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Abstract: Cellular structures of metallic alloys are often made for various industrial applications by
additive manufacturing. The permeability for fluid flow in these cellular structures is important.
The current investigated the gas fluidity of cellular structures made by selective laser melting (SLM).
The porosity and permeability of the SLM cellular structures were measured for 17-4 PH stainless
steel, Inconel 718, and Ti-6Al-4V alloys. The relations between porosity and energy density are
expressed using the power law. The characteristic molar energies were 1.07 × 105, 9.02 × 104, and
7.11 × 104 J/mole for 17-4 PH steel, Ti-6Al-4V, and Inconel 718 alloys, respectively. 17-4 PH steel
gave rise to higher porosity at the same energy density when compared with Ti-6Al-4V and Inconel
718 alloy. The values of these molar energy density are related to the heat needed to melt the alloys,
viscosity, and thermal conductivity. It was further shown that air permeability is not only concerned
with the percentage of porosity in the cellular materials, but it also relates to the tortuosity of pore
pathways formed in the cellular materials. At the same porosity, Inconel 718 demonstrates higher
air permeability in comparison with that of Ti-6Al-4V and 17-4 PH alloys due to its smoother pore
pathways. Ti-6Al-4V, on the other hand, demonstrates the highest specific surface areas due to
powder sticking along the pore pathways and led to the lowest permeability among the three alloys.

Keywords: powder bed fusion; selective laser melting; energy density; cellular structures; permeability;
17-4 PH; Inconel 718; Ti-6Al-4V

1. Introduction

Cellular metal parts have been employed for many industrial applications [1,2], such
as the in-growth of bone tissues [3], heat exchangers in high-temperature applications [4],
and the vapor chamber for thermal management of electronics [5]. Another example is the
porous mold inserts in plastic injection molding for gas escape to avoid flow lines, short
shots, burn marks defects, etc. [6–10]. Among these applications, fluidity is critical inside
the cellular parts. Traditionally, cellular metal parts are mainly made via metal foaming
and powder metallurgy [1,2,11,12]. Pore arrangements in the cellular metals made by these
processes cannot be controlled. Additive manufacturing becomes a reasonable candidate
for manufacturing three-dimensional structures with desired cellular structures [10,13].

Additive manufacturing by power bed fusion such as selective laser melting (SLM) is
capable of building cellular structures by controlling energy density to form gas pathways
among pores [14–16]. The microstructures and anisotropic properties of SLM parts are
also greatly affected by printing parameters and energy density [17,18]. The volumetric
energy density [19], EDv (in J/mm3), has been formulated to express the energy input in
unit volume by laser power (P), scanning speed (v), hatch space (h) and layer thickness (t)
according to Equation (1).

EDv =
P

v × h × t
(1)
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Olakanmi [20] pointed out that, for different alloys, the same EDv would give rise to
different porosity. For example, in the case of Al alloys, silicon aids in the fluidity of the
molten pools and thus increases the densification of SLM parts. Apparently, cellular parts
of different alloys can give rise to different gas permeability depending on the melting and
solidification characteristics of alloys [21,22].

Studies [21–23] have reported permeability (k) measurements of SLM porous steel
parts with 5 to 50% porosity. The permeability ranging from 10−14 to 10−12 m2 is applicable
for mold inert to release in-mold gas in plastic injection molding. Leong [24] then reported
that, at the same level of porosity, metal foams with a pore density of 40 ppi display lower
k than the ones with 20 or 10 ppi due to reduced pore size and higher surface area. It is
apparent that the fluid flows with larger frictional force leading to higher pressure drop
and thus lower permeability as it passes through the porous media [25]. Therefore, it is
critical to look into the pore pathways in cellular structures to understand their effects on
gas permeability.

Most of the studies on SLM cellular structures focus on single metal or alloy. There
is lack of studies that discuss the variation of cellular structures made by different alloys.
Among different alloys employed for making cellular structures, 17-4 PH stainless steel
is often used to make porous mold inserts for injection molding purposes [26]. Inconel
718 porous parts are used for air flow in turbine components [27]. And Ti-6Al-4V porous
pats are used extensively in biomedical applications, such as spinal cages [3]. The perme-
ability of fluids in the porous parts made by these materials is apparently an important
characteristic to understand for the design of porous parts.

As 17-4 PH stainless steel, Inconel 718, and Ti-6Al-4V alloys are three of the alloys most
frequently fabricated by SLM, the current study intends to manufacture cellular parts using
these alloys. The relation of porosity and permeability in cellular parts will be formulated to
relate to SLM building process parameters for the three alloys. It will also aid to understand
the effects of metal pools upon the formation of cellular parts when using different alloys.
The characteristics of pore pathways due to the difference in materials’ thermophysical
properties will be discussed. Gas fluidity in the cellular parts made by these alloys can then
be controlled for various industrial applications.

2. Experimental Procedures
2.1. Material and SLM Parameters

Table 1 lists the compositions and powder sizes of 17-4 PH, Inconel 718, and Ti-6Al-
4V ELI (extra low interstitial) spherical powders made by EOS® (Krailling, Germany) to
prepare cellular parts in this study. These are iron-, nickel-, and titanium-based alloys,
respectively, and represent three major alloys used in SLM.

Table 1. Compositions (in wt.%) and size of 17-4 PH, Inconel 718, and Ti-6Al-4V powders.

Fe Cr Ni Cu Si Mn Nb Mo Ti Al V D50 (µm)

17-4 PH balance 16.45 3.92 7.68 0.18 0.40 0.29 - - - - 36.3

Inconel 718 17.87 20.04 balance - - - 5.41 3.02 1.00 0.06 - 30.7

Ti-6Al-4V
ELI - - - - - - - - balance 5.95 3.78 41.2

EOS M290 SLM equipment (Krailling, Germany, Figure 1a) is used in the current study,
and Table 2 lists the SLM parameters for making cellular parts of the three alloys. As the
three alloys have different melting points and thermophysical properties, different laser
power (P), scan speed (v), and layer thickness (t) were employed. Each layer is rotated by
66.7◦ to reduce anisotropy and local overheating. Hatch distances (h) from 300 to 1000 µm
are selected to prepare cellular structures with varying porosity levels. The volumetric
energy density calculated using Equation (1) ranges from 7.28 to 25.93 J/mm3. Figure 1b
shows the designed 30 mm × 30 mm × 4 mm SLM cellular coupons.
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Figure 1. (a) EOS M290 SLM equipment and (b) schematics of SLM cellular parts.

Table 2. SLM parameters of 17-4 PH, Inconel 718, and Ti-6Al-4V ELI porous material.

Material No. Laser Power
P (W)

Scanning Speed
v (mm/s)

Hatch Distance
h (µm)

Layer Thickness
t (µm)

17-4 PH P1~P15 220 755.5 300~1000
(#1~#15

step by 50)

40
Inconel 718 I1~I15 285 960 40

Ti-6Al-4V ELI T1~T15 280 1200 30

2.2. Porosity and Gas Permeability Measurement

Due to that, the pores printed in SLM cellular parts are mainly through pores, the
Archimedean method is inapplicable for measuring the porosity of the cellular parts. We
estimate the density based on the mass and volume of the cellular blocks. The porosity
is then obtained by subtracting the ratio of relative density from unity as expressed in
Equation (2), where mexp represents the mass, volume Vexp is estimated by the length, width,
and thickness of the porous coupons, and ρtheory is the theoretical density of the alloys.

porosity, φ% =

1 −

mexp
/

Vexp

ρtheory

× 100% (2)

The connectivity of pores in cellular structures cannot be expressed just by porosity.
Gas permeability is also affected by pore size and the surfaces of the pore pathways.
Therefore, other pore characteristics, such as pore size and surface area must also be
characterized to relate with gas permeability, k.

The gas permeability of the SLM cellular coupons is measured using apparatus [14]
set up according to Darcy’s Law or Equation (3) [28]. The inlet air pressure is kept constant
at 20 psi (0.138 MPa or 1.36 atm) for permeability measurement. The pressure drop (∆P)
across the porous media (thickness, L) is proportional to the gas viscosity (µ), flow rate
of gas (v), and thickness of the porous media (L), while it is inversely proportional to gas
permeability (k) [28].

∆P
L

=
µ

k
v (3)

Micromeritics AutoPore® IV 9520 (Norcross, GA, USA, Figure 2a) is used to measure
the distribution of pore sizes in the cellular parts. As for the surface area, Micromeritics
ASAP 2020 BET analyzer (Norcross, GA, USA, Figure 2b) and nitrogen gas are utilized to
measure the specific surface area in the cellular parts.
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Figure 2. (a) Micromeritics AutoPore IV 9520 and (b) Micromeritics ASAP 2020 BET Analyzer for
pore size and specific surface area measurements.

3. Result and Discussion
3.1. Porosity of SLM Cellular Parts

Figure 3 shows the porosity of 17-4 PH, Inconel 718, and Ti-6Al-4V ELI SLM cellular
parts made by varying energy density. The largest porosity of the three materials are 67.67,
51.15, and 40.34%, respectively for 17-4 PH, Inconel 718, and Ti-6Al-4V ELI at similar energy
density. It is important to note that, at the same energy density, the three materials exhibit
different levels of porosity. Apparently, different alloys require different energy to form
a liquid pool. As energy density, or EDv, increases, the porosity of porous parts decrease
since the powder bed absorbs higher energy and the material powder is molten more
completely to form liquid pools.
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To further discuss on the porosity of SLM cellular parts, molar energy density is
introduced to substitute volumetric energy density. The molar energy density is employed
to compare upon the same number of atoms in the three alloys. Due to the fact that
three alloys have different theoretical density and molecular weight, molar energy density
(EDmole) can be converted from volumetric energy density (EDv) according to Equation (4)
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where theoretical density (ρtheory) and molecular weight (MW) of each alloy are listed in
Table 3.

EDmole = EDv ×
1000

ρtheory
× MW (4)

Table 3. Theoretical density and molecular weight of 17-4 PH, Inconel 718 and Ti-6Al-4V ELI.

Material ρtheory (g/cm3) Molecular Weight (g/mole)

17-4 PH 7.79 55.91
Inconel 718 8.19 58.10

Ti-6Al-4V ELI 4.41 46.05

Figure 4 demonstrates the new relationship between molar energy density and porosity
of 17-4 PH, Inconel 718, and Ti-6Al-4V ELI SLM cellular parts. It is seen now, in contrast to
those shown in Figure 3, 17-4 PH shows the highest porosity, followed by Ti-6Al-4V ELI
and Inconel 718 at a similar molar energy density.
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The formation of pores in cellular structures can be treated as the cause of thermal
activities. The power law is used to relate molar energy density input with the porosity in
cellular structures [20] or Equation (5)

porosity φ = φo·e
−EDmole/Eo (5)

In Equation (5), the exponent of negative molar energy density (EDmole) divided by
“Eo” gives rise to a probability of pore formation. Therefore, the “Eo” term relates to the
needed energy to form fully consolidated material (zero porosity), and “φo” represents the
maximum porosity that can be achieved. Table 4 lists the fitted values of φo and Eo for the
three alloys based on the data in Figure 4. It can be seen that φo has nearly the value of
100% which corresponds to 100% porosity or non-powder melting when zero energy input
is applied.
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Table 4. φo and Eo of 17-4 PH, Ti-6Al-4V ELI and Inconel 718.

Material φo (%) Eo (J/mole) Enthalpy Needed from 300 K to Melt,
∆Hf (J/mole)

17-4 PH 107.93 1.07 × 105 52,049
Ti-6Al-4V ELI 96.89 9.02 × 104 54,137

Inconel 718 104.15 7.11 × 104 46,948

It is also noted that Eo differs greatly for the three alloys (Table 4). Among them, 17-4
PH has the highest Eo which requires higher energy than the other two alloys to form fully
dense structures. Therefore, at the same molar energy input, 17-4 PH cellular parts give rise
to the highest level of porosity (Figure 4) in comparison with the other two alloys. On the
contrary, Inconel 718 with the lowest Eo needs the least energy to fabricate a fully dense solid,
so the Inconel 718 cellular parts give rise to the lowest level of porosity in Figure 4 in the three
alloys investigated.

It is interesting to discuss the plausible thermophysical properties that Eo comprises.
According to Figure 5, during the melting and solidification of SLM parts from metal
powders, activities including melting, vaporization, and the dissipation of heat all add to
the needed energy from the entered laser power (ELaser). Therefore, the specific heat capacity
and heat of melting of each material need to be considered to obtain the heat required for
fusion (∆Hf). After the molten pool is formed, the heat dissipation by conduction (ECond)
and the enthalpy of vaporization (EVap) are also supplied by the input laser power (ELaser)
as shown in Figure 5.
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Figure 5. Schematic diagram of SLM process.

Table 4 [29] lists the enthalpy needed to heat and melt the three alloys starting from
room temperature (∆Hf). It is seen that Ti-6Al-4V ELI powders need to absorb the highest
energy for melting (54,137 J/mole). It is about 2086 J/mole higher than that for 17-4 PH
stainless steel while Eo of Ti-6Al-4V is lower than that for 17-4 PH. According to Table 5,
among the three major elements in the three alloys, Ti has the lowest viscosity and vapor
pressure. In comparison, the solvent elements in 17-4 PH, or Fe, have the highest viscosity
(η) and vapor pressure (PVap) when compared with Ni in Inconel 718 and Ti in Ti-6Al-4V.
Molten pools with higher viscosity and higher vapor pressure can lead to reduced fluidity
and higher vapor formation. Therefore, a high Eo value is attained for 17-4 PH alloy which
leads to the highest porosity at the same energy density among the three alloys tested
(Figure 4).
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Table 5. Physical properties of Fe, Ni, and Ti.

Material η at Melting Point
(mPa·s) [30]

PVap (atm) at
Melting Point

K
(W/m·K) [31]

Fe 5.5 3.38 × 10−5 82
Ni 4.9 4.33 × 10−6 66
Ti 2.2 3.77 × 10−6 95

Inconel 718 required the lowest heat to melt among the three alloys (Table 4). Both the
viscosity and vapor pressure of Ni are lower compared to those of Fe. It thus has the lowest
porosity at the same energy density level and the lowest Eo according to Table 4 among the
three alloys investigated.

3.2. Air Permeability

Figure 6 exhibits the relation between air permeability (k) and porosity for cellular
parts made by the three alloys. It is important to note that three materials have different
permeability even at the same porosity level, which suggests that the amount of porosity is
not the only factor that determines k. The fluid flow in the cellular parts must also depend
on the arrangements of pores in cellular structures.
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We further selected three groups of porous materials (Table 6) to observe the difference
in pore structures at similar porosity levels. The P2 (17-4 PH with h = 350 µm), I6 (Inconel
718 with h = 550 µm), and T10 (Ti-6Al-4V with h = 750 µm) samples all with 26.15~27.64%
porosity are compared. According to Figure 6 and Table 6, Inconel 718 has the highest
k, followed by Ti-6Al-4V ELI and 17-4 PH. The interconnection of pores, pore size, and
specific surface areas are observed to explain the difference in k values.

Figures 7–9 show the cross-section of the cellular samples selected in Table 6. In
Figure 7, the samples have lower porosity compared to those in Figures 8 and 9. Pores are
less likely to interconnect when the porosity level is low, therefore lower permeability is
obtained when compared with samples of higher porosity levels in Figures 8 and 9. With
increasing porosity (Figures 8 and 9), through-pore paths dominate in Inconel 718 cellular
samples, while 17-4 PH and Ti-6Al-4V ELI samples demonstrate more single-end pore
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paths. The Inconel 718 samples, therefore, demonstrate the highest permeability when
compared with 17-4 PH and Ti-6Al-4V ELI.

Table 6. Porosity and air permeability of 17-4 PH (P), Inconel 718 (I) and Ti-6Al-4V ELI (T) cellular
parts.

Sample
No.

φ
(%)

k20 psi
(m2)

Sample
No.

φ
(%)

k20 psi
(m2)

Sample
No.

φ
(%)

k20 psi
(m2)

P2 26.15 4.24 × 10−13 I6 26.67 1.28 × 10−12 T10 27.64 9.14 × 10−13

P3 30.08 6.80 × 10−13 I7 29.45 1.41 × 10−12 T11 30.38 9.67 × 10−13

P5 39.17 8.41 × 10−13 I10 38.8 1.95 × 10−12 T15 40.34 1.22 × 10−13
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Figure 9. Flow paths in P5, I10, and T15 (lateral direction corresponds to z or printing direction in SLM.).

According to Table 7, Ti-6Al-4V ELI porous material has the largest median pore size
(d50) [32] and specific surface area (S) indicating that the pathways for gas are more tortuous
and powders are partially sintered on the pathways. Even though Ti-6Al-4V samples have
larger pore paths, the more complicated zigzagging paths can reduce their permeability
when compared with Inconel 718 samples.

Table 7. Median pore size (d50) and specific surface area (S) in SLM cellular samples.

Sample
No.

d50
(µm)

S
(m2/m3)

Sample
No.

d50
(µm)

S
(m2/m3)

Sample
No.

d50
(µm)

S
(m2/m3)

P2 15.28 0.11 I6 14.32 0.15 T10 28.48 0.49
P3 21.63 0.45 I7 15.62 0.42 T11 32.83 0.85
P5 45.32 1.04 I10 59.03 0.90 T15 71.01 1.03

On the other hand, the 17-4 PH samples have slightly smaller median pore sizes and
higher specific surfaces than Inconel 718 alloy. It is also noted that 17-4 PH molten liquid
is more viscous (Table 5) and uses smaller hatch spacings causing smaller paths to form
at higher energy input which could thus lead to more closed pore paths and even lower
permeability than Ti-6Al-4V.

By analyzing pore characteristics, the parametric studies explain how SLM cellular
porous materials can have completely different permeability with similar porosity. Inconel
718 samples using the highest hatch distance to generate porosity of the same levels. More
through holes for gas pathways are present to bear the highest permeability. Ti-Al-4V uses
an even higher hatch distance, however, the tortuosity of pore pathways causes the specific
area to increase greatly which limits the gas permeability. Lastly, 17-4 PH requires higher
energy input to generate the same amount of porosity, indicating much smaller holes and
the limited interconnectivity among pores lead to the lowest permeability when compared
with the same levels of porosity in Inconel 718 and Ti-6Al-4V.

4. Conclusions

(1) SLM was employed to prepare 17-4 PH, Ti-6Al-4V ELI, and Inconel 718 cellular parts by
adjusting hatch distance from 300 to 1000 µm. The relationship between energy density
and porosity levels is expressed using power law. The Eo coefficients are 1.07 × 105,
9.09 × 104, and 7.14 × 104 J/mm3, respectively, for the three alloys;
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(2) 17-4 PH powders require higher energy to attain liquid states which are also more
viscous and have higher vapor pressure. Therefore, 17-4 PH demonstrated the highest
Eo and porosity level at the same energy density. In contrast, Inconel 718 requires
lower enthalpy to melt, and the lowest porosity is obtained at the same energy density
input;

(3) Gas permeability relates not only to porosity level but also to the size and tortuosity
of pore pathways in cellular parts. As Inconel 718 cellular parts contain more through-
pores, a lower surface area gave rise to the highest permeability at a similar porosity.
Pore pathways in Ti-6Al-4V were characterized by higher tortuosity with the highest
specific surface area indicating many powders are partially adhered to the surface
along the gas pathways. The lowest permeability was attained by 17-4 PH at a similar
level of porosity among the three alloys investigated due to the reduced pore sizes.

The characterization of porosity formation and pore pathways reported in the current
study can provide guidelines for understanding the fluid flow characteristics in the industry
applications of cellular parts made by the three alloys.
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