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Abstract: Laser powder bed fusion (LPBF)-based additive manufacturing (AM) has the flexibility in
fabricating parts with complex geometries. However, using non-optimized processing parameters
or using certain feedstock powders, internal defects (pores, cracks, etc.) may occur inside the parts.
Having a thorough and statistical understanding of these defects can help researchers find the
correlations between processing parameters/feedstock materials and possible internal defects. To
establish a tool that can automatically detect defects in AM parts, in this research, X-ray CT images
of Inconel 939 samples fabricated by LPBF are analyzed using U-Net architecture with different
sets of hyperparameters. The hyperparameters of the network are tuned in such a way that yields
maximum segmentation accuracy with reasonable computational cost. The trained network is able
to segment the unbalanced classes of pores and cracks with a mean intersection over union (mIoU)
value of 82% on the test set, and has reduced the characterization time from a few weeks to less than
a day compared to conventional manual methods. It is shown that the major bottleneck in improving
the accuracy is uncertainty in labeled data and the necessity for adopting a semi-supervised approach,
which needs to be addressed first in future research.

Keywords: laser powder bed fusion; X-ray computed tomography; image segmentation; machine
learning; deep learning

1. Introduction

In the Industry 4.0 era and with the emergence of additive manufacturing (AM) and
digital twins, data-driven material development and manufacturing process optimization
has become possible due to the abundance of data. The workflow of a typical metal AM op-
timization process includes phase diagram calculations (CALPHAD), feedstock production,
part fabrication, non-destructive evaluation, and microstructure and mechanical testing.
Each of these stages has sets of parameters that are inter-correlated and determine the final
properties of the fabricated part. For example, in laser powder bed fusion (LPBF)-based
AM, the combination of alloy compositions and AM processing parameters (laser power,
laser spot diameter, scan speed, layer thickness, and hatching pitch) will impact the fatigue
life [1] and other mechanical properties.

Finding the correlation between the parameters throughout the process can help
researchers simulate and adjust them in a controlled way to obtain superior material
properties. However, one of the biggest challenges is handling the “huge amount of data”.
Nowadays, the most feasible solution to this problem is AI-assisted data handling and
data processing. This can be applied in all stages of the data-driven model. The focus of
this paper is on how to handle non-destructive evaluation (NDE)-generated data, and in
particular, segmentation and characterization of tomography data for automated defect
detection for metallic parts fabricated by LPBF.
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Image segmentation is introduced as partitioning an image into its regions based on
some criteria where the regions are meaningful and disjoint [2]. It is traditionally performed
by an expert (the so-called manual segmentation), which is a cumbersome task due to the
large amount of data. As a result of rapid developments in machine learning (ML), many
model-based algorithms have been introduced for automatic image segmentation. In this
approach, a trainable architecture (i.e., AI agent) learns how to perform a certain task that
is normally handled by a human expert.

A key factor in interpretation of the experimental X-ray imaging data is segmentation
into images with information content close to ground truth. Different types of internal
defects with various morphologies may be distributed throughout the part. Therefore, in
order to increase the possibility of capturing all different types of defects, a limited number
of images from different sections of the sample that are far away from each other should be
chosen and manually segmented by an expert and approved by other experts. Due to the
difficulty of manual image segmentations, any practice that minimizes the use of manually
segmented images for training and populates the training dataset using data augmentation
methods is extremely valuable. This approach is also known as few-shot learning in the
context of computer vision.

A tomography dataset is often four-dimensional, with three-dimensional space plus a
time dimension or environmental variable. Herein, we have extracted a handful of repre-
sentative 2D slices for training the automated image segmentation workflow, a workflow
that is then applied to a 3D volume.

The reconstructed features of the part can be used for predicting and analyzing
the mechanical behavior of the manufactured part under different loading conditions
(e.g., static, cyclic, etc.). Specifically, the fatigue life of AM parts strongly depends on the
morphology of the cracks and microcracks on the surface and inside the parts. An accurate
understanding of those features can greatly contribute to accurately predicting fatigue life.
Therefore, the accurate identification of internal features is the most important objective of
this study.

The automated segmentation procedure can be improved in different stages, including
but not limited to the following:

• Selective manual segmentation: Acquiring manually segmented images are costly.
Therefore, the images that are selected to be manually segmented by the domain
experts should contain information that is likely to be found in the entire dataset. For
example, if the scanned sample contains pores and cracks, the selected training slices
should have different types of pores and cracks and their combination to use human
expertise as much as possible [3].

• Data augmentation: Methods such as cropping, rotating, and adding noise that enable
populating the training dataset with a limited amount of distinct labeled data [4,5].
This technique also improves the network performance in terms of robustness against
noises and lowers the chance of overfitting.

• Network architecture: Attempts to design more efficient and more intelligent network
architectures to get close to—or even outperform—the human brain are categorized
under this stage. Most of the recent papers have focused on this area during the last
few years [6,7].

• Evaluation measures: The criteria that determine how far (close) the network output
is from the ground truth. The optimizer tries to minimize (maximize) these criteria
during the training phase [8].

Although not all the attempts in improving automated image segmentation and defect
analysis fall under these categories, this framework allows one to focus on one aspect of
the workflow and study the effect of one module while keeping other modules unchanged.

In the context of defect analysis in material science and manufacturing processes, the
challenge of “unbalanced class”, in which the number of pixels corresponding to defects is
considerably lower than that of background, normally arises. These small classes, despite
their small share in the entire image, are highly influential on the mechanical properties, in
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particular fatigue strength. In other words, cracks may be present in 1% of the image pixels
in typical material science datasets, but they drastically dictate the mechanical performance
of the specimen, and one cannot afford to leave them unidentified. Therefore, the correct
and reliable quantification of those small regions can play a major role in predicting material
strength and finding their correlation with processing parameter reliably.

Several categories of metals and alloys have been widely investigated with the LPBF
process for high printing quality and a very low number of defects, such as Ti-6Al-4V [9],
Inconel 718 [10], Inconel 625 [11], stainless steel 316L [12], and CuCrZr alloy [13]. As the
focus of this paper is on automated defect analysis of AM parts using deep convolutional
neural networks, samples with a measurable number of defects should be prepared. In
this regard, Inconel 939 alloy was used in this paper as the feedstock material for the LPBF
process. Inconel 939 alloy has many outstanding properties, i.e., high creep resistance,
excellent corrosion/oxidation resistance, and high-temperature microstructure stability.
The primary cracking mechanism for Inconel 939 alloy is solidification cracking, which
usually occurs close to the end of the solidification stage as the liquid feed in the inter-
dendritic region is constrained [14]. Therefore, Inconel 939 is generally regarded as a
non-weldable alloy and it is expected to have a large number of defects in the LPBF parts.

Many researchers have attempted to address the automated segmentation problem
in the context of material science and manufacturing processes [5–7,15–23], but most of
them were focused on designing novel network architectures. Few statistical investigations
and sensitivity analyses have been conducted to reveal the utmost capability of simpler
architectures for a typical X-ray CT scan of an LPBF part with unbalanced classes of
pores and cracks. Consequently, one must objectively justify the need for using different
configurations of simple architectures for a given task, before moving forward with more
complicated architectures.

U-Net is a widely used baseline pipeline for image segmentation; it has a simple
architecture that nicely balances accuracy, robustness, and efficiency. Therefore, the U-
Net architecture is chosen for detailed analysis herein. U-Net is the basis for many new
architectures for image segmentation [24–32]. The goal of this paper is to comprehensively
identify any unique situations that either U-Net cannot handle or that need to be addressed
in a different way other than using more complicated architectures. We examine different
settings of U-Net architecture to gain a deep understanding of their capability in capturing
small features, in particular crack tips, microcracks, and micropores. Moreover, this paper
tries to identify the bottlenecks throughout the process and prioritize them to be addressed
later in future research. This approach helps researchers to focus on improving the most
influential stages of the process, instead of adopting a trial and error strategy for maximizing
the segmentation accuracy. The bottlenecks that are investigated in this paper are:

• Effect of network depth
• Random weight initialization
• Accuracy of the manually labeled data compared to network prediction

As we develop an understanding of the shortcomings of the current automated defect
segmentation process with U-Net, we are in a better position to pinpoint the critical stages
and assess the strengths and weaknesses of the new image segmentation architectures, if
using a more complicated one is ever needed.

2. Materials and Methods
2.1. Material and Fabrication

Spherical Inconel 939 alloy powders were supplied by LPW Technology, Inc, which
were gas-atomized with the particle size of 15–45 microns; the chemical composition is
listed in Table 1. The cylindrical-shaped LPBF samples were prepared using a Concept-
Laser Mlab cusing-R system (Lichtenfels, Germany) in argon atmosphere with the residual
oxygen level under 0.2%. The processing parameters are as follows: laser power 95 W
(continuous), scanning speed 100 mm/s, hatch spacing 50 µm, layer thickness 25 µm,
and scan strategy “with islands” with island size 5 mm × 5 mm. The islands have a
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shift of 0.2 mm and the scan direction has a rotation angle of 90 degrees between adjacent
layers. This scan strategy is adopted to reduce the residual thermal stress inside the sample
during fabrication process. Figure 1a shows a schematic diagram of the scan strategy. The
height and diameter of the final printout cylindrical-shaped LPBF samples were 30 mm
and 14 mm, respectively, as shown in Figure 1b. The cylinders were cut off from the build
platform using a wire electrical discharge machine (EDM).

Table 1. Elemental composition of Inconel 939 powders.

Elements Al B C Co Cr Fe Mg N Nb Ni Si Ta Ti W Zr

Contents
(wt.%) 1.9 0.01 0.15 19.2 22.3 0.1 <0.1 0.01 1.0 Bal. 0.1 1.5 3.6 2.0 0.11
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2.2. Phase Constituents and Microstructures

A 3 mm thick disk was cut off from the LPBF samples for material characterization.
The surface of the disk sample was mechanically ground using SiC papers of different grit
sizes (400, 600, 800, 1000, and 1200 grits, successively), then polished with the MetaDiTM
Supereme polycrystalline diamond suspension (6 µm, 3 µm, 1 µm, in sequence). After
polishing, the sample surfaces were etched using etching solution, which was nitric acid
and hydrochloric acid mixture with a volume ratio of 1:3. Finally, the microstructures
of sample surface were characterized with a Quanta™ 3D DualBeam™ FEG FIB-SEM
scanning electron microscope (SEM).

Figure 2 shows the SEM images of the LPBF Inconel 939 with different magnifications.
All the images were taken perpendicularly to the building direction. For as-fabricated
Inconel 939 samples, equiaxed cellular structure was observed with a size of around 1 µm,
as shown in Figure 2a,b. Similar structures were also found by other researchers for 3D-
printed nickel-based alloys. In many cases, such microstructure leads to considerably higher
strength due to the Hall–Petch effect. White particles are also observed along the cellular
structure boundaries, and it was claimed that these partials are carbide phases [33,34]. In
the as-fabricated Inconel 939 samples, defects such as pores and cracks ranging from a
few microns to hundreds of microns are obvious (Figure 2b,c), which indicates the poor
quality of the LPBF samples. It is worth noting that besides the cracks and sharp-corner-
shaped defects, spherical pores with the size of several tens of microns (indicated by white
arrows in Figure 2c) are also visible in the sample, which are most likely the key-hole voids
caused by excess laser energy input. Similar phenomenon was also reported elsewhere [35].
Archimedes principle was applied to measure the densities of the samples. Compared with
casted Inconel 939 (8.17 g/cm3), the porosity of the LPBF sample is estimated to be 3.72%.
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To understand the phase compositions of Inconel 939, CALculation of PHAse Di-
agrams (CALPHAD) calculations were performed using Thermo-Calc 2022b software
package with TCNI8 database (Ni-Alloys v8.2). Figure 3 shows the CALPHAD calculation
results, which describe the relation between temperatures and the amount of all phases
at equilibrium states. It can be found that at 800 ◦C, the main phases are γ (FCC_L12), γ’
(FCC_L12#2), σ (SIGMA), η (NI3TI_D024), and carbide phases (M23C6); at 1200 ◦C, the
main phases are γ (FCC_L12), γ’ (FCC_L12#2), carbide phases (FCC_L12#3).
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3. CNN-Based Architecture

In recent years, artificial intelligence (AI) and machine learning (ML) have shown
promising performance in data analysis. In particular, convolutional neural networks
(CNNs) have been very effective in computer vision tasks. The early documented evidence
of using convolutional neural networks for image classification includes papers published
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by Fukushima [36] and LeCun et al. [37] back in the 1980s. Since then, CNN-based ar-
chitectures have been the de facto method for image segmentation and recognition tasks
due to their ability in object localization [38–45]. After the introduction of GPU training
by Krizhevsky et al. [46], there has been a giant leap both in deep network architecture
training and the GPU production industry.

In the context of dense prediction and semantic segmentation, a specially designed
architecture was branched out of fully convolutional networks (FCNs) [42] for medical
image applications: U-Net, introduced in 2015 by Ronneberger et al. [47], has shown
great performance in biological image segmentation by aggregating the low-level and-
high level features using an encoder–decoder scheme along with skip connections. Many
other architectures, including 3D U-Net [24], V-Net [25], Unete, Unet+, Unet++ [26], and
H-DenseUNet [27], have inherited from the idea behind U-Net and further improved the
test set performance, mostly in medical image segmentation tasks.

U-Net architecture [47] has a contracting path as the encoder and a symmetric ex-
panding path as the decoder. The encoder extracts the contextual information at dif-
ferent resolutions and the decoder localizes the features based on the information that
the encoder has abstracted. A segmentation head—which is typically a fully connected
layer—is included at the end to map the decoder output to the segmentation map. The
encoder layers can be either as simple as plain convolutional layers with activation or deep
ViT-based [28,29,48] architectures. In this context, the encoder is also known as the back-
bone. A five-level deep U-Net architecture with a ResNet18 encoder (backbone) is shown
in Figure 4.
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While simple and shallow backbones with a fewer number of trainable parameters can
significantly reduce the computational cost in the training phase, they may not be able to
capture all the contextual information of the input and reduce the overall performance. On
the other hand, heavier and overly complicated backbones will increase the computational
cost with little noticeable improvement. Moreover, using more complicated networks with
more trainable parameters always makes the model exposed to overfitting. Therefore, a
trade-off should be made for maximum efficiency.

One of the ultimate quests is to find a correlation between the physics behind the
dataset derived from the actual sample and the network settings in a way that can facilitate
architecture tuning. For example, the average size and the morphology of the defects inside
the specimen should be a good clue in choosing the optimum patch size during the data
augmentation process. On the other way around, an optimum set of network parameters
may help in understanding the physics behind the fabrication process.
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U-Net downscales the resolution of the original image using 2D convolutional filters
to a certain depth/level (5 in case of Figure 4). A pure downscaling with identity filters
is illustrated in Figure 5. This downscaling is beneficial in focusing on detecting global
features (e.g., background vs. base metal), because almost all the local features are filtered
out at the lowest resolution and only global ones are identifiable.
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4. Automated Defect Analysis

Following the supervised learning approach, two images—which include all the
features and are shown to be sufficient for training in the results section—are manually
segmented by an expert. Namely, each pixel of the images is assigned to a class label
corresponding to a specific feature (i.e., background, pore, and crack) based on the expert’s
point of view. Next, the data are converted into adequate multidimensional arrays (tensors)
that the classifier can understand. These two phases are addressed separately.

4.1. Manual Image Segmentation

Three-dimensional X-ray computed tomography (X-ray CT) data on the LPBF Inconel
939 sample were collected by using the ZEISS Xradia 620 Versa instrument. The scanning
volume is a cylinder 1.3 mm in height and 1.4 mm in diameter contained within the
cylindrical-shaped sample reported under Section 2. The scanning resolution is 0.7 microns
per cubic voxel. Each tomographic slice is a 16-bit grayscale image of size 2005× 2043 pixel,
and 1879 slices along the height of the cylindrical volume were extracted. The slices were
later converted into 8-bit images for memory management, as little difference between
the 8- and 16-bit depths was observed in the preliminary results. The sample includes
two different categories of defects as judged by the domain expert: pores and cracks.
Pores are spherical-shaped voids (circular shapes in 2D slices) inside the sample, possibly
created by excessive laser power, also known as keyhole voids [35]. Cracks are irregularly
shaped planar features (jagged lines in 2D slices) that are likely to be formed due to thermal
stresses during laser powder bed fabrication. An overview of the scanned volume is shown
in Figure 6.
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We manually segment the original 2D image by simply brushing the pixels that are
identified as pores and cracks with a specific color—in this case, Magenta (RGB: 255, 0, 255).
The original image and the manually segmented images are shown in Figure 7.
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Figure 7. ZEISS sample segmented image. Left: original image, Center: pores, Right: cracks.

4.2. Data Preparation

From a total of 1879 2D slices, two grayscale 8-bit 2005× 2043 2D images are considered
for populating the training and validation sets, and another image from a different section
of the same sample is chosen for populating the test set and evaluating the performance
of each architecture. The selected images contain all the color contrast and morphological
features that need to be learned by the network. For populating the datasets, a simple
data augmentation method is used: each image is divided into 64 patches, each with a
size of 256 × 256 pixels. Preliminary test runs show that this patch size can encompass
the morphological characteristics of both crack and pore features. A larger patch size will
not produce enough training data, while very small ones will not be able to represent
the features properly. For splitting the original image into non-overlapping equisized
patches, the black background is extended in such a way that the dimensions are dividable
by the patch size without losing information. A sample image with selected patches is
illustrated in Figure 8. The same procedure is repeated for the segmentation map, and each
patch will have a corresponding manually segmented binary map, which is called a label
(Figure 9). With the proposed data preparation scheme, input and output dimensions are
[B, C, P, P] and [B, 1, P, P], where B, P, and C are batch size, patch size, and number of channels,
respectively.
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4.3. Performance Metric

To put more emphasis on the correct classification of defects rather than the back-
ground, the Dice coefficient is used as the loss function and the intersection over union
criteria (also known as the Jaccard index) is used for evaluating training performance [8].

Dice =
2TP

2TP + FP + FN
(1)

IoU =
TP

TP + FP + FN
(2)

where TP is the number of true-positive pixels, FP is the number of false-positive pixels,
and FN is the number of false-negative pixels. Accordingly, the IoU of the ground-truth
map is 1, and any deviation from it will move it closer to zero. The mean value of IoU
is also considered a good representation of the overall performance of the network in
all categories.

mIoU =
IoUclass 1 + . . . + IoUclass (n)

n
(3)

The Dice coefficient (F1 score) is another form of IoU score with the same range
and behavior.

4.4. Training

There are many settings that affect the overall performance of the network, including:

• Data augmentation settings: patch size, normalization;
• Network settings: depth, backbone, layer structure, decoder structure, segmentation

head, normalization, regularization;
• Training settings: learning rate, size of training/validation/test set, optimizer, loss

function, weight initialization.

Random weight initialization is an effective method in minimizing the possibility of
getting stuck into a local minimum. Adding this randomness to the model will lead to a
different set of trained weights for each run. Therefore, each model is trained 10 times, and
the distribution of the calculated mIoU on the test set is reported.

Preliminary results showed that the ResNet18 backbone yields better mIoU compared
to more complicated backbones (such as ResNet34 and ResNet50). Therefore, to establish
conditions for a fair comparison, “ResNet18” pre-trained on the ImageNet dataset is
chosen as the encoder (also known as backbone). No augmentation method other than
regular non-overlapped patching is used for populating the training/validation/test sets.
Two manually labeled images are used for training and validation and one manually
labeled image is used for testing, each of which is taken from a different section of the
specimen. The effect of other network settings is left for future research. The Segmentation
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Models Pytorch [50] package is used for implementing the architectures and the developed
repository can be accessed using the following GitHub link, accessed on 21 October 2022:
https://github.com/LSU-LAMDA/crack-pore-detection.

5. Results and Discussion

The overall performance of each setting is measured by the average intersection of
union (mIoU) of the resulting segmentation map on the test set. The time that it takes
to train the network with a single NVIDIA GeForce GTX 1650 GPU is also reported as
a measure of computational cost. ResNet18 has exactly 11,176,512 trainable parameters,
and since it is the backbone for all architectures, the total number of trainable parameters
will only differ on the decoder side and segmentation head. Table 2, Figures 10 and 11
summarize the overall performance of each architecture. The results show that the number
of trainable parameters does not necessarily correlate with training time because 2D convo-
lution at higher resolution is more computationally intensive. This is also the case in the
reconstruction phase when the reconstruction time in U-Net with depth = 3 is 2.34 s per
slice, which is greater than that of depth = 4 and depth = 5 by 43% and 34%, respectively.
The noticeable difference between the train/validation mIoU and test mIoU for depth = 4
can be a sign of overfitting on both the train and validation sets. Using cross-validation
techniques such as 10-fold cross-validation can minimize this problem.

Table 2. U-Net segmentation performance at different levels.

Depth Decoder Channels Number of
Parameters

Training Time
[min]

Reconstruction
Time [sec/slice]

Overall Performance
on Test Set
[mIoU ± σ]

Best Performance on Test Set

Train mIoU Val. mIoU Test mIoU

5 (256, 128, 64, 32, 16) 14,328,354 ~25 1.64 0.7933 ± 0.0196 0.7992 0.9050 0.8156
4 (256, 128, 64, 32) 13,344,770 ~25 1.75 0.7944 ± 0.0071 0.9078 0.9240 0.8090
3 (256, 128, 64) 12,838,338 ~50 2.34 0.8016 ± 0.0127 0.8593 0.8409 0.8181

J. Manuf. Mater. Process. 2022, 6, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 10. Training and validation evolution for each depth. The shallow network can converge 
faster than deeper networks. 

Since U-Net with depth = 3 showed better performance and has a faster convergence 
rate (Figure 10), the changes in validation and training mIoU for the best three-layer model 
are illustrated in Figure 12. The effect of multiple random weight initialization on training 
evolution of this architecture on the training set is shown in Figure 13 numerically and 
visually. The stability of the minimum, maximum, and average values of mIoU in training 
curves (Figure 13) indicate that converging to local minima is unlikely and the network is 
able to converge to a narrow interval of mIoU values from randomly sampled initial 
weights. 

 
Figure 11. Box and whisker plot of mIoU on test set for different depth of U-Net. 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100

m
Io

U

Epochs

train (d5)

val (d5)

train (d4)

val (d4)

train (d3)

val (d3)

0
0.2
0.4
0.6
0.8

1

0 20 40 60 80 100

m
Io

U

Epochs

train val

Figure 10. Training and validation evolution for each depth. The shallow network can converge
faster than deeper networks.

Since U-Net with depth = 3 showed better performance and has a faster convergence
rate (Figure 10), the changes in validation and training mIoU for the best three-layer
model are illustrated in Figure 12. The effect of multiple random weight initialization on
training evolution of this architecture on the training set is shown in Figure 13 numerically
and visually. The stability of the minimum, maximum, and average values of mIoU in
training curves (Figure 13) indicate that converging to local minima is unlikely and the
network is able to converge to a narrow interval of mIoU values from randomly sampled
initial weights.

https://github.com/LSU-LAMDA/crack-pore-detection
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Figure 11. Box and whisker plot of mIoU on test set for different depth of U-Net.
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Figure 12. Training and validation mIoU at each epoch for U-Net with depth = 3; The best validation
mIoU is achieved at epoch 97 with value of 84.09% (shown with the star symbol).
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Figure 13. Training mIoU of U-Net (depth = 3) at each epoch; training is repeated 10 times and
minimum, average, and maximum values of mIoU on training set are calculated.

Possible explanations for obtaining better results for shallower networks could be
higher chances of overfitting at deeper (i.e., more complicated) networks. Moreover,
according to Figure 5, severe downscaling may destroy the features inside the patches and
cause the information to be lost completely. Therefore, more layers and lower resolutions
not only do not affect performance but also may mislead the optimizer in finding the
correct features.

After training the architectures, all the slices of the tomography dataset are segmented
using the one that had the best test mIoU (i.e., U-Net depth = 3). The original image and
the segmented image are shown in Figure 14. It should be noted that this image has never
been seen by the network during any of training, validation, or previous testing phases.
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Figure 14. Segmentation performance of the network for a new slice of tomography dataset.
(left): original image, (right): segmented map by AI generated in about 2.3 s. (a) detecting pores
intersected with background and non-circular pores, (b) detecting a cluster of pores and cracks
(c) detecting a crack intersected with background (d) detecting connected pores and cracks.

It can be seen in Figure 14b that the AI agent has successfully segmented the cluster of
cracks and pores based on their morphology and contrast in the original image. Figure 14c
shows that the trained network is also doing a great job in identifying the crack on the edge
of the scanning area. This capability can be extremely advantageous in detecting cracks
on the surface of the part, as many of the fatigue-induced failures are caused by crack
initiations from the surface of the specimen. The network’s ability to differentiate between
cracks and pores is showcased in Figure 14d, as it has successfully segmented the cracks
and pores even though they are connected and have almost the same contrast. This level of
discrimination power is nearly impossible using typical thresholding methods. However,
based on what is shown in Figure 14a, the network is having trouble with the correct
segmentation of near-the-edge pores and the narrow ones that may look like thick cracks.

It takes about 72 min for the single NVIDIA GeForce GTX 1650 GPU to segment
1879 images. A 3D reconstruction representation of the segmented defects along with the
original dataset is shown in Figure 15. A rendered video of the crack and pore distribution
is also available in the Supplementary Materials.

The obtained morphology and spatial distribution of pores and cracks plays a crucial
role in determining the static strength and fatigue performance and the direction of possible
failure. In a data mining approach, this information can be useful in finding the correlation
between the process parameters (laser power, direction, speed, etc.) at each time and
adjusting them accordingly to minimize the presence of such defects, which is left for
future research.
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Figure 15. Three-dimensional reconstruction of the tomography dataset in Avizo; (left): original
dataset, (middle): segmented dataset using AI with cross section, (right): quantified distribution of
cracks and pores (blue: cracks, green: pores).

Table 3 compares the duration of each stage for manual and automated segmentation,
which points out that the performance of the AI architecture is enormously better than
human experts in terms of speed. After breaking down the typical stages of automated
segmentation and their duration, segmenting 1000 images using ML will take orders of 10 h,
while it takes weeks for a person to fulfill the same task.

Table 3. Comparison between manual and automated segmentation in terms of duration
for 1000 slices.

Segmentation Method Manual
Segmentation Preprocessing Training Reconstruction Total

Manual 1000 h (>5 weeks) N/A N/A N/A 5 weeks
Automated (Supervised) 1–2 h (for 2 training slices) 2-4 h 5-15 h 1 h Less than 20 h

The first and most accessible metrics that can be calculated from the 3D reconstructed
volume are the crack and pore volume fractions, which are summarized in Table 4. With
each pixel being assigned to a class in the sample (crack, pore, background, etc.), all
the defect-related measures, including—but not limited to—pore/crack density, volume
fraction, orientation, morphology, etc., are also readily available.

Table 4. Defect characterization inside the part.

Defect Type Volume Fraction

Crack 0.00426696
Pore 0.0222326

Based on the Table 4 results, the porosity of the selected volume is calculated to
be 2.65%, which is about 29% lower than the experimental value for porosity calculated by
Archimedes principle in Section 2. This discrepancy roots from the aggregation of error in
the following stages:

1. Error in experimental porosity measurement using Archimedes principle;
2. Voids not being captured in XCT;
3. Error in manual segmentation for generating training data;
4. Network being incapable of performing the segmentation correctly.

Based on the comprehensive investigation conducted at NIST [51], XCT generally
predicts lower values of porosity compared to the Archimedes principle, especially for
samples with higher porosities. Water infiltration caused by surface pores and cracks
(which is the case here) can contribute to erroneous measurement in Archimedes method.
On the other hand, XCT is not capable of capturing the voids smaller than the voxel size,
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which leads to underestimating the porosity. Knowing that, now we only focus on identifying
the error sources in manual image segmentation and the learning capability of the network
for segmenting the pores and cracks correctly.

In terms of segmentation accuracy, an interesting behavior is noticed while investi-
gating the segmented maps during training. As illustrated in Figure 16, at some point AI
starts to outperform the human expert (which is represented by this ground-truth image),
but obtains lower mIoU scores and will be enforced by the optimizer to reconstruct the
exact same map as the ground truth. This is mainly because of human error in the manual
image segmentation stage and the limited tools, energy, and patience that human beings
have. Possible solutions to this issue are uncertainty analysis of the manually segmented
labels, semi-supervised, and zero-shot (unsupervised) learning approaches.
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The results make it clear that pixel-level segmentation is extremely prone to human
error. Full reliance on erroneous manually segmented areas and forcing the network to
reconstruct and resemble them prevent leveraging the full discrimination capacity of the
AI architectures. There are many examples of images segmented by AI with lower mIoU
scores compared to the target value, which should override the manually segmented image
when being investigated for the second time, even based on the opinion of the expert who
performed the manual segmentation in the first place. This brings up the necessity of
uncertainty analysis of manually segmented images and applying zero-shot learning, and
researchers are encouraged to address them in the future.

6. Conclusions

Automated evaluation and quantification of a large tomography dataset of a Ni-939
sample fabricated using the LPBF additive manufacturing method is studied. The porosity
of the sample is estimated using the Archimedes principle and compared to XCT, which
determines the upper and lower band for the ground-truth porosity value. The results show
that AI architectures are able to mimic human experts up to 82%. For detecting two classes
of typical defects (i.e., cracks and pores) inside the AM sample, deeper networks do not
provide a better performance based on the results. Possible reasons are the increased chance
of overfitting in more complicated networks and the simplicity of the features inside the
dataset. Multiple random weight initialization proved to be an effective training practice in
avoiding local minima. Although depth optimization and random weight initialization
enhanced the total segmentation performance, for further improvement of the segmentation
accuracy, future research should be focused on addressing the uncertainty of manually
segmented images and minimizing human error in the few-shot approach or eliminating it
entirely by adopting a zero-shot learning strategy. This paper has provided the required
methodology and information for making a correlation between processing parameters
and defect distribution of the fabricated part, which eventually can be used for fatigue life
estimation simulations.
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