦C. Figure 4a depicts a schematic diagram of
the warm deep drawing test setup. The warm deep drawing tests were performed at LFT,
FAU Erlangen, Germany. The experimental setup is shown in Figure 4b. The tests were
carried out on a servo-hydraulic press at a constant punch speed of 10 mm/s and an initial
blank holding pressure of 0.6 MPa. The tools were heated using cartridge heaters embedded
in the tools and the blanks were heated in an external oven. To maintain the isothermal
condition prior to the tests, the blanks were also heated to the desired temperature by
placing them between closed tools for a few seconds. The temperature of the dies and the
strip was continuously measured using thermocouples and maintained within±5 ◦C of the
required temperature during the test. The cups were drawn to a constant depth of 30 mm
with SHF 430 as the lubricant. The punch load and the displacement were measured using
a load cell and an LVDT, respectively. The limiting draw ratio of the material was predicted
by finding the maximum blank diameter that can be drawn successfully.
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3. Results and Discussion
3.1. Effect of Process Variables on Friction in Strip Drawing Tests
3.1.1. Effect of Temperature

The variation on friction coefficient with temperature in strip drawing experiments
under lubricated condition is shown in Figure 5a at a constant drawing speed of 10 mm/s.
At ambient temperature, the friction coefficient is found to be 0.12 and 0.15 at a contact
pressure of 1.3 MPa and 1.8 MPa, respectively. The tests at elevated temperatures indicated
the friction coefficient at 100 ◦C and 125 ◦C is lower than at ambient temperature. This could
be due to material softening and lower shear stress required to draw the strip. At 1.8 MPa
contact pressure, with a further increase in temperature, the friction coefficient is found to
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increase before becoming nearly constant. The susceptibility of adhesion increases with
increase in temperature, leading to a gradual change in the interface condition and rise in
friction coefficient. The friction coefficient sharply increased to 0.22 when the temperature
is raised to 150 ◦C and further increases to 0.23 at 250 ◦C. The variation in the friction
coefficient at 1.3 MPa exhibits a similar behavior, with a minor shift in the overall shape
of the curve. The friction coefficient is minimum (0.078) at 125 ◦C at a contact pressure of
1.3 MPa.
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The variation in the friction coefficient with the sliding distance for different tempera-
tures is depicted in Figure 5b. These experiments were carried out at a contact pressure of
1.3 MPa and a drawing speed of 10 mm/s. The friction coefficient is nearly constant along
the sliding distance at ambient temperature, but slightly increased at higher temperatures.
An increase in temperature causes the lubricant’s viscosity to decrease at the contact inter-
face, which reduces the lubricant film thickness and its life span along the sliding distance.
A sharp increase in friction coefficient is observed towards the end of the sliding at 250 ◦C,
possibly due to inadequate lubricant at the interface at later stages of strip drawing leading
to dry sliding condition and galling. Similar behavior was observed by Januszkiewicz
et al. [15] on AA5182 aluminum alloy at temperatures over the critical temperature, where a
significant metal transfer to the tool and severe scratches on the workpiece were observed.

The effect of process variables (contact pressure and drawing speed) on the fric-
tion coefficient at two different temperatures (150 ◦C and 250 ◦C) is discussed in the
following sections.

3.1.2. Effect of Contact Pressure

The variation in average friction coefficient value with contact pressure at elevated
temperatures at a drawing speed of 10 mm/s is shown in Figure 6a. When the pressure is
increased from 1.3 MPa to 1.8 MPa, the friction coefficient is raised by localized sticking
due to high contact stresses produced under higher contact pressure. A similar trend
is observed at the ambient temperature also, but at elevated temperatures, the friction
coefficient is observed to decrease with a further increase in the pressure to 2.3 MPa. At
high temperatures, the affinity of adhesion increases as the contact pressure increases.
Asperities undergo excessive plastic deformation, so higher shear forces are required due
to stronger workpiece–tool interface bonding, but the decrease in friction coefficient could
be attributed to subsurface shear deformation, which requires a lower shear force [29].
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3.1.3. Effect of Drawing Speed

The effect of drawing speed on the friction coefficient at different temperatures at a
contact pressure of 1.3 MPa is shown in Figure 6b. As drawing of the strip begins, the
lubricant is drawn to the surface from the valleys, which act as pockets for lubricant storage.
As less lubrication is being distributed in the contact area at low speeds, a higher friction
coefficient is observed due to the stick–slip phenomenon of the contacting asperities. The
flow rate of the lubricant from valleys to the surface increases with speed, thus reducing
the friction coefficient.

However, the decrease in friction coefficient with increasing speed at higher temper-
atures is lower than at ambient temperature. The lubrication mechanism’s effectiveness
at the contact interface plays an important role. Increasing tendency of oxidation and
sticking friction that cause adhesion with increase in temperature might offset the decrease
in friction coefficient with increase in drawing speed.

The variation in drawing speed on friction coefficient with sliding distance at 150 ◦C
and 250 ◦C under a contact pressure of 1.3 MPa is shown in Figure 7a and b, respectively.
The peak static friction coefficient at 150 ◦C is 0.17 ± 0.01 while it is 0.2 ± 0.01 at 250 ◦C.
This increase in static friction coefficient is due to higher adhesion with an increase in
temperature. The force required to draw the strip should overcome the static frictional
force. The pulling force required to draw the strip decreases once the sliding begins. The
static frictional force decreases once the sliding begins due to plastic deformation of peak
asperities and removal of barrier due to interlocking peak asperities. The hydrodynamic
pressure generated between the asperities increases with the increase in drawing speed [30]
and this leads to a decrease in friction coefficient. Therefore, the kinetic frictional force is
found to depend on the sliding speed. Figure 7 shows that the kinetic friction coefficient
dropped to 0.15 at 10 mm/s. As the sliding continues, increase in adhesion tendency
leads to increase in kinetic frictional forces. This leads to a rise in the friction coefficient
again with the sliding distance. Thus, it is clear from Figure 7 that up to a sliding distance
of 100 mm, there is a distinct variation in the friction coefficient at different speeds, and
after that the fluctuation in the friction coefficient takes place, which is possibly due to the
breakdown of the lubricant film.
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3.2. Prediction of Effect of Friction in Warm Deep Drawing by FE Simulations

Figure 8 shows the contour plots of the variation of friction coefficient with contact
pressure and drawing speed at 200 ◦C and 250 ◦C. Based on the results obtained from
the strip drawing experiments, a tabular form was created to incorporate the variation in
friction coefficient with contact pressures (1.3 MPa, 1.8 MPa, and 2.3 MPa) and drawing
speeds (2.5 mm/s, 5 mm/s, and 10 mm/s) at different temperatures in the FE simulation.
The contour surface was plotted using the friction coefficient obtained for these nine
combinations of contact pressure and drawing speed. The friction coefficient at 200 ◦C was
determined by interpolating the results obtained at 150 ◦C and 250 ◦C.
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3.2.1. Prediction of Drawability

As previously mentioned, finite element (FE) simulations of warm deep drawing
of AA5182 employing different friction models have been conducted. The simulation
results for cups drawn at 250 ◦C with initial blank diameters of 105 mm and 110 mm using
constant friction coefficient are presented in Figure 9a and b, respectively. The simulations
performed considering the variable friction coefficient using blank diameters of 115 mm
and 120 mm are shown in Figure 9c and d, respectively. The experimentally determined
forming limit diagrams of this alloy at 200 ◦C and 250 ◦C by Satish et al. [7] using the
Nakazima method have been used as the failure criterion in the simulations.



J. Manuf. Mater. Process. 2023, 7, 175 11 of 15
J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 9. Results from deep drawing simulations at 250 °C using constant friction for blank diame-
ters of (a) 105 mm and (b) 110 mm, and variable friction for blank diameters of (c) 115 mm and (d) 
120 mm. 

From the predicted results, it has been found that the maximum blank diameter that 
could be drawn successfully is 105 mm when the constant friction coefficient is used, in-
dicating a limiting draw ratio of 2.1. Failure can be observed in the simulation with 110 
mm blank diameter (Figure 9b). When the variable friction coefficient is used, a blank of 
115 mm could also be drawn successfully, and failure was observed when the diameter 
was increased to 120 mm. Hence, the predicted limiting draw ratio in this case is 2.3. This 
is consistent with the experimental results with blanks of diameter 115 mm and 120 mm 
as shown in Figure 10a and b, respectively. It is clearly observed that the accuracy of pre-
dictions in FE simulations can be improved by incorporating the effect of pressure and 
speed on friction coefficient, as it captures the local variations of friction during warm 
deep drawing precisely, rather than assuming a constant average friction coefficient at all 
the tool–blank contact areas. When a constant friction coefficient is used, the strains in the 
cup wall near the punch corner radius reach the failure limit close to the plane strain con-
dition for 110 mm blank diameter. In contrast, when the variable friction model is utilized, 
the strains are more uniformly distributed leading to a successful draw, even in the case 
of 115 mm diameter, as validated by the experimental results. In the case of 120 mm blank 
diameter, the failure was observed in the biaxial stretching region due to larger defor-
mation in the cup bo om. The change in strain path was due to reduction in friction coef-
ficient with the increase in contact pressure. The shift in the strain path of the necking/fail-
ure point has also been observed by Kasaei et al. [31] from plane strain to biaxial stretching 
when the friction is reduced. 

Figure 9. Results from deep drawing simulations at 250 ◦C using constant friction for blank diameters
of (a) 105 mm and (b) 110 mm, and variable friction for blank diameters of (c) 115 mm and (d) 120 mm.

From the predicted results, it has been found that the maximum blank diameter that
could be drawn successfully is 105 mm when the constant friction coefficient is used,
indicating a limiting draw ratio of 2.1. Failure can be observed in the simulation with
110 mm blank diameter (Figure 9b). When the variable friction coefficient is used, a blank
of 115 mm could also be drawn successfully, and failure was observed when the diameter
was increased to 120 mm. Hence, the predicted limiting draw ratio in this case is 2.3. This
is consistent with the experimental results with blanks of diameter 115 mm and 120 mm
as shown in Figure 10, respectively. It is clearly observed that the accuracy of predictions
in FE simulations can be improved by incorporating the effect of pressure and speed on
friction coefficient, as it captures the local variations of friction during warm deep drawing
precisely, rather than assuming a constant average friction coefficient at all the tool–blank
contact areas. When a constant friction coefficient is used, the strains in the cup wall
near the punch corner radius reach the failure limit close to the plane strain condition for
110 mm blank diameter. In contrast, when the variable friction model is utilized, the strains
are more uniformly distributed leading to a successful draw, even in the case of 115 mm
diameter, as validated by the experimental results. In the case of 120 mm blank diameter,
the failure was observed in the biaxial stretching region due to larger deformation in the
cup bottom. The change in strain path was due to reduction in friction coefficient with the
increase in contact pressure. The shift in the strain path of the necking/failure point has
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also been observed by Kasaei et al. [31] from plane strain to biaxial stretching when the
friction is reduced.
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115 mm, and 120 mm.

3.2.2. Predictions of Load–Displacement Curves

The punch load–displacement curves obtained from the FE simulations for the cups
drawn at 250 ◦C with an initial blank diameter of 105 mm and 110 mm were compared with
the experimental results, as shown in Figure 11a and b, respectively. The blank of 105 mm
diameter was drawn successfully in simulations using both the friction conditions. With
a constant friction coefficient of 0.25 in simulations, a higher peak load is predicted than
the variable friction condition. When compared with the experimental values, the error in
predicted values is 11% and 3% with constant friction and variable friction, respectively.
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Figure 11. Comparison of load–displacement curves predicted from FE simulations with experimental
curves for deep drawing at 250 ◦C with blank diameters of (a) 105 mm and (b) 110 mm.

A comparison of the load–displacement curves from FE simulations for failed cups
during deep drawing at temperatures of 200 ◦C (blank diameter 115 mm) and 250 ◦C (blank
diameter 120 mm) with the experimental curves is shown in Figure 12a and b, respectively.
The peak load predictions using the variable friction coefficient are more accurate than
those using the constant friction coefficient. A decrease in peak load and increase in draw
depth up to failure are observed with increase in temperature from 200 ◦C to 250 ◦C, due to
the decrease in the flow stress and increase in ductility of the material.
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3.2.3. Prediction of Shear Stress Distribution

In deep drawing, a constant blank holding force is applied on the blank in the flange
region using blank holder. During drawing, as the blank is drawn into the die cavity, the
blank holding pressure increases due to continuously reducing area of contact in the flange
region. Figure 13 shows the shear stress distribution in the drawn cups with 105 mm blank
diameter using the constant friction model and variable friction model. The maximum
shear stress occurs in the die corner radius region in both the cases. Shear stress varies
circumferentially due to anisotropic material behavior. Shear stress increases as blanks
deform radially inward due to increasing circumferential compressive stresses within the
flange. As seen in Figure 13, the maximum shear stress value at a constant depth of 30 mm
is higher in the case of the constant friction model than in the case of variable friction model.
Therefore, the predicted peak load in the case of the constant friction model is higher.
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4. Conclusions

The effect of process variables on friction coefficient at the tool–strip interface in
the warm forming temperature range of AA5182 aluminum alloy has been examined in
conditions similar to those that exist in the flange region in warm deep drawing. The
friction coefficient is significantly influenced by the blank temperature, contact pressure
and drawing speed. The results obtained from the strip drawing tests were subsequently
used as input for defining the friction conditions in the finite element simulation of warm
deep drawing of cylindrical cups, accounting for the variation in the friction coefficient
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with contact pressure and speed at different temperatures. Drawability in terms of limiting
drawing ratio is accurately predicted by utilizing the variable friction coefficient. When
compared with the experimental values, the error in predicted values of peak drawing
load reduced from 11% to 3% when the variable friction model is used. In this work, it is
clearly observed that the accuracy of predictions in FE simulations can be improved by
incorporating the effect of pressure and speed on friction coefficient, as it captures the local
variations of friction during warm deep drawing precisely, rather than assuming a constant
average friction coefficient at all the tool–blank contact areas.
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