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Abstract: Due to the high specific surface area of titanium aluminide powders, significant and
unavoidable surface oxidation takes place during processing. The resulting oxides disrupt the
conventional powder metallurgical process route (pressing and sintering) by reducing the green
strength and sintered properties. Oxide-free particle surfaces offer the potential to significantly
increase particle bond strength and enable the processing of difficult-to-press material powders. In
this work, the effect of milling titanium aluminide powder in a silane-doped atmosphere on the
component properties after pressing and the subsequent sintering was investigated. Ball milling was
used to break up the oxide layers and create bare metal surfaces on the particles. With the help of
silane-doped inert gas, the oxygen partial pressure was greatly reduced during processing. It was
investigated whether oxide-free surfaces could be produced and maintained by milling in silane-
doped atmospheres. Furthermore, the resulting material properties after pressing and sintering were
analysed using density measurements, hardness tests, EDX measurements, and micrographs. It was
concluded that ball milling in a silane-doped atmosphere produces and maintains oxide-free particle
surfaces. These oxide-free surfaces and smaller particle sizes improve the component properties after
pressing and sintering.

Keywords: die pressing and sintering; powder metallurgical process; titanium aluminide powder

1. Introduction

Titanium aluminides (TiAl) are intermetallic materials, and γ-alloys, in particular,
offer great application potential in automotive and aerospace applications [1]. Whenever
good creep resistance combined with low density at high operating temperatures is re-
quired, TiAl alloys with a density of only 3.9–4.2 g/cm3 represent a lighter alternative to
titanium or nickel-based alloys. The properties of TiAl materials essentially depend on
the microstructure, which, in turn, is determined by the alloy and the manufacturing and
processing methods [2].

In order to improve the chemical and microstructural homogeneity compared to cast-
starting material, TiAl alloys are predominantly processed powder-metallurgically [3].
After the starting powder has been produced by inert gas atomisation, it is solidified
by hot isostatic pressing (HIP) [4]. Subsequently, it is shaped by isothermal forging [5].
Alternatively, the component geometry is created directly from powder using the modified
sintering processes, field-assisted sintering (FAST) [6].

HIP, isothermal forging, and FAST are demanding processes with a high technical
complexity. In contrast, die pressing and sintering have established themselves as a
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cost-effective and productive near-net-shape process for many other metallic powder
materials [7]. However, the low ductility of the particles poses a challenge when processing
TiAl powder via the conventional process route. In addition, the oxide layers present make
processing more difficult, which are of secondary importance in the processes established
to date (e.g., FAST), as the oxide layers are broken up during the process there [8,9].

Titanium aluminides have a high affinity for oxygen, which influences the microstruc-
ture development and, thus, the technological properties [10]. Interstitially resolved oxygen
leads to an increased strain hardening of the powder, which reduces the compressibility
during pressing and only weak surface contacts can be built up [11]. Furthermore, oxide
layers consisting of titanium and aluminium oxides, as well as mixed oxides, build on the
particle surfaces [12]. In die pressing, a strong bond is to be produced by cold welding the
powder particles [13]. However, the existing oxide layers hinder the interlocking and the
cold welding [14]. This leads to a reduction in compressibility and, thus, to reduced green
strength [15]. During sintering, the oxide layers act as a diffusion barrier and, therefore,
cause high porosities. They also reduce the thermal conductivity and the sinterability of
powders [16]. This results in the formation of inhomogeneities in the microstructure [17].

TiAl powders react with oxygen when exposed to air, even at ambient temperatures,
and should be processed under inert gas atmospheres to prevent an undesirable increase in
the oxygen content of the powder particles [18]. However, in most inert gas atmospheres
such as argon, the residual oxygen content is too high and must be reduced to inhibit
oxidation [19].

This is where the present study comes in by using silane-doped argon as the process
atmosphere. Monosilane (SiH4) reacts with the residual oxygen of argon 5.0, which is about
2 ppmv, and, thus, enables very low oxygen concentrations well below 10−20 ppmv [20,21].
It is investigated whether and under which conditions a qualification of the conventional
powder metallurgical process route (pressing and sintering) for titanium aluminium ma-
terials can be achieved by processing in this extremely low-oxygen atmosphere. It will
be investigated whether the existing oxide layers can be broken up and preserved by
ball milling. In addition, the influence of the grinding, the atmosphere, and the applied
parameters on the component properties after pressing and sintering will be analysed.

2. Materials and Methods

The investigation was conducted on TiAl powder belonging to the GE48 alloy (with
the following composition in wt.%: 59.60% Ti, 33.00% Al, 2.60% Cr, and 4.80% Nb). This
powder was produced through inert gas atomisation using argon and possesses a spherical
morphology. The D90 value, representing the maximum particle size where 90% of the
initial powder volume is encompassed, was measured at 134 µm. Additionally, the powder
exhibited an oxygen concentration of 909 ppmw. The material demonstrated density of
3.97 g/cm3 (Gesellschaft für Elektrometallurgie, Nuremberg, Germany).

In a glovebox (GS Glovebox Systemtechnik GmbH, Malsch, Germany), the silane-
doped atmosphere was generated. It was pre-purged with argon 5.0 (purity ≥ 99.99%).
Afterwards, rinsing was carried out with argon/monosilane (99% Ar/1% SiH4), so that
the residual oxygen contained in the argon 5.0 reacts with the monosilane to form silicon
dioxide and the oxygen concentration is consequently reduced. Hydrogen is also produced
in the process.

SiH4 (g) + O2 (g)→ SiO2 (s) + 2H2 (g) (1)

The regulation of argon and argon/silane was realised via corresponding flow meters,
which allow the control of the atmosphere especially in the transient start-up phase. The
oxygen partial pressure was measured via a sensor box with lambda probe (L-Probe
EM2020, Mesa GmbH, Schmalkalden, Germany) and adjusted to below 10−18 ppmv during
the experiments.

Under this atmosphere, the GE48 powder was filled into the ball-grinding containers
(FRITSCH GmbH, Idar-Oberstein, Germany, 250 mL, hardened steel DIN EN 10027-1
X105CrMo17). Two containers were filled with 40 g of powder each and 345 g of milled
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steel balls (X105CrMo17) with a diameter of 10 mm and sealed gas-tight so that the oxygen
partial pressure was also below 10−18 ppmv during the entire grinding process. The weight
ratio of the steel balls and powder was chosen according to Murty et al. [22]. To minimise
agglomeration due to cold welding, 12 drops of toluene (C7H8) were added [6]. The
ball-milling process was carried out with a Pulverisette 5/4 planetary ball mill (FRITSCH
GmbH, Idar-Oberstein, Germany) at a speed of 300 1/min. Following Shengguan et al.,
where a relative density of 96% was achieved after sintering by milling TiAl powder, an
effective milling time of 5 h was set with an interruption of 4 min cyclically after every
3 min of active ball milling [23]. To avoid excessive heating of the milling vessels and to
maintain stable process conditions, a further break of 10 min was taken after every 5 cycles.

After ball milling, the containers were reopened for further processing in the glove
box with the oxygen-free atmosphere described above. The atmospheric and compacting
conditions were varied to detect the effects of atmospheric conditions on this conventional
powder metallurgical processing route. Table 1 shows an overview of the different sample
variants. The variants XHV6 and XHV8 were compacted without contact with ambient
air at two different compaction pressures. For further tests, the compression pressure was
kept constant (800 MPa). The V8 variant was subjected to vacuum drying in the airlock of
the glove box in a silane-doped atmosphere in order to evaporate any toluene residue. In
addition to creating the desired oxide-free surface areas, the milling process also reduces
the particle size of the powder. In order to assess the effect of the oxide surface conditions
isolated from the effect of the particle size, additional reference samples were created with
powder, exposed to ambient air after milling (L85 and L840). Variant REF represents the
untreated reference with the particle size and shape before milling. Compaction to green
bodies of 7 g and 20 mm diameter was carried out by one-sided pressing with a manually
driven hydraulic press (MSE Teknoloji. Osb/Gebze/Kocaeli, Turkey) in the glove box.

Table 1. Processing variants of the GE48 powder.

Designation Pressure in MPa Treatment

XHV6 600 Ball-milled
XHV8 800 Ball-milled

V8 800 Vacuum drying
L85 800 5 min in air
L840 800 40 min in air
REF 800 Untreated

Later, all green compacts were sintered in a hot tube furnace (Thermconcept ROC,
Bremen, Germany) at 1300 ◦C for 60 min. The chosen temperature for the sintering
process is based on previous FAST experiments that have successfully produced a desirable
lamellar microstructure at this specific temperature [24]. Via a cooled flange, the samples
are transported from the glove box directly to the oven. The oven is supplied with an
oxygen-free atmosphere through a fan, effectively maintaining the oxygen partial pressure
during sintering below an impressive 10−18 ppmv (as depicted in Figure 1).

For each process step, an analysis of the powder or sample was carried out. In order
to investigate the influence of the particle size on the microstructure after ball milling,
the particle size distribution of the milled and unmilled powder was determined. The
measurement was carried out with a laser diffraction measuring system (HELOS, Sympatec,
Clausthal-Zellerfeld, Germany). With the measuring system, the particle size can be
determined in a measuring range from 0.1 µm to 8.750 mm. The characterisation of the
elemental composition as well as the chemical state of the particle surface was carried
out by X-ray photoelectron spectroscopy (XPS) with an information depth of about 10 nm
in a modified UHV (ultra-high vacuum) apparatus (VG ESCALAB MKII, Manufacturer:
VG Scientific (now: Thermo Scientific), Waltham, MA, USA) with a base pressure of
2 × 10−10 mbar. Between the ball-milling process and the measurement, the TiAl powder
milled in a silane-doped atmosphere had no contact with the surrounding atmosphere due
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to a special transport system [25]. With the help of XPS measurement, the newly formed
surfaces of the powder particles were examined with regard to oxidation. In XPS, X-rays are
focused on the sample surface, where electrons are emitted due to the photoelectric effect.
These photoelectrons have characteristic kinetic energies that correspond to the binding
energy of their respective original orbital, which, in turn, is also influenced by the chemical
state of the element involved. With the help of a hemispherical electron energy analyser,
the electrons can be sorted according to their energy, which enables the presentation of
a photoelectron spectrum. Non-monochromatic Al-Kα radiation (1486.6 eV) was used
for XPS measurements generated in an XR40B X-ray source from PREVAC GmbH (Berlin,
Germany). The electron-pass energy was set to 100 eV for survey spectra and to 20 eV
for detail spectra. Spectral analysis was performed using CASAXPS software (Version:
2.3.23PR1.0) from Casa Software Ltd. The spectra were recorded relative to the Fermi level
and fitted with the algorithm developed by Levenberg–Marquard, which takes into account
photoelectric cross-sections according to Scofield and asymmetry parameters from Reilman
et al. [26,27]. Transport and transfer of the oxygen-free powder from the silane-doped
argon atmosphere into the UHV chamber was carried out using a validated transfer system
described by Gustus et al. [25]. The other powders that were exposed to air were prepared
in the conventional way with an airlock and transferred to the XPS instrument.
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The green compacts were analysed optically after cold pressing of the prepared pow-
ders. These green compacts were examined for cracks and fragmentation. In order to
characterise and quantify the mechanical green properties, the splitting tensile strength
was determined. This strength test is used for brittle materials [28]. For this purpose, the
samples were clamped in a force test rig and radially loaded until the sample broke (see
Figure 2).
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After sintering, the density of the samples was determined by weighing them in
distilled water according to the Archimedes principle with a suitable measuring set-up
(Sartorius YDK, Sartorius AG, Göttingen, Germany). Metallographic examinations of
the sintered samples (Polyvar MET microscope, Reichert Metek, New York, NY, USA)
were carried out on longitudinal sections of the samples without etching and used for
qualitative evaluation of the particle composite and the defect structure. EDX examinations
(Zeiss Supra 55 VP, Oberkochen, Germany) were carried out for phase determination. The
mechanical properties of the sintered specimen were characterised through microhardness
measurements. This simplified method was chosen as it allows reproducible comparison
between the analysed variants, even with limited specimen dimensions, and correlates
directly with the material strength [29]. A Qness Q10A (Mammelzen, Germany) hardness
tester was used to determine the hardness of the sintered bodies according to Vickers
HV1. The hardness measurements were carried out over the cross-section according to
ISO 6507 [30]. Five points were measured in the axial direction and ten points in the radial
direction. Subsequently, the average hardness was determined by calculating the mean
value from various measuring points. The exposure time during this process was set at
15 s.

3. Results
3.1. Particle Size Distribution

There was a significant reduction in particle size distribution after 5 h of ball milling.
The D90 value after milling was 53 µm. This corresponds to a reduction of the particle
size to approx. 40%. A detailed representation of the particle size distributions is shown
in Figure 3. A narrowing and shift of the particle size spectrum into the range of 0–50 µm
can be observed due to the ball milling. As the particle sizes have decreased, the specific
surface area has increased. Since no new oxygen is introduced, it can be hypothesised that
there are oxide-free surface fractions when the specific surface area has increased. In the
following section, the newly formed surfaces were examined with regard to oxidation.
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Figure 3. Particle size distribution of GE48 powder before and after milling.

3.2. X-ray Photoelectron Spectroscopy

The O1 spectra on the left side of Figure 4 show that the GEM+OX powder (milled and
oxidised, process variants L85 and L840) has the most metal oxides on the particle surface.
Most likely, this is due to the increased particle surface area after milling, which tends to re-
oxidise in air. The O1 signal is, therefore, composed of the oxide layer broken up by milling
and the re-oxidised particle surface. The reference (process variant REF) powder contains
a smaller amount of surface metal oxides, where the peak for organic compounds has a
higher intensity than that for metal oxides. This trend continues for the OXYGEN-FREE
(process variants XHV6, XHV8, and V8) powder, which has the lowest amount of metal
oxides in all O1 detail spectra, indicating a decrease in passivating surface oxide layers.
Looking at the Ti2p detail spectra on the right side of Figure 3, there is little difference in
the chemical state of the titanium species between GEM+OX and the reference sample.
This is to be expected as both sample surfaces were exposed to air during fabrication and
transport. The largest difference is seen in the Ti2p detail spectrum of the oxygen-free
sample. Here, the amount of Ti2+ and Ti4+ species on the surface is quite similar in contrast
to the other two powders. We assign the Ti2+, Ti3+, and Ti4+ species to TiO, Ti2O3, and
TiO2, respectively, as observed after transporting pure Ti samples in a silane-doped argon
atmosphere for extended periods [25]. Silane reacts strongly with oxygen and acts as an
oxygen scavenger, but this is not entirely true for water. The reaction between silane and
residual water, which remains present in silane-doped argon atmospheres, is kinetically
limited [31]. Consequently, the atmosphere is not able to completely prevent the oxidation
of titanium, as water can also have an oxidising effect, especially on high-affinity metal
surfaces such as titanium and aluminium [32,33]. Lee et al. observed the formation of
uniformly distributed Ti2+, Ti3+, and Ti4+ species when titanium surfaces were exposed
to water, which is consistent with the XPS results discussed in this paper [34]. Overall,
however, the Ti2p spectra show significant differences in the chemical composition of the
surface of the oxygen-free transported sample compared to the samples transported in air.
This suggests that de-oxidation of the GE48 particles has indeed occurred, as it affects the
surface chemistry of the powder, even when re-oxidation by residual water molecules in
the atmosphere is taken into account.

O1 (left) and Ti2p (right) detail spectra of the GE48 powder samples. Raw data
displayed by black lines, orange and blue peaks correspond to either oxygen-containing
organic compound (orange) and the metal-oxide species (blue) in the O1s detail spectra.
Orange and blue peaks in Ti2p spectra indicate oxidised titanium (orange) and metallic
titanium (blue) species respectively. The red-dotted lines show the resulting overall fit.
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Stoichiometry in atomic percent of the species is indicated in the bottom left corner in each
detail spectra.
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3.3. Pressability

By ball milling the powders, green compacts could be pressed without the need to add
any pressing agent or lubricant. However, the variants L85 and L840 exposed to ambient
air showed radial cracks and fragmentation after ejection from the pressing tool. Only an
unstable bond could be created in the initial powder of the REF sample, which is why the
transfer to the sintering furnace already led to a considerable loss of material (see Figure 5).
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3.4. Splitting Tensile Strength

Figure 6 shows that complete processing in an oxygen-free environment and compact-
ing with a higher pressing pressure leads to a higher tensile splitting strength. Among the
variants studied, the XHV8 variant exhibited the highest tensile splitting strength, measur-
ing 1.13 MPa. As the degree of oxidation increased, the strength decreased. A comparison
between the XHV6 and XHV8 variants revealed that a lower pressing pressure resulted in a
reduced splitting tensile strength. In addition, it can be seen that vacuum drying minimises
the splitting tensile strength. However, no specific value could be determined for the REF
variant due to its low green strength. This variant disintegrated when inserted.
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3.5. Density

Table 2 shows the densities of the individual variants. The densities of the ground
variants (XHV6, XHV8, V8, L85, and L840) are higher than the density of the unground
variant REF (3.42 g/cm3). Since the densities of the re-oxidised variants (L85 and L840)
are higher than those of the XHV8 and V8 variants, no clear influence of the oxygen-free
process route can thus be detected. Since all variants have a density lower than 3.97 g/cm3

(100% rel. density), all samples have porosity. The REF variant has the highest porosity
with a relative density of 86%.

Table 2. Sample density.

XHV6 XHV8 REF L85 L840 V8

Density 3.69 g/cm3 3.57 g/cm3 3.42 g/cm3 3.65 g/cm3 3.63 g/cm3 3.60 g/cm3

Rel. density 93% 90% 86% 92% 91% 91%
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3.6. Microstructure

From the optical microscopic images of the longitudinal sections under polarised light,
clear differences between the microstructures of the ground powder and the reference can
be seen (Figure 7). First of all, the difference in particle size can be seen. Furthermore, there
are inclusions and pores between the particles of the reference sample REF. At the same
time, sinter neck formation and recrystallisation across particle boundaries were locally
evident. The images of the samples show isolated pores in the microstructure. Furthermore,
there are no clear differences between variants without (V8) and with oxygen contact (L840)
before pressing. Along the former particle boundaries, bands of dark pits are visible, which
can be assigned to the MAX phase Ti2AlC by EDX measurements (Figure 8).
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3.7. Hardness

Based on the hardness results in Figure 9, it can be seen that a higher pressing pressure
and the milling process lead to a higher hardness. For sample XHV8, there is a 15% increase
in hardness compared to REF. The two samples that were exposed to the environment
after milling (L85 and L840) show lower hardnesses. As sample L840 was exposed to the
environment for a longer period of time, the oxide layer could be more pronounced here.
On sample V8, it can be seen that vacuum drying has no influence on the hardness. The
difference compared to sample XHV8 is within the standard deviation.
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4. Discussion

The observations and experimental results show that the D90 particle size is reduced
from 137 µm to 53 µm during ball milling in a silane-doped atmosphere. In addition, oxide-
free particle surfaces are produced and maintained due to the oxygen partial pressure
below 10−18 ppmv in the silane-doped atmosphere. The green compacts produced from
milled powder exhibit a higher density. This is attributed to the reduction in particle size.
The smaller powder particles can fill voids more easily, resulting in a denser component.
Therefore, a finer microstructure of the sintered samples is achieved. A clear influence of
the oxygen-free environment cannot be seen in the microstructure and density. The EDX
measurements showed that the MAX-phase Ti2AlC formed along the particle boundaries.
MAX phases are characterised by a high oxidation resistance in air. In addition, the MAX
phases have a better fracture toughness and electrical and thermal conductivity compared
to pure TiAl [35,36]. It can be assumed that the carbon input during grinding occurred from
the toluene (C7H8) used, as this is the only medium apart from the tools used that contains
carbon. Decarburisation of the tools is not assumed. The use of ball-milled powder and
the consequent reduced particle size leads to a significant improvement in the pressability
of the powders (see Figure 5). This indicates the formation of partially oxide-free surfaces
on the powder particle. The free surfaces support the cold welding of the particles during
pressing, which leads to improved green strength and reduced cracking. This improved
green strength was confirmed in the tensile splitting tests. It was shown that a higher
pressing pressure leads to a higher splitting tensile strength. Since the two variants L85
and L840 have a lower splitting tensile strength than the XHV8 variant, it can be stated
that the oxygen-free processing increases the green strength. Furthermore, it is expected
that the bare metal contact of the powder particles favours diffusion during sintering.
This is shown by an increase in hardness after sintering from 131 HV1 to 152 HV1 in the
oxide-free variants.
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The XPS measurements have shown that exposure to air of the powder milled in the
silane-doped atmosphere leads to the formation of new oxide layers on the exposed surfaces.
Thus, it can be concluded that the ball milling did indeed create oxide-free surfaces which
oxidised in reaction with water vapour instead of gaseous oxygen. This finding, together
with the experimental results from powder processing highlights the significance of the
silane-doped atmosphere. It is elementary to obtain and preserve oxide-free surfaces and
to benefit from the oxide-free particle surfaces created by ball milling. Both the processing
and the transport to the process steps must take place under the exclusion of oxygen. The
effect of ambient air on the oxygen-free milled powder has a significant negative influence
on the powder compacts’ green strength and, thereby, their processability.

With the chosen sintering parameters, there were no clear effects on density and
microstructure after sintering compared to completely oxygen-free processed variants.
Since the thermal processes also led to the sintering of the particles in the reference sample
without prior ball milling, the barrier effect of the new oxides after milling was apparently
overcome during the selected sintering process. The increase in density is, therefore,
attributed to the improved pressability of the ground powders. Thus, it can be stated
that the ball-milling process breaks up the oxide shards of the TiAl powder and produces
oxide-free surfaces. The silane-doped atmosphere inhibits the oxidation of the free surfaces
and the oxide-free surfaces are obtained. This allows the TiAl powder to be processed
with die pressing and sintering. In the future, the changes in the powder caused by ball
milling will be investigated in more detail. In particular, the mechanisms behind oxide
layer break-up and the resulting opportunities for process optimisation during sintering
will be investigated further.

5. Conclusions

In this study, the influence of grinding, pressing, and sintering in a silane-doped
atmosphere on the component properties was investigated. Grinding reduced the particle
sizes and produced oxide-free particle surface areas, which were obtained by the silane-
doped atmosphere. This allows the TiAl powder to be processed by die pressing and
sintering. The oxide-free particle surface areas were verified by X-ray measurements. The
bare surface areas increase the pressability, green strength, and hardness of the sintered
parts. However, these properties deteriorate due to renewed oxidation. Grinding increases
the density of the components and also reveals a finer structure in the microstructure. In
the future, the changes in the powder caused by ball milling will be investigated in more
detail. In particular, the mechanisms behind the oxide layer break-up and the resulting
possibilities for process optimisation during sintering will be further investigated.
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