
Citation: Ellinger, J.; Piendl, D.;

Zaeh, M.F. Comparison of

Sensitivity-Guided and Black-Box

Machine Tool Parameter

Identification. J. Manuf. Mater.

Process. 2023, 7, 120. https://doi.org/

10.3390/jmmp7040120

Academic Editor: Mark J. Jackson

Received: 11 May 2023

Revised: 18 June 2023

Accepted: 21 June 2023

Published: 22 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Manufacturing and
Materials Processing

Journal of

Article

Comparison of Sensitivity-Guided and Black-Box Machine Tool
Parameter Identification
Johannes Ellinger * , Daniel Piendl and Michael F. Zaeh

Institute for Machine Tools and Industrial Management (iwb), TUM School of Engineering and Design,
Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
* Correspondence: johannes.ellinger@iwb.tum.de

Abstract: Dynamic machine tool simulation models can be used for various applications such as
process simulations, design optimization, and condition monitoring. However, all these applications
require that the model replicates the real system’s behavior as accurately as possible. Next to carefully
building the model, the parameterization of the model, that is, determining the parameter values
the model is based upon, is the most crucial step. This paper describes the application of both
sensitivity-based and black-box parameter identification to a machine tool. It further provides a
comparison between these two methods and the method of sequential assembly. It is shown that
both methods can increase the mode shape conformity by more than 25% and significantly reduce
damping deviations. However, sensitivity-based parameter identification is the most economical
method, offering the chance to update a dynamic machine tool model within minutes.

Keywords: machine tools; parameter identification; sensitivity analysis; optimization; simulation;
dynamics

1. Introduction

To maximize productivity, cutting processes have to be carefully designed. Otherwise,
either the machine tool’s capability is not fully exploited or the machine tool, the cutting
tool, or the workpiece are at risk of damage due to dynamic instabilities. The design of
cutting processes requires a solid understanding of both the process and the machine tool’s
dynamics [1].

While the former is not the subject of this publication, the latter can be identified via
experimental modal analyses (EMAs), leading to a gray-box or black-box model of the
machine tool dynamics. In the past, this was only conducted in laboratory conditions
using impact hammers, shakers, or machine tool drives as excitation sources, which is a
time-consuming process and subject to many inaccuracies [2]. Operational modal analysis
was designed to overcome these problems [3]. The so-called “rapid identification” ap-
proach, in particular, uses in situ computer numerical control data but also only focuses on
single-input single-output dynamics [4]. While operational modal analysis is very accurate,
it is generally only valid in close vicinity to the working position at which the data were
collected and cannot be interpolated and extrapolated. This limits its value for complex
process simulations, which generally involve a larger portion of the machine’s working
space in contrast to a limited number of working points.

Alternatively, machine tool dynamics can be calculated by means of bottom-up theo-
retical models. In simple cases, these models can be derived analytically starting from the
underlying equations of motion [5–7]. More complex but also more informative models
can be built using finite element analysis (FEA) methods [8–11]. In recent years, these
models have become position-flexible and computationally very efficient due to intelligent
substructuring and elaborate model order reduction methods [9].

Even though dimensionality reduction methods exist [12], the increasing complexity
of the models also increases the number of unknown model parameters. These parameters

J. Manuf. Mater. Process. 2023, 7, 120. https://doi.org/10.3390/jmmp7040120 https://www.mdpi.com/journal/jmmp

https://doi.org/10.3390/jmmp7040120
https://doi.org/10.3390/jmmp7040120
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com
https://orcid.org/0000-0002-2232-7894
https://orcid.org/0000-0001-5650-7394
https://orcid.org/0000-0002-2882-1359
https://doi.org/10.3390/jmmp7040120
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com/article/10.3390/jmmp7040120?type=check_update&version=1


J. Manuf. Mater. Process. 2023, 7, 120 2 of 16

represent the material properties of the machine tool (e.g., density and Young’s modulus),
the properties of machine tool joints replaced by surrogate models (e.g., spring stiffnesses
and viscous dampers), and, in some cases, the properties of additional friction models
(e.g., see Rebelein [10]). To achieve high model accuracy, these parameters must be care-
fully identified, meaning that values for them must be found that reflect the real physical
properties of the machine tool. In the literature, many works on this exist, ranging from
parameter identification for simplified feed drive structures [5,13] to complete machine tool
systems [11,14–16]. The unknown parameters are either directly determined on the assem-
bled system [5,11,13,16] or identified on separate, carefully designed test benches [10,14].
The former method leads to a challenging optimization problem [11,16,17], while the latter
may result in parameters that are only valid on the test bench but not for the overall machine
tool system [18]. To overcome this problem, the method of sequential assembly has been
introduced [10,14]. Here, the machine tool is incrementally built up, starting, for example,
with the machine tool bed until its final shape is reached. In parallel, a model is built,
always matching the machine tool’s assembly state. This way, only a few parameters have
to be identified in each step, reducing the overall complexity of the parameter identification
problem. However, this approach is often uneconomical and only feasible if the machine
tool can be disassembled and assembled at will.

Different strategies exist for parameter identification on complete machine tools:
Garitaonandia et al. [19] used a Bayesian optimization algorithm to find optimal parameters
for the ball screw drive (BSD) and the mounting elements (MEs) based on three manually
selected eigenmodes of a grinding machine. Hernandez-Vazquez et al. [16] identified
machine tool parameters using a least squares (LS) approach and found it beneficial to
consider two machine tool axes positions in the objective function rather than just one.
To decrease the simulation time, Hernandez-Vazquez et al. [11] first built a response surface
surrogate model of the original FEA model and, second, solved it for the unknown machine
tool parameters also using a LS algorithm. In contrast, Semm et al. [14] have exploited the
computational efficiency of their model and combined it with a genetic algorithm, a particle
swarm optimization (PSO), and a deterministic sequential least squares programming
(SLSQP) algorithm to identify unknown machine tool parameters. They found the PSO to
deliver the best and most stable results. Their model was reused in Ellinger and Zaeh [17],
where, in contrast to the presented approaches, the overall optimization problem was first
partitioned into many smaller subproblems by means of global sensitivity analyses (GSAs).
Afterward, SLSQP was used to determine the unknown model parameters. By using
simulated reference data (instead of data acquired via measurements on the real-world
machine tool), it was shown that optimal and globally valid parameters can be found.
However, validating the identification strategy on a real-world machine tool was denoted
as a field for further research.

The present paper aims to validate the approach first presented in Ellinger and Zaeh [17]
on a real-world machine tool and to compare it with a state-of-the-art PSO parameter
identification approach. Furthermore, it will be shown that, in contrast to other strategies,
it can be automated to a high extent and thus has the potential to be economically applied
in modern production environments. For that, the remainder of the paper is structured
as follows: Section 2 briefly recalls the parameter identification methods applied in this
work. Furthermore, model conformity measures are presented, which are important
for both designing the objective functions of the underlying optimization problems and
assessing the results. In Section 3, the considered machine tool structure, the corresponding
model, and the measurements performed to acquire input data for parameter identification
are described. Afterward, the application of the sensitivity-guided (see Section 3.2) and
the black-box (see Section 3.3) parameter identification approaches is described, and the
corresponding results are presented. In Section 3.4, both methods are compared regarding
the resulting model accuracy and the required economic effort. The paper is concluded in
Section 4, with a summary and the outlook for future research.
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2. Background

This section presents background information intended to guarantee the understand-
ability of the methods used in this paper. First, model evaluation criteria are introduced,
which can be used to quantitatively assess the quality of structural dynamic models.
Second, the algorithms used to identify the unknown model parameters in Section 3
are briefly explained, and the strategy of sensitivity-guided parameter identification [17]
is recapitulated.

2.1. Model Evaluation Criteria

The most straightforward way to assess the structural dynamic behavior of a system
is calculating frequency response functions (FRFs) based on time-domain measurements.
A well-parameterized model will show the same input–output behavior as the real-world
system. Thus, one way to evaluate a model’s quality is by comparing measured and
calculated FRFs. This can be achieved using the frequency response assurance criterion
(FRAC) [20]

FRAC(Hc(ω), Hm(ω)) =

∣∣Hc(ω)T H∗m(ω)
∣∣2

(Hc(ω)T H∗c (ω))(Hm(ω)T H∗m(ω))
, (1)

where Hc and Hm denote the calculated and measured FRFs, ω represents the angular
frequency, and (•)T and (•)∗ denote the transpose and complex conjugation operations.
A FRAC value of 100% indicates perfect conformity, and a value of 0% no match at all.

The modal properties of the system are closely related to the measured FRFs [7].
A good model will, in turn, match the modal behavior of the real-world system, meaning
that it has the same eigenvectors, eigenfrequencies, and modal damping. The match be-
tween the measured and calculated eigenvectors can be assessed using the modal assurance
criterion (MAC) [21]

MAC(ϕc,ϕm) =

∣∣ϕT
c ϕ∗m

∣∣2
(ϕT

c ϕ∗c)(ϕT
mϕ∗m)

, (2)

with ϕc and ϕm being the calculated and measured eigenvectors and, again, (•)T and (•)∗
denoting the transpose and complex conjugation operations. Similar to the FRAC, the MAC
range is 0–100% for totally unrelated to perfectly matching eigenvectors. The model’s
eigenfrequencies can, for example, be compared using the natural frequency difference
defined by Imamovic [22]. Similarly, the model’s modal damping can be assessed using
the natural damping difference (NDD) or, for the use in optimization algorithms (see
Section 2.2), the squared natural damping difference (NDD2):

NDD2(ξc, ξm) = (NDD(ξc, ξm))
2 =

(
ξc − ξm

ξm

)2
(3)

Here, ξc and ξm denote the calculated and measured modal damping, respectively.
An NDD2 of 0% indicates perfect conformity between the model and the real-world system,
and it increases with rising damping differences.

2.2. Optimization Strategies and Algorithms

Parameter identification can be seen as a constrained nonlinear optimization problem,
which can be formulated as

min
x∈Rn

f (x) (4)
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subject to

gj(x) = 0, j = 1, . . . , me, (5)

gj(x) ≥ 0, j = me + 1, . . . , m, (6)

and xl ≤ x ≤ xu, (7)

with x being a vector grouping the n unknown parameters with lower and upper bounds
xl and xu, the objective function f , constraint functions gj, and the me equality constraints
and the m total constraints [23]. In the case of structural dynamic parameter identification,
the model is involved in the calculation of the objective function f , and x represents the un-
known model parameters. For example, f can be the average FRAC value of all considered
FRFs, and the calculated FRFs Hc,i(ω, x) each depend on the model parameters x.

One of the most efficient methods for solving constrained nonlinear optimization
problems is sequential least squares programming (SLSQP) [23]. This method generates a
new estimate of the optimal parameters by solving a quadratic subproblem. Further details
can be found in both Kraft [23] and Nocedal and Wright [24]. However, it is to be noted
that SLSQP is a so-called local method that finds the optimum parameters x in the vicinity
of the starting point but not necessarily the global optimum in the overall parameter space
defined by Equation (7).

Global optimization algorithms do not suffer from this drawback. Some of them are
inspired by evolutionary processes such as the movement of a swarm of birds, which has
lead to the development of particle swarm optimization (PSO) [25]. Here, a swarm of
particles, each representing a parameter estimate, moves through the parameter space and,
ideally, converges to the global optimum of the objective function. The movement of a
particle i is defined by its velocity, which is updated in every iteration by

vi,k+1 = u1vi,k + u2(pi − xi,k) + u3(pg − xi,k) (8)

where k is the iteration number, vi is the velocity of the particle, pi is the location with the
particle’s individual best value of the cost function, xi is the particle’s current position in the
parameter space, pg is the location of the swarm’s best value of the cost function, and u1,
u2, and u3 are user-defined weights controlling the particle’s inertial, nostalgic, and social
behavior [25]. In each iteration, the particle’s position is updated as

xi,k+1 = xi,k + vi,k. (9)

However, global optimization in general and PSO in particular are not as efficient as
local methods and may require many function evaluations (i.e., once per particle in each
iteration). Additionally, these algorithms may still end up in local minima of the objective
function, especially if the global minimum is not very prominent. To overcome these
problems, a method called “sensitivity-guided parameter identification” was developed by
Ellinger and Zaeh [17]. First, they partitioned the overall parameter identification problem
comprising many unknown parameters into several smaller optimization problems, each
with only a handful of unknown parameters, by means of GSA. This already reduces the
risk of local minima. Second, these smaller problems are repeatedly solved using varying
initial values and a local optimization algorithm such as, in this case, SLSQP. If there are still
local minima, these runs still end up at different points in the parameter space. However,
for each parameter, the suboptimization problem with the least variance is determined,
and the final value for the parameter is calculated as the mean value of all repetitions. This
way, the likelihood of ending up in local minima can be further reduced. More details can
be found in Ellinger and Zaeh [17].

3. Results

In this section, the application of two parameter identification approaches to a real
machine tool system is described, which was described first in Section 3.1. Additionally,
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information on the measurement data is given. Next, Section 3.2 shows the results of
applying sensitivity-guided parameter identification to the system, while Section 3.3 does
the same for a black-box method. Last, both approaches are discussed and compared to
one another in Section 3.4. Additionally, the method of sequential assembly is used as a
benchmark from the literature.

3.1. Machine Tool Model Description

The subject of the investigation in this paper is a DMG DMC duo Block 55H machine
tool in a uniaxial configuration, as depicted in Figure 1. For four different workpiece table
(WPT) positions (z1 = −294 mm, z2 = −60 mm, z3 = 135 mm, and z4 = 330 mm) evenly
spread across its full motion range, acceleration data were acquired at a sampling rate of
10,240 Hz at 17 nodes all across the machine tool in response to impulse hammer excitations
at node N8 in all three coordinate directions. Three repetitions were performed for each
measurement. This was conducted using four Kistler® triaxial accelerometers (two times
type 8762A10 and two times type 8762A50) and a National Instruments (NI)® cDAQ-9198
rack with three type NI®-9232 modules and one type NI®-9234 module. The measurement
nodes and the excitation node are briefly described in Table 1 and illustrated in Figure 1b.
Figure 1a shows a photograph of the real machine tool, which was digitally edited to
highlight the measured components. The measurements were performed in a uniaxial
configuration by separating the x-axis (and the y-axis) from the machine tool bed and
supporting it with a crane a short distance apart. This allows achieving the best possible
separation of these components from the machine bed without disconnecting the electric
cables and the hydraulic lines could be achieved. Altogether, this resulted in 153 FRFs per
WPT position. Using the approach presented by Ellinger et al. [26], modal parameters (i.e.,
a set of modal damping, eigenvector, and eigenfrequency for each mode) were extracted at
each of the four WPT positions, which served as a basis for the parameter identification
methods. For each of the four positions, 26–42 modes were found in the range from 10 Hz
to 500 Hz.

(a)

x
z

y

N1a,b N2a,b

N3a,b
N4a,b

N5

N6

N8

N7

N9
N10

N11
N12

N13

WPT

Machine bed

(b)
Figure 1. Illustration of the examined machine tool. To display the machine’s configuration for
the measurements, the x-axis and the y-axis have been digitally removed. (a) Edited photograph.
(b) Rendering showing the measurement nodes.
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Table 1. Considered model and measurement nodes. The node locations are illustrated in Figure 1b.

Node Description

N1a,b, N2a,b, N3a,b, N4a,b Shoe (a) and rail (b) nodes of the linear guiding system (LGS) shoes
N5, N6, N7 ME nodes

N8 Excitation node
N9, N10, N11, N12 Column nodes

N13 WPT node

For this system, a simulation model already exists, which is based on FEA and has been
proven to be capable of capturing the system’s dynamic behavior with high fidelity [27].
Additionally, the model has been made position-flexible and computationally efficient via
an elaborate combination of model order reduction and linearization techniques [28,29].
The model was further subjected to a dimensionality reduction step [12], resulting in the
29 unknown model parameters listed in Table 2. Based on previous model identification
efforts, the initial values for these parameters are known. More information on the used
model can be found in Zaeh et al. [27], Semm et al. [28], and Semm et al. [29].

Table 2. The 29 unknown machine tool model parameters; stiffness parameters are denoted by k,
viscous and hysteretic damping parameters by b and d, respectively. x, y, and z represent translational
and rx, ry, and rz rotational degrees of freedom.

Element Number Stiffness
Damping

Viscous Hysteretic

MEs 3 kx, ky, kz bx, bz dy
BSD fixed bearing 1 kz - -
LGS shoes 1 * kx, ky, krx, kry - -
BSD 1 kz - drz
Coupling 1 krz - drz
LGS linearization parameters 1 * kz bz -

* Same set of parameters used for all four LGS shoes.

The measurement data, which will also be called “reference data”, and the ma-
chine tool simulation model serve as a basis for the parameter identification described in
Sections 3.2 and 3.3.

3.2. Sensitivity-Guided Parameter Identification

In preceding work [17], sensitivity-guided parameter identification was demonstrated
using simulated reference data originating from the very same model in which it was used
to parameterize. Thus, on the one hand, the ground truth values for the parameters to
be identified (i.e., the values used in the reference data generation) were known. On the
other hand, the model could also be guaranteed to perfectly replicate the reference data
(i.e., by using the ground truth model parameter values) or, in other words, no modeling
errors exist. Since measured data were used in this work, both premises no longer hold.
Sensitivity-guided parameter identification relies on mode tracking [17]. To ensure the
approach’s operability, the reference data set was reduced to modes that, to some extent,
also show up in the uncalibrated model (i.e., the model with the initial values for the
parameters in Table 2). This was enforced by selecting only reference modes with a partner
model mode with MAC and extended modal assurance criterion [30] conformities of at
least 50% and a maximum extended modal assurance criterion conformity to all other
modes of 30%. This procedure resulted in a reference data set with nine modes for positions
z1 and z3, eight modes for position z2, and seven modes for position z4. The selected modes
and their eigenfrequencies are displayed in Table 3.
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Table 3. Selected reference modes from the measured input data.

Position z1 Position z2 Position z3 Position z4

1 Mode 3 ( 31.0 Hz) Mode 2 ( 31.0 Hz) Mode 1 ( 28.7 Hz) Mode 2 ( 28.8 Hz)
2 Mode 6 ( 52.0 Hz) Mode 4 ( 52.1 Hz) Mode 2 ( 31.0 Hz) Mode 3 ( 31.0 Hz)
3 Mode 7 ( 76.1 Hz) Mode 6 ( 95.0 Hz) Mode 4 ( 52.1 Hz) Mode 6 ( 52.1 Hz)
4 Mode 8 ( 91.9 Hz) Mode 7 (108.1 Hz) Mode 6 ( 97.9 Hz) Mode 8 ( 99.1 Hz)
5 Mode 9 ( 95.7 Hz) Mode 8 (120.0 Hz) Mode 7 (107.0 Hz) Mode 9 (106.1 Hz)
6 Mode 10 (109.1 Hz) Mode 11 (180.4 Hz) Mode 8 (122.4 Hz) Mode 11 (127.3 Hz)
7 Mode 12 (117.3 Hz) Mode 14 (226.3 Hz) Mode 9 (180.0 Hz) Mode 13 (179.1 Hz)
8 Mode 13 (180.1 Hz) Mode 16 (251.5 Hz) Mode 12 (231.2 Hz) -
9 Mode 14 (222.4 Hz) - Mode 15 (251.8 Hz) -

Since both the GSAs for partitioning the parameter identification problem and the
actual identification [17] can be highly parallelized, the method scales very well with the
number of CPU cores. In total, 1,966,080 model evaluations were conducted for the GSAs,
and each resulting optimization problem was executed 50 times (see Ellinger and Zaeh [17]).
On a workstation with 2× 48 AMD® EPYC® 7642 cores, the whole calculation took 44 min,
with 35 min for the GSAs and 9 min for the actual parameter identification. The final
parameter values can be found in the appendix in Table A1. In the case of repeated pa-
rameterization (e.g., due to changes of the real-world system), the GSAs would not have
to be repeated, making the sensitivity-guided parameter identification a computationally
efficient method.

Figure 2 shows an exemplary FRF from the measurement data set (“Reference”) and
its simulated counterparts using the initial and found parameter values. Even though a
significant improvement measured in terms of the FRAC value of roughly 15% could be
reached via sensitivity-guided parameter identification, there is low overall conformity
between the measured and simulated data. This is confirmed by Table 4, which shows
FRAC value statistics for simulated FRFs using the initial and found parameters with
respect to their measured counterparts.
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Figure 2. Reference FRF and simulated FRFs using the initial parameters and the parameters from the
sensitivity-guided (SG) and black-box (BB) parameter identification methods from force input at the
excitation node (N8) in the y-direction to the displacement at the WPT node (N13) in the z-direction
at WPT position z1. The nodes are described in Table 1 and shown in Figure 1.



J. Manuf. Mater. Process. 2023, 7, 120 8 of 16

Table 4. FRAC value statistics for each WPT position with the initial parameters and after the
sensitivity-guided (SG) and black-box (BB) parameter identification approaches.

FRAC in % Median Mean Best

Position z1

Initial 2.4 11.9 26.3
SG 9.3 17.3 56.3
BB 41.5 18.5 45.1

Position z2

Initial 0.8 9.9 34.9
SG 7.6 12.7 53.8
BB 43.9 13.6 45.0

Position z3

Initial 1.5 8.8 32.0
SG 6.1 10.3 52.5
BB 36.2 11.1 44.5

Position z4

Initial 0.8 8.2 21.0
SG 7.0 8.6 33.4
BB 26.8 9.9 30.5

However, the low FRAC conformity between the parameterized model and the mea-
surement data is not necessarily a drawback of the parameterization method, as other
error sources exist along the way from the measurement data to the simulated FRFs: First,
the modal parameter extraction leads to a modal model that can no longer perfectly repli-
cate the original input data due to nonlinear effects of the system and errors in the modal
parameter calculation. Second, modeling errors are present, meaning that, even with theo-
retically perfect model parameters, the model cannot entirely reproduce the behavior of the
real-world structure. Last, imperfect parameter identification leads to further deviations
between the simulated and measured FRFs. For the data used in this work, the modal
model shows, on average, a FRAC conformity with the measurement data below 90%,
with one-tenth of the FRFs being even below 82% [26]. The effect of the parameterization
and modeling errors cannot be quantified. However, the latter is believed to be more
significant than the former. Even though the model has shown a high FRAC conformity
of 82% and higher in the past [10], this was only for one WPT position, which differs
from the positions considered here. Furthermore, frequent BSD and LGS changes have
been conducted since then, possibly introducing other non-modeled effects. Additionally,
creating a uniaxial setup by hanging two axes on a crane did not lead to total separation,
since electric wires and hydraulic lines were not disconnected. Even though these were
supported as much as possible, this arrangement may have caused other nonlinearities,
further reducing the model’s validity.

To more realistically evaluate the capabilities of the sensitivity-guided parameter
identification approach, modal-based conformity measures can be used, eliminating fitting
errors in determining the modal parameters [26]. Table 5 shows the MAC values for the
selected identification modes and all considered WPT positions (see Table 3) before and after
the sensitivity-guided parameterization, that is, using the initially estimated and actually
found parameter values for the simulations. It can be seen that the parameterization has led
to an improvement for most modes, in some cases even resulting in more than 25% higher
MAC values. In Figure 3, the selected identification modes (see Table 3) are compared with
the model modes using the found parameters. Here, most measured identification modes
have one distinct model counterpart with high MAC conformity and vice versa, showing
the validity of the parameterization routine. Ideally, the found parameters would improve
the model’s match with all measured modes, not just with the selected identification modes
from Table 3. However, the MAC value statistics given in Table 6 indicate that the other
modes were largely unaffected by the parameterization with, for example, 75% of all modes
at WPT position z3 improved by less than 0.6% (or even deteriorated), confirming the
presence of modeling errors.
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Figure 3. Comparison of measured reference mode shapes and simulated model mode shapes for all
considered WPT positions. For the simulations, the found parameters were used. For sizing reasons,
the MAC matrices for the positions z2 and z4 are padded with zeros. (a) Position z1. (b) Position z2.
(c) Position z3. (d) Position z4.
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Table 5. Comparison of MAC values between the reference modes and the simulated modes using
the model with the initial parameter values and the resulting values from the sensitivity-guided (SG)
and black-box (BB) parameter identification approaches.

MAC in % 1 2 3 4 5 6 7 8 9

Position z1

Initial 81.8 86.6 69.1 96.0 55.1 75.6 87.0 81.1 52.8
SG 92.8 88.1 90.5 96.6 54.9 77.7 87.4 80.9 53.1
BB 65.3 92.2 84.1 96.8 54.6 78.8 87.3 81.2 54.7

Position z2

Initial 85.0 89.3 97.8 87.9 94.5 96.5 83.3 61.5 -
SG 92.9 90.4 97.8 91.5 94.3 96.5 83.5 61.8 -
BB 69.1 94.5 97.3 93.0 94.0 96.6 84.3 60.9 -

Position z3

Initial 58.5 86.6 83.7 96.6 82.6 94.9 94.4 82.2 59.0
SG 84.5 93.2 84.5 98.4 89.2 94.9 94.3 82.5 59.1
BB 89.0 73.3 86.2 98.7 91.9 94.9 94.4 82.4 58.4

Position z4

Initial 80.4 88.3 89.4 83.7 75.3 89.9 61.6 - -
SG 85.8 92.4 90.2 92.0 88.4 90.0 61.2 - -
BB 69.7 73.9 93.5 94.4 92.9 90.2 61.5 - -

Table 6. MAC value statistics for all measured modes after the sensitivity-guided (SG) parameter
identification and their changes with respect to the initial state (Delta).

MAC in %
Position z1 Position z2 Position z3 Position z4

SG Delta SG Delta SG Delta SG Delta

Worst 0.4 −0.7 7.6 −0.2 15.1 −0.5 5.3 −2.7
25% percentile 21.7 −0.0 16.0 −0.0 36.4 −0.1 17.3 −0.0

Mean 44.5 1.8 50.7 2.7 58.3 2.2 38.2 1.6
75% percentile 62.9 1.1 86.1 0.4 87.0 0.6 54.5 0.3

Best 97.4 25.5 97.8 28.6 98.1 24.1 93.6 18.1

Table 7 is a comparison of the NDD before and after the sensitivity-guided parameter-
ization, using the initially estimated and actually found machine tool model parameters
for all considered WPT positions. Note that the table presents relative rather than absolute
damping differences, meaning that the listed NDD value for the sensitivity-guided param-
eterization at position z1 of 41.9% in the table indicates, for example, a modal damping of
1.419% instead of 1.0% rather than 42.9% versus 1.0%. It can be seen that the sensitivity-
guided parameterization approach has generally improved—that is, reduced—the damping
deviations. However, as expected by the LS algorithm used [17] in the presence of modeling
errors, some modes had moderately deteriorated.

Table 7. Comparison of NDD values between the reference modes and the simulated modes using
the model with the initial parameter values and the resulting values from the sensitivity-guided (SG)
and black-box (BB) parameter identification approaches.

NDD in % 1 2 3 4 5 6 7 8 9

Position z1

Initial 330.4 24.2 144.4 36.4 38.4 31.6 16.3 42.7 44.1
SG 41.9 51.3 17.4 58.8 10.4 49.3 25.5 16.2 45.6
BB 26.1 2.9 6.4 46.9 15.4 9.1 3.6 32.3 47.1

Position z2

Initial 282.5 38.0 41.8 80.8 45.1 26.7 44.1 4.1 -
SG 34.6 72.4 66.4 37.2 9.8 3.4 48.3 0.2 -
BB 20.0 6.5 53.5 13.5 25.2 17.4 47.5 2.0 -

Position z3

Initial 183.2 270.2 38.5 7.1 120.5 4.5 4.5 24.9 13.2
SG 5.6 38.0 75.5 50.3 31.1 42.8 14.6 32.2 8.1
BB 5.7 23.3 3.9 27.1 23.9 16.2 3.3 29.5 11.3
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Table 7. Cont.

NDD in % 1 2 3 4 5 6 7 8 9

Position z4

Initial 161.3 212.8 40.1 8.2 175.0 6.4 13.0 - -
SG 3.1 23.4 79.9 53.0 29.0 40.3 29.1 - -
BB 7.7 10.5 3.9 25.7 24.5 6.3 19.7 - -

3.3. Black-Box Global Optimization

As an alternative to the sensitivity-guided identification method used in Section 3.2,
the optimal model parameters (see Table 2) can be estimated using a black-box approach.
For this, the same two-stage optimization strategy utilizing PSO as in Semm et al. [14]
was deployed. In the first stage, the optimal stiffness parameters, which maximize the
mean of the MAC overall modes, were sought, while the damping parameters were fixed
to their initial values. This was conducted by assuming that the damping parameters do
not influence the natural frequencies and mode shapes, which holds for lightly damped
structures such as machine tools [10,14,31]. In the second stage, the stiffness parameters
were fixed to their found optimal values, and the optimal damping parameters, which
minimize the mean of the NDD2 overall modes, were searched for in a second PSO run.

Semm et al. [14] set the number of particles to 100 and optimized over 100 iterations.
For better comparability with the sensitivity-guided approach in Section 3.2, which utilized
192 CPU threads in parallel, the number of particles was increased to 192. For the same
reasons, the parameter identification was also restricted to the same selection of reference
modes (see Table 3) as in Section 3.2. The values of the parameters u1, u2, and u3 in
Equation (8) were set to 1.1, 1.49, and 1.49 by Semm et al. [14] and also used in this work.

The black-box approach took 54 min for calculation. Again, the final parameter values
can be found in the appendix in Table A1. Even though the FRAC value of the FRF shown
in Figure 2 increased from 25.7% to 34.6%, the conformity is still low. Again, the initial and
found FRAC values for each considered WPT position are shown in Table 4. In particular,
the median FRAC values were significantly increased compared to the initial values, while
the mean and maximum values were only moderately changed. This indicates that the
considered FRFs can be divided into two groups: one positively affected by the black-box
optimization approach and the other that is hardly affected at all or even deteriorated.

Table 5 shows that the found MAC values mostly increased for all modes and WPT
positions. However, some modes were not affected by the optimization or even deteriorated,
such as, for example, mode 6 at WPT position z3 or mode 2 at WPT position z4. This can
also be seen in Table 8, which shows the MAC conformity of all measured modes. Here,
the mean values increased across all WPT positions. However, they are generally low,
possibly due to the modeling errors described in Section 3.2. The NDD values shown in
Table 7 significantly improved for most modes, with only minor setbacks for modes and
WPT positions with initially already low NDD values.

Table 8. MAC value statistics for all measured modes after the black-box (BB) parameter identification
and their changes with respect to the initial state (Delta).

MAC in %
Position z1 Position z2 Position z3 Position z4

BB Delta BB Delta BB Delta BB Delta

Worst 0.0 −16.5 7.5 −15.8 16.3 −13.2 5.4 −14.3
25% percentile 22.5 −0.6 17.5 −0.5 33.5 −1.2 18.9 −0.3

Mean 44.7 2.0 51.7 3.7 58.2 2.2 38.4 1.8
75% percentile 63.9 2.3 87.8 0.6 85.8 0.8 55.6 0.8

Best 97.3 33.8 97.2 41.8 98.3 40.2 95.6 28.2
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3.4. Discussion

The presented parameter identification methods can be compared in two ways: On the
one hand, there is the economic effort related to each method, which can, for example, be
quantified using the individual costs of the methods. However, since costs can vary strongly
from one user to another and are generally difficult to compare, the economic effort will be
assessed by the time required to conduct the parameter identification methods. In addition
to the presented sensitivity-guided and black-box parameter identification, the method of
sequential assembly, which is briefly described in Section 1 and presented in Niehues [31]
and Schwarz [18], will be evaluated as a benchmark. Table 9 summarizes the workload of
the three parameter identification methods split up into workloads for the EMA measure-
ments and computation time for the GSAs and the actual optimization routines. Since it
is equally required for all methods, it is assumed that an overall machine tool model (i.e.,
the one matching assembly state 4 in Table 9) already exists. For the sequential assembly
method, the model also must be easily reduced to a subsystem, which can be generally
assumed. Apart from the complete machine tool, Table 9 also lists three more assembly
states required for the method of sequential assembly. For each state, it is estimated that
a skilled engineer needs about 4 h to conduct an EMA. Even though state 4 will require
more measurement nodes than state 1 , it is assumed that a significant part of the EMA
workload is consumed by preparation and clean-up tasks, leading to an EMA workload
independent of the machine tool configuration. The sensitivity-guided and black-box pa-
rameter identification methods only require measurements on the overall machine tool but
not on any subsystems. For these methods, Table 9 repeats the computation times reported
in Sections 3.2 and 3.3. Since it is not known if the model parameters for the sequential
assembly method were tuned manually or by an optimization algorithm, it cannot be
properly estimated and is thus disregarded. By studying the total workloads in Table 9, it
can be seen that sensitivity-guided parameter identification is the most economical method
with a total workload of 4 h and 44 min compared to 4 h and 54 min and 16 h for the other
methods. This is especially true for repeated parameter identification in the case of, for ex-
ample, component wear, which changes the dynamic behavior of the machine tool. For the
method of sequential assembly and black-box parameter identification, all steps have to
be repeated, leading to an additional workload of 16 h and 4 h and 54 min, respectively.
In contrast, it is assumed that the results of the (GSAs) for sensitivity-guided parameter
identification still hold for only minor changes of the machine tool. Thus, only the EMA
and the computation have to be repeated, leading to an additional workload of 4 h and
9 min. In the case that the EMA measurements can also be automated by, for example, feed
drive excitation and a permanent installation of acceleration sensors across the machine
tool, sensitivity-guided optimization offers the chance to update a machine tool model
within minutes. Note that repeating the sequential assembly method is often impossible,
since the fully assembled machine tool can no longer be broken down into parts.

On the other hand, the parameter identification methods can be compared in eval-
uating the accuracy of the resulting model. As it was not possible to disassemble the
machine tool, the method of sequential assembly could no longer be reproduced. Thus, it
is excluded from further consideration. Looking at the FRAC value statistics of both the
sensitivity-guided and the black-box parameter identification methods, it can be seen that
both lead to very similar mean FRAC values. However, the black-box approach leads to a
significantly higher median value than the sensitivity-guided method, while the latter re-
sults in higher maximum values. This indicates that only some input–output relationships
and their corresponding FRFs benefit from the black-box approach, while the others are
hardly affected or even deteriorated. The sensitivity-guided method, in turn, has a more
uniform positive effect on all FRFs, as the median, mean, and maximum FRAC values
increase for all WPT positions. Both identification methods have a comparable effect on
the MAC value statistics concerning all measured modes, as indicated by Tables 6 and 8.
Considering the individual reference modes (see Table 5), the sensitivity-guided method
performs better, since it does not deteriorate one of the first two modes per WPT posi-
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tion as with the black-box approach. However, in most cases, the latter leads to a better
modal damping match, as indicated by Table 7. Few studies have been performed in the
field of updating machine tool dynamic models, which can be used to benchmark the
presented results. Semm et al. [14] modeled a five-axis machine tool and achieved their
targeted MAC conformity of 80% for most modes. However, they deployed a combination
of parameter identification on test benches, the method of sequential assembly, and model
updating via PSO and did not provide initial MAC values. Garitaonandia et al. [19] exam-
ined a centerless grinding machine. They were able to improve the MAC conformity of
three of four target modes by up to 0.9%. To sum up, both the sensitivity-guided and the
black-box parameter identification methods outperform those works with improvements
higher than 25% without the need for cumbersome tests on test benches or a sequential
assembly process.

Table 9. Workload estimation for the sequential assembly and the sensitivity-guided (SG) and the
black-box (BB) parameter identification methods and assembly state description for the sequential
assembly method. The workload for the EMAs was estimated with respect to a skilled engineer.

Sequential Assembly SG BB

EM
A

s

1 Bed 4 h - -
2 Bed + MEs 4 h - -
3 Bed + MEs + LGS + WPT 4 h - -
4 Bed + MEs + LGS + WPT + BSD + BSD bearings 4 h

GSAs - 35 min -

Optimization - * 9 min 54 min

Total
First time

16 h
4 h 44 min

4 h 54 min
Repeated 4 h 9 min

* Disregarded since unknown.

Based on the accuracy of the resulting simulation model, no clear decision on a
parameter identification method can be made, as both the sensitivity-guided and the
black-box approaches generally deliver similar results with specific drawbacks on each
side. Additionally, the presence of modeling errors equally and significantly affects both
methods, affecting the judgment between them. However, the sensitivity-guided parameter
identification approach is assumed to have a significant advantage concerning the economic
effort required for repeated model identification runs (see Table 9), especially with the
prospect of automated EMA measurements.

4. Conclusions and Outlook

In the work leading to this paper, the parameters of a dynamic machine tool simulation
model were identified in two ways: On the one hand, the sensitivity-guided parameter-
ization approach theoretically presented in [17] was applied to real-word machine tool
measurement data. On the other hand, a state-of-the-art PSO was conducted to serve as a
reference. Even though both methods are fundamentally different, they resulted in very
similar final model accuracies with partial improvements regarding the MAC conformity
of more than 25%. However, the overall conformity of the model was found to be generally
low, indicating the presence of deviations between the model and the real-word machine
tool system. Both approaches were also evaluated in terms of their corresponding costs and
benchmarked against the method of sequential assembly from the literature. It was shown
that sensitivity-guided parameter identification is the most economical approach, with the
prospect of further outperforming the other methods in the near future and updating a
dynamic machine tool model within minutes.

Future research will deal with automating the EMA measurements to further highlight
the potential of sensitivity-guided parameter identification. To demonstrate the transfer-
ability of the found results, a different machine tool structure will be used. This also offers
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the chance to repeat the conducted comparison between sensitivity-guided and black-box
parameter identification with a model more capable of replicating the real-word structure’s
dynamic properties.
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Abbreviations
The following abbreviations are used in this manuscript:

BB black-box
BSD ball screw drive
CPU central processing unit
EMA experimental modal analysis
FEA finite element analysis
FRAC frequency response assurance criterion
FRF frequency response function
GSA global sensitivity analysis
LGS linear guiding system
LS least squares
MAC modal assurance criterion
ME mounting element
NDD natural damping difference
NDD2 squared natural damping difference
NI National Instruments
PSO particle swarm optimization
SG sensitivity-guided
SLSQP sequential least squares programming
WPT workpiece table

Appendix A

Table A1. Final parameter values found by the sensitivity-guided (SG) and black-box (BB) parameter
identification approaches. The parameters are further described in Table 2.

Element Parameter SG BB

BSD drz in N mm−1 2.63× 104 1.84× 105

kz in N mm−1 4.69× 105 5.02× 105

Coupling drz in N mm−1 8.23× 105 5.54× 106

krz in N mm−1 1.07× 107 1.21× 107

Fixed bearing kz in N mm−1 1.54× 106 1.43× 106
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Table A1. Cont.

‘

Element Parameter SG BB

LGS

bz in N s mm−1 1.26× 100 1.48× 100

kry in N mm−1 1.88× 109 1.59× 109

krz in N mm−1 9.53× 108 6.90× 108

kx in N mm−1 1.10× 106 1.29× 106

ky in N mm−1 1.36× 106 1.52× 106

kz in N mm−1 6.99× 103 7.63× 103

ME1

bx in N s mm−1 6.63× 100 1.45× 101

bz in N s mm−1 3.34× 100 1.93× 101

dy in N mm−1 1.10× 104 1.41× 103

kx in N mm−1 3.77× 104 6.34× 104

ky in N mm−1 2.31× 105 2.52× 105

kz in N mm−1 4.73× 104 4.77× 104

ME2

bx in N s mm−1 2.01× 101 6.84× 100

bz in N s mm−1 3.34× 100 1.67× 101

dy in N mm−1 1.75× 104 1.04× 105

kx in N mm−1 2.42× 105 1.59× 105

ky in N mm−1 3.46× 105 3.00× 105

kz in N mm−1 1.01× 105 1.17× 105

ME3

bx in N s mm−1 3.34× 100 1.42× 101

bz in N s mm−1 3.01× 101 4.00× 100

dy in N mm−1 1.40× 104 1.94× 104

kx in N mm−1 6.35× 104 7.12× 104

ky in N mm−1 3.36× 105 3.88× 105

kz in N mm−1 1.44× 105 1.13× 105
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