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Abstract: Maintenance is an activity that cannot be separated from the context of product manufac-
turing. It is carried out to maintain the components’ or machines’ function so that no failure can
reduce the machine’s productivity. One type of maintenance that can mitigate total machine failure is
predictive maintenance. Predictive maintenance, along with the times, no longer relies on visuals or
other senses but can be combined into automated observations using machine learning methods. It
can be applied to a toothpaste factory with a tube filling machine by combining the results of sensor
observations with machine learning methods. This research aims to increase the Overall equipment
effectiveness (OEE) to 10% by predicting the components that will be damaged. The machine learning
methods tested in this study are random forest regression and linear regression. This study indicates
that the prediction accuracy of machine learning with the random forest regression method for PHM
predictive is 88%of the actual data, and linear regression has an accuracy of 59% of the actual data.
After implementing the system on the machine for three months, the OEE value increased by 13.10%,
and unplanned machine failure decreased by 62.38% in the observed part. Implementation of the
system can significantly reduce the failure factor of unplanned machines.

Keywords: manufacturing; predictive maintenance; machine learning; OEE

1. Introduction

Maintenance is a combination of activities to restore a component or a machine to a
state where the component/machine can work according to its initial function [1]. Mainte-
nance management is essential for process efficiency, maximizing profits with minimized
hidden costs [2]. One crucial maintenance element in the smart manufacturing application
is prognostic and health management (PHM) [3] for identifying failure in critical parts of
the machine so that preventive maintenance can take place [4]. PHM is an application of
predictive maintenance (PdM) [5]. PdM is a PHM form based on continuous observation of
parts/machine conditions [6]. Predictive maintenance has already evolved from visual ob-
servation by humans to automated observation, signal processing, pattern recognition [7],
machine learning [8], neural network [9], fuzzy logic [10], and many other methods. The
visual observation method cannot give a total prediction result [11]. The automated obser-
vation method using sensors becomes the solution to provide and collect raw data/signals
from parts/machines for real-time monitoring [12]. Compared with PdM, a common
maintenance management strategy is scheduling maintenance actions to avoid failures [13].
This method can be combined with collected data from condition monitoring (CDM) and
condition analysis algorithm to make autonomous predictive maintenance [14]. Predictive
maintenance activity can be classified into [15]: (1) database approach, (2) model approach,
and (3) hybrid approach. For applied PdM in the toothpaste industry, the main machine
can be classified as [16]: (1) mixing machine and (2) filling machine. It will be combined
with historical data from the observed component to make a predictive analysis system [17].
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When analyzing the data collected through various observation sensors, machine learning
in dataset processing has a high accuracy [18] and can predict various machine condi-
tions [19]. PdM in the toothpaste factory will be applied in the tube filling machine, which
consists of many crucial sections [20]: (1) tube infeed—for packaging materials input using
a set of pneumatics and electrical motors, (2) tube orientation—for tube positioning using a
servo motor and eye mark sensor to detect the eye mark in tubes, (3) tube filling—to input
the toothpaste from hopper using piston mechanism and filling pump mechanism, (4) hot
air station—heating the tube using blow of hot air that has been heated using spiral wire
heater cartridge, (5) tube sealing—a set of sealing jaws and knife, to seal the tube and trim
the excess material from the tube, and (6) pick and place unit—sealed tube output. The
PdM will be applied using a combination of machine learning (hybrid) methods. The tube
filling machine figure with each of the functions is shown in Figure 1.
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Figure 1. Tube filling machine with component list: (1) Tube infeed, (2) Tube orientation, (3) Tube
filling, (4) Hot air station, (5) Tube sealing, (6) Pick and place unit [20].

From those parts, if one part is unable to function due to failure, the machine will
not be able to operate, or it will operate with a lot of rejected products [20]. The machine
can have several critical parts that will affect production output and machine breakdown
if those vital parts do not work correctly [21]. When the machine cannot produce good
output or has a breakdown, it will affect plant and machine efficiency [22]. A method called
overall equipment effectiveness (OEE) can be used to measure the effectivity of a machine
with three scales [23]: (1) Availability rate (AR), (2) Performance rate (PR), and (3) Quality
rate (QR). To prevent these events, a new PdM method combined with a machine-learning
algorithm predicts future data using a supervised method from past datasets or initial
dataset movements [24]. It compares the database with the operation data set. Research to
improve OEE in machinery was also done by Brunelli et al. in the automatic filling machine,
using deep learning method with temporal convolutional network (TCN) and comparing it
with the long short-term memory (LSTM) method [25]. Additionally, another research by
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Paolanti et al. was done for predictive maintenance in woodworking machinery using a
random forest approach [19]. Borgi et al. also researched predictive maintenance using the
multiple linear regression approach for industrial robots [26]. The Ishikawa diagrams used
to identify the research can be seen in Figure 2.
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Figure 2. Fishbone diagrams for the research background [27–30].

Some reasons for the research can be seen in Figure 2, the need for predictive main-
tenance using machine learning. Dalzochio et al. propose the problem from a machine
perspective in the diagram [27]. From the man’s perspective, the need for predictive main-
tenance using machine learning is proposed by Binding et al. [28]. Environmental root
causes are researched by Nacchia et al. [29], and materials root causes are stated in the
research of Bampoula et al. [30]. Due to some limitations (e.g., company rules and budget),
there is some constraint applied in this research:

i. The system made was a prototype that was chosen using cost-efficient materials;
ii. The system will use two supervised machine learning methods to compare the effec-

tivity of random forest regression and linear regression;
iii. The system will trace failure based on a failure that made the product rejected or

downtime;
iv. The system will ignore a failure that consists of human error;
v. The machine is operating for a maximum of 16 h a day.

The consideration is to compare two supervised machine learning methods, linear
regression and random forest regression [31]. Linear regression approaches are chosen
because the mechanism of the analyzed parts only has 2 degrees of freedom (DoF) at maxi-
mum from the observed parts (either X, Y, or Z axis)—this means that the extracted electrical
value only has one independent predictor. Borgi et al. also proposed to analyze robot
movements using the multiple linear regression method because the extracted data consists
of more than one independent/predictor available [26]. The random forest approach is
chosen because it is a series of tree predictors in which each tree is based on the values of a
randomly sampled vector with the same distribution across all trees in the forest [32]. The
application in temperature-related research was also made by Prihatno et al. in predicting
humidity in industrial factory applications [32]. Other predictive maintenance research
was done by many researchers, such as Paolanti et al., that did predictive maintenance in
woodworking machinery using a random forest approach, but with a flight recorder, an
industrial class PC, an IT accelerometer, and an industrial class accelerometer [19]. Similar
research was also done by Borgi et al., using an LTD800 Leica Laser Tracker as a sensor for
tracking robot movements in 6 DoF [26]. The main goal of this research is to predict the time
to failure of each observed component by feature extraction and machine learning. It also
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measures each system’s effectiveness and weakness to seek the most applicable method for
vibration and temperature measurement [33] in tube filling machine applications because
every machine part has its differences and characteristics, even for the exact variable mea-
surement [34]. Another contribution of this research is to apply predictive maintenance
using machine learning with cost-effective components as the primary condition.

2. Materials and Methods
2.1. Experimental Setup

The PdM system will implement in NORDEN NML—150 tube filling machine, which
has a specification in Table 1.

Table 1. Norden NML-150 tube filling machine specification [20].

Parameter Value Unit

Machine Speed 150 rpm
Nozzle Head Count 2 pcs

Machine Power 8.20 kWh

With the machine specification as in Table 1, the historical data of unplanned downtime
(UPDT) from the last six months in 2021 can be seen in Figure 3.
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Figure 3 shows the 10 most common breakdowns of the machine, where 6 out of
10 UPDT lower the OEE percentage in terms of availability rate (AR) and 4 other downtimes
lower the quality rate (QR). The downtime occurred in the machine with a low frequency
(less than 3 times/category)—and high repair time. The explanation for the downtime
with a low frequency is because the downtime affected critical parts, such as bearings
and bushings, which significantly affected the mechanical movement of the machine and
affected production results (reject products mean a deficit for the company). The total
breakdown frequency from Figure 3 is 16 times, which means each breakdown has an
average of 336.125 min UPDT. Each breakdown can be sorted and divided into several
specific machine parts that can be observed, where the classification is shown in Table 2.

After classifying UPDT and analyzing the affected parts of the machine, it is noticeable
that there are two or more UPDT cases in one part that needs to be further organized
to decide which parts need to be further analyzed and to solve the problems when the
microcontroller ports to analyze these components are limited. Depending on the affected
parts, the amount of the sensor will be analyzed based on how many downtimes were
involved [20]; the component classification can be seen in Table 3.
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Table 2. Downtime analysis and affected parts classification [20].

Downtime Assessment Main Problem Affected Parts Analysis

Leaked Tube Sealing Un-perfect sealing position,
toothpaste leaks when pressed.

Hot Air unit—Thermocouple
Lifting unit—Servo Motor
Coding Cam—Vibration sensor

Improper detection
in eye mark sensor

Unsymmetrical sealing position,
tube positioning in eye mark sensor.

Tube orientation—photocell sensor
Tube orientation—servo motor

Improper filling position The lifting position on tube filling is not in a straight line. Lifting unit—servo motor
Filling pump unit—vibration

Wrinkled tube sealing Imperfect sealing position, thin line in the seal,
toothpaste leakage from the seal

Hot Air unit—Thermocouple
Coding Cam—Vibration sensor

Runny Nozzle The filling nozzle cut-off is not perfect and affects the
sealing position in hot air and other section

Filling pump unit—vibration
Filling pump drive—vibration

Filling pump
no movement

Mechanical movement from the filling
pump stopped affects machine operation.

Filling pump unit—vibration
Filling pump drive—vibration

Filling pump overload Over-stroke in mechanical movement
affects machine operation. Filling pump drive—vibration

Perforated tube sealing Imperfect tube sealing, huge cracks in sealing position,
toothpaste leakage from the seal

Hot Air unit—Thermocouple
Coding Cam—Vibration sensor

Table 3. Component classification table from filling machine NML 150 [20].

Component—Measuring Units Amount Downtime Assessment

Temperature Sensor—Thermocouple 2
Leaked tube sealing
Perforated tube sealing

Lifting unit—servo motor 2
Leaked tube sealing
Improper filling position

Coding cam—vibration sensor 2
Leaked tube sealing
Wrinkled tube sealing
Perforated tube sealing

Tube orientation—photocell sensor 2 Improper detection in eye mark sensor

Tube orientation—photocell sensor 2 Improper detection in eye mark sensor

Filling pump unit—vibration sensor 4

Improper filling position
Filling pump no movement
Filling pump overload
Unstable tube weight

Filling pump drive—vibration sensor 2
Unstable tube weight
Filling pump no movement
Filling pump overload

Filling pump unit—filling
pump overload proximity 2 Filling pump overload

From Table 3, the component—measuring units is the component names and its
sensor to enable data acquisition; the amount is the amount of the components in one
machine, and the downtime assessment is the classified downtime from Table 2, classified
by the components.

2.2. Components and Sensor Placement

From the component classification, the observed area will be the filling pump unit
using 4 vibration sensors because 4 downtimes occur. The coding cam—uses 2 vibration
sensors because 3 downtimes are occurring in the area. The filling pump drive—uses
2 vibration sensors. After all, 3 downtimes occur in the area and the temperature sensor or
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thermocouple. The critical parts have been decided, then the system used will be chosen
using cost-efficient materials. The microcontroller used is Arduino AT Mega 2560 with
16 Analog ports. The thermocouple sensor is a type K thermocouple with a maximum tem-
perature range from 0 to 700 ◦C. In contrast, the vibration sensor will use an accelerometer
ADXL-335 with nine axes reading and sensitivity rate between 270–320 mV/g and 1600 Hz
Bandwidth. Figure 4a–d shows the position of all sensors.
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Figure 4. Sensor placement on tube filling— (a)filling pump drive, (b) filling pump lever, (c) coding
cam lever, (d) hot air station, thermocouple [35].

In Figure 4a, the sensor applied is a vibration/accelerometer sensor for detecting filling
pump movement; this part’s function is to transfer toothpaste from hopper to nozzle [35]. In
Figure 4b, the vibration/accelerometer sensor is applied to detect filling pump movement
from the bottom of the machine. This part’s function regulates toothpaste weight using
piston movement linked to shaft and bushings [35]. Figure 4c shows that the sensor is a
vibration or accelerometer to detect coding cam movement. This part’s function is to seal
a filled tube that has been heated in a hot-air station and give its expiration date [35]. In
Figure 4d, the sensor applied is a thermocouple sensor to detect hot air temperature and
regulate the temperature in hot air stations [35]. The location of the actual sensor’s position
can be seen in Figure 4.

Electrical connections—from the microcontroller, control system, and sensors can be
seen in Figure 5.

From the electrical diagrams in Figure 6, the ports used for data acquisition are analog
ports for analog-type transducers (thermocouples and accelerometers). In addition, the
transducer’s power source comes from a 5 VDC power supply to ensure the sensors have
a suitable electrical supply with the sensor’s specification. The number of ports used in
Arduino for data acquisition is 14 analog ports. The breadboard is used for interconnections
between the electrical supplies and grounds.
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2.3. Method and Algorithm

The flow diagram of data logging and the machine learning method is shown in
Figure 7.

The flow diagram shows that the system is started from a data logging mechanism.
The current sensor value is combined with historical data logging data. Its output value
will be in the serial monitor from the Arduino data log. The serial monitor from data
logging has a 9600 baud rate connection and sampling time of 1 s for each data. A separate
server is used to process acquired data using a Python programming language for data
logging progress. The data logging algorithm will explain the data as seen in Algorithm 1,
where n is the data counts, Xax is the X-axis sensor ports, Yax is the Y-axis sensor ports, and
Zax is the Z-axis sensor ports. The Cx, Cy, and Cz value is a calibrated value of X, Y, or
Z-axis ports. N is the number of ports used. The data acquired will be in a standard format
of comma-separated value files and will have an array for further processing.
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Figure 7. Flow diagram of data logging and predictive maintenance using machine learning.

Algorithm 1. Data Logging Algorithm

Require : n = 0
Ensure : Xax = Cx

val , Yax = Cy
val , Zax = Cz

val I Starting data count from 0
Min Cx

val ≤ Xax ≤ Max Cx
val

Min Cy
val ≤ Yax ≤ Max Cy

val I Ensure the value between
Max and Min

Min Cz
val ≤ Zax ≤ Max Cz

val
While n ≥ 0 do

If n is running then
.csv ← XN x YN x ZN I N = Number of Sensors Port

Else if n is stop then
.csv = 0 I .csv stop working

End if
End While

From Algorithm 1, .csv data will be acquired using a data logging program in Python.
Further note, the .csv data must have fulfilled some of the conditions below:

i. Spacing for each column will be separated with a comma (default);
ii. The decimal value will use a dot (.) to specify the value;
iii. The timestamp algorithm will use a dash (-) separator.

To process data in machine learning, before the machine learning algorithm is imple-
mented, we need a training dataset to train our data model, both in linear regression or in
the random forest regression method. The sampling amount of data used to train the value
can be seen in Table 4.

Note for Table 4, FPL is a filling pump lever, FPD is a filling pump drive, CCL is a
coding cam lever, and Th. Coup is a thermocouple sensor. The decision to use small training
data came with inspiration from Paolanti et al. Their research stated that the ML algorithm
used a random forest and decision tree, with a total of 530,731 data from 15 machines [19],
which means 1 machine contributed 35,382 data on average. Borgi et al. also used small
sampling data for predictive maintenance in industrial robots, which has a similar task
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regarding accelerometer sensor data acquisition. This results in excellent accuracy in mean
square error (MSE) and root mean square error (RMSE) using the linear regression learning
method [26]. The sampling amount was also decided because of restriction number 5—in
the Introduction section—which tells the short period of maximum running time (16 h a
day) and the faster system implementation on the machine. After deciding on the sampling
amount from the data logging, then the algorithm of machine learning prediction can be
seen in the machine learning prediction algorithm, which can be seen in Algorithm 2.

Table 4. Sampling data amount on each sensor.

Sensor Name Sample Amount (Data) Sensing Time (min)

Acc. FPL 1 20.000 57.143
Acc. FPL 2 20.000 57.143
Acc. FPD 1 20.000 57.143
Acc. FPD 2 20.000 57.143
Acc. CCL 1 20.000 57.143
Acc. CCL 2 20.000 57.143
Th. Coup 1 20.000 57.143
Th. Coup 2 20.000 57.143

Algorithm 2. Machine Learning Prediction Algorithm

Require : x ≥ 0 I There must be a data transfer process
Ensure : x 6= 0
Ensure : n ≥ 0 I Number of repetition must ≥ 0

While n ≥ 0 do
If n is running then

Nm =(
xn xn−1 xn−2

xn−1 xn−2 . . .
xn−3
xn−m

)
If NaN is available then

NaN ← reshape = 0
NaN ← 0
Nm ← Array− 3

End if

f̂ K
r f (Nm) = 1

K

K
∑

K=1
T(Nm) I Random forest reg. k = Rand State

Else If n is stop then
Nm = 0 I .csv stop working

End if
End While

The measured values from the data logging process affected the whole system from
this classification. The data is separated into eight different sections, and each section has its
input and output of which the input can be defined as position change in the accelerometer
sensors [19] and temperature change in the thermocouples [28]. The expected output from
the experiment is a regression and regression prediction within two different models [28].
The parameters/value are interval data logging time and delay time from processing data.
Beddows and Mallon stated that Arduino’s delay time in the data logging interval could
differ for each sensor [36]. There was also a delay time for data processing—from the data
transfer time [37] and data processing time [38]. The parameters are shown in Table 5.

The parameter of delay transfer PC to Python and delay prediction to real-time affects
the experimental results in which the data predicted is 0.23 s slower than the actual value.
The response is created because of the transfer time between devices and algorithm time
to calculate each acquired data from Python software. Machine learning data uses time-
domain analysis because it is simplified, and the data accuracy can reach up to 93.8% [33].
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Table 5. Time parameter for data sampling.

Parameter Value Units

Data Logging Interval (Vibration) 110 ms
Data Logging Interval (Thermocouple) 95 ms

Delay Transfer PC To Python 10.25 ms
Delay Prediction to Real-time 220 ms

The design of experiment (DOE) uses a random forest regression and linear regression
method for movement or temperature prediction. For the random forest tuning—there are
some tuning parameters based on the random forest equation [39]:

f̂ K
r f (x) =

1
K

K

∑
K=1

T(x) (1)

where x is the input vectors, made up of the value from different evidential feature analyses,
and K is the number of regression trees in the equation and averages the results. The
training data set is validated by fitting training data with the actual data and measuring
errors from the training data. The several steps to doing the data validation process include:

1. Feature extraction from the sample data using C++ open-source programs [39] by
eliminating the noise from the acquired data (sensor position change and temperature
change) from the data acquisition program;

2. Data training using data from Table 4 and fitting data into the random forest and
linear regression separately, with a total of 16 datasets, having been trained;

3. From the total of 16 datasets, the optimal hyper-parameters are found using cross-
validation of the k-sections method [19]. The method will randomly subdivide the
examples data into “k” sections, and for each value of parameters, the learning
algorithm is executed for “k” times [19]. For the best results, hyperparameters were
used in the experiment, such as sample split 10, estimators 5500, and random state 40 (for
random forest prediction). The results also agree with the research of Prihatno et al.
in terms of humidity predictions [32];

4. For better prediction results, means square error (MSE) and root mean square error
(RMSE) are also calculated and fitted from 16 samples. The MSE and RMSE values are
used to compare the training data accuracy with the real system data accuracy [40].
The results of MSE and RMSE from the training data can be seen in Table 6.

Table 6. MSE and RMSE result from training data.

Training Data MSE LR RMSE LR MSE RFR RMSE RFR

Coding Cam Lever 1 0.060796765 0.24657 0.048271 0.219707
Coding Cam Lever 2 0.05242268 0.22896 0.037664 0.194072
Filling pump Lever 1 0.05547909 0.23554 0.022873 0.1511238
Filling Pump Lever 2 0.04693722 0.21665 0.045772 0.213944
Filling Pump Drive 1 0.08900079 0.29833 0.034782 0.186499
Filling Pump Drive 2 0.07666807 0.27689 0.029887 0.172879

Thermocouple 1 0.0728892 0.26988 0.038825 0.197041
Thermocouple 2 0.06636291 0.25671 0.032419 0.180053

From the data acquisition and machine learning algorithm, data characteristic and
prediction value of data is acquired and stated in Section 3.

3. Results and Discussion
3.1. Machine Condition Monitoring

From both machine learning and data logging algorithms, the acquired condition from
analyzed components can be classified as:
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i. Normal acceleration/vibration condition;
ii. Normal temperature condition;
iii. Run to Fail acceleration/vibration condition;
iv. Run to fail temperature condition.

The analyzed conditions in the component were decided by reference to another
research about remaining useful lifetime (RUL), where Lei et al. stated that all of the
machinery components have a health indicator (HI) and all machinery components have
at least two or more HI stages [41]. In the experiment, each component’s HI has two
stages—normal and run to fail (faulty).

The first result in Figure 8a shows the graph from a normal condition on implemented
acceleration/vibration sensor in the machine component. The graphs in Figure 8 repre-
sent all conditions from acceleration/vibration cycles because the component movement
characteristic is a cyclic movement [42]. Y-axis in the data explains sensor movement from
zero position, and the movement on the sensor will have a repetition, from a positive to
a negative position. Each cycle occurs in 2 s (from the graph, each upper peak vs. each
lower peak, the change occurs every 1 s). The acceleration/vibration position range in one
minute is 0.34 mm–1.05 mm/movement, and with the cycle model, the average action in
a 1-min cycle time is 0.64 mm. If the direction of the component has a different pattern /
outside this range, then the element is in a run-to-fail state, or there is function degradation
in analyzed components. Figure 8b shows an acceleration/vibration data sample at the end
of a component life cycle. There is a significant acceleration/vibration position increase
from the component (in millimeter-scale—on Y-axis). Where the initial data should be in
the form of a cycle, there is movement change into a rising movement in a cycle (red cycle)
indicated by a change in data distribution model, from data range −0.5 mm to 0.5 mm to
data range 1 to 2.5 mm. Machine stop is operated to run on predictive maintenance before
experiencing a severe failure.

Figure 8. Graphs of sample cyclic vibration data in (a) normal condition, (b) failure condition.

From the thermocouple or temperature sensor, the data sample of normal function
thermocouples is shown in Figure 9.

From Figure 9a, the normal temperature in the cycle ranged between 164–165 ◦C, where
the initial setting for the hot air station is 165 ◦C. From the data sample, the characteristic of
the hot-air station is more dominant to have a temperature decrease of +/−1 ◦C, where the
temperature does not impact the tube sealing results. The graphic can be expanded into a
table with a 1 s interval based on evaluating the range and tolerance in normal temperature
data. From this table, the range of the hot air heater temperature in 1 min is 0.02–1.93 ◦C,
with an average temperature of 0.69 ◦C. If there is movement above 1.93 ◦C, it can be said
that the heater is in a run-to-fail mode or there is a function degradation. The mechanical
component that runs to fail or at the end of its life can be seen in Figure 9b. Sample data
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in the green rectangle shown in Figure 9b indicated the component change process until
the component was rerun in a yellow cycle. From the graph, some range is higher than the
average normal range at the end of the graph. The component configuration is not normal
(human failure in the setting process).
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Sample data of the run to fail heater in temperature value can be seen in Figure 8b.
Heater failure starts from the value decrease in the heater that is marked by a red circle
in the graphic. Thermocouple enhancer data samples showed that the heater has an
exponential reduction from 163 ◦C in a few minutesAfter that, the temperature gradually
decreased exponentially from 160 ◦C to 150 ◦C, which affected product quality in machine
operation. The repair/replacement process can be seen in the green rectangle mark on
the graphic, and the new heater operates at the yellow circle mark on the graphic. For
encountering the outlier values from the thermocouple, the initial value was manually
set when the system started, as well as the upper and lower boundary (Approx. ±2 ◦C).
After acknowledging the characteristic of machine condition monitoring, machine learning
prediction was implemented in each data, and it is discussed in Section 3.2.

3.2. Machine Learning Prediction Value

Data from Section 3.1. are treated as training datasets or initial datasets to make
predictions using two different approaches in machine learning, random forest regression
prediction (RF), and linear regression prediction (LR) [43]. The results of vibration and
temperature data types are dynamic—based on the cited research [44]. The data prediction
can be classified as follows:

1. RF Regression prediction using normal condition;
2. RF Regression prediction using failure condition;
3. LR prediction using normal condition;
4. LR prediction using failure condition.

The graphs are shown using vibration or accelerometer data because the model of
temperature data is the same as the vibration data model with the same purpose because the
system is evaluated using a knowledge-based (supervised machine learning method) [45].
However, the thermocouple cycle runs faster than accelerometer data. McLoone et al. state
that measuring accelerometers placed in extreme temperatures using six thermocouples can
send more frequent data than accelerometers [46]. Samples were collected from 26 cycles
when it almost represented the data model in a 1 min cycle (refer to the normal condition
data collection) [47]. The data from machine learning prediction (RF and LR) in the normal
cycle condition of the monitored component is shown in Figure 10.
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Figure 10. Data prediction in normal conditions using (a) RF regression method, (b) LR
regression method.

From Figure 10a, the graphic shows data prediction using RF regression prediction. In
a normal condition, data accuracy ranges between 40 and 99%, while the total prediction
accuracy is approximately 82%. The data above are samples from 1 min data, so approxi-
mation inaccuracy may differ between actual and sample data. The prediction data from
LR Regression prediction using the normal cycle condition of the monitored component
can be seen in Figure 10b. Using LR prediction, the range of data accuracy differs between
3% and 80%, where the total data prediction accuracy is approximately 23% for 26 data
samples. This method cannot predict cycle data because the data model is not linear, so
the accuracy prediction is low. This method cannot be modified using data diversification,
such as the RF regression prediction method. The LR data model does not have a decision
tree, so the data cannot be changed. The prediction graph for wrong or end of the lifecycle
conditions using machine learning prediction (RF and LR) are shown in Figure 11.
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Figure 11. Data prediction is wrong/end of lifecycle condition using (a) RF regression method, (b) LR
regression method.

The graph shows data prediction vs. real value of data from 26 data samples repre-
senting a cycle (same as a prediction of standard data). However, the graphic model is not
a cycle because of function deterioration of the parts, such as wear or slack on the bush-
ings/bearings, on the monitored components. The amount of data in the run-to-fail method
is 28.12% from all data samples. The data range is between −0.20 mm and −0.08 mm.
Figure 11a shows data accuracy using the RF regression method between 80–100% of each
data. The accuracy of the RF regression prediction method in faulty or end-of-life cycle
conditions is approximately 93%. The conclusion from both graphics or tables is the RF
regression method that can be used in both linear and non-linear data predictions because
of bagging from the decision tree diversification function using the random state function
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in the algorithm. From Figure 11b, the LR prediction method for linear data is suited to
predict the sensor movement in its function degradation. Data accuracy from each data is
84–100%, a 4% better individual prediction than the RF regression method. The LR predic-
tion method’s total accuracy is approximately 95% in faulty or end-of-lifecycle conditions.
For implementation in the system, if the system accuracy for data prediction is high, the
outcome must be higher than the algorithm with lower accuracy. So, the conclusion of the
data analysis is written in Table 7.

Table 7. Vibration data prediction accuracy for each machine learning method in PdM implementation.

Data Condition Prediction Method Accuracy
Total Accuracy
within 20.000

Sample

Normal
Random Forest (RF)

82% 84%
Wrong/End Cycle 93% 89%

Normal Linear Regression (LR) 23% 59%
Wrong/End Cycle 95% 94%

Table 7 is calculated from all 20.000 sample average accuracy for each data using
Equation (1), and it is concluded that the RF regression method has better accuracy than the
LR regression method implemented in the PdM system because the training data model is
not linear. The result of data prediction using the RF method agrees with Prihatno et al.,
where the RF method accuracy exceeded more than 80%, while the difference in the
parameter is only in estimators (5000) and random state (42) [32]. The RF regression
method has 29% more accuracy than the LR method in this case. The LR method has better
accuracy than the RF method for failure detection by 2%. This statement is also made by
Mattes et al., where the LR method showed the best performance shortly before failure on
the test data (for semiconductors machines) [48]. Still, the accuracy of the overall system
concludes that the RF regression method will less likely fail because it has only a 12% fail
prediction. It is also shown in the MSE Results of each sensor—which can be seen in Table 8.

Table 8. Mean square error result comparison between RF regression and linear regression in normal
and run-to-fail (RtF) methods in the sample thermocouple and accelerometer.

Sensor Name MSE
(RF, Normal)

MSE
(LR, Normal)

MSE
(RF, RtF)

MSE
(LR, RtF)

Accelerometer FPL1 0.02033 0.045498 0.02301 0.01140
Accelerometer FPD1 0.02287 0.0486627 0.0229481 0.016253

Thermocouple 1 0.018221 0.066091 0.012016 0.149674
Thermocouple 2 0.019662 0.631192 0.111762 0.147899

The MSE of each data is close to 0, so the system’s accuracy is better because of the
MSE value.

3.3. Failure Model and Effect Analysis for the System

After we know the system’s accuracy, the implementation of systems must be ex-
plained to the maintenance technician to do a specific action with the prediction result
of the systems. One of the methods is FMEA, one of the most efficient low-risk tools for
preventing and identifying problems for more efficacious solutions [49]. The FMEA table
can be seen in Table 9.

From the FMEA analysis of the system, the technician can decide on the mechani-
cal/electrical component fault, and the result can be seen in the implementation discussion.
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Table 9. FMEA of the prediction of system failure.

Comp. Component
Function

Functional
Failure Failure Mode Failure Cause Failure Effect

Accelerometer at
filling pump drive
1 and 2.

Failure
detection

The prediction
graph cycle is
smaller than the
normal cycle.

1.1. Prediction
graphs cycle is
smaller more than
0.5 mm

1.1. There is loose
bearing in the filling
pump drive

Filling pump—no
movement

1.2. Prediction
graphs cycle is
smaller from
0.2 mm to 0.4 mm

1.2.a. There is a loose
bushing in the filling
pump drive

Unstable tube
weight

1.2.b. There is wearing
in the filling pump
drive parts (body or
pen)

Unstable tube
weight
Filling pump
overload

Prediction graph is
not making a circle
(in-
crease/decrease)

2.1. Prediction
Graphs made an
inclined graph

2.1. The filling nozzle
seal is already wearing

Leaked tube
sealing

2.2. Prediction
graphs made a
declined graph

2.2. Incorrect
installation of
bushings/body

Filling pump
overload
Leaked tube
sealing

2.3. Prediction
graphs are
unstable

2.3.a. There is a fault
in the accelerometer Prediction cannot

be shown
accurately

2.3.b. There is
improper wiring in the
accelerometer

Accelerometer at
filling pump Lever
1 and 2.

failure
detection

The prediction
graph cycle is
smaller than the
normal cycle.

1.1. Prediction
graphs cycle is
smaller more than
0.5 mm

1.1. There is a loose
bearing/bearing
already wearing, in the
filling pump lever

Filling pump no
movement

1.2. Prediction
graphs cycle is
smaller from
0.2 mm to 0.4 mm

1.2. There is a loose
bushing in the filling
pump lever

Filling pump
overload
Unstable tube
weight

Prediction graph is
not making a circle
(in-
crease/decrease)

2.1. Prediction
graphs made an
inclined graph

2.1.a. The piston
nozzle seal is already
wearing

Improper filling
position

2.1.b. Wearing plate
(Parts) is already
wearing

Filling pump
overload
Filling pump no
movement

2.2. Prediction
graphs made a
declined graph

2.2. The Piston
Torpedo is already
wearing

Improper filling
position
Unstable tube
weight

2.3. Prediction
graphs are
unstable

2.3.a. There is a fault
in the accelerometer Prediction cannot

be shown
accurately

2.3.b. There is
improper wiring in the
accelerometer
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Table 9. Cont.

Comp. Component
Function

Functional
Failure Failure Mode Failure Cause Failure Effect

Accelerometer at
coding cam Lever
1 and 2.

Failure
detection

The prediction
graph cycle is
smaller than the
normal cycle.

1.1. Prediction
graphs cycle is
smaller more than
0.5 mm

1.1. There is loose
bearing in the coding
cam lever

Leaked tube
sealing

1.2. Prediction
graphs cycle is
smaller from
0.2 mm to 0.4 mm

1.2.a. There is a loose
bushing in the coding
cam lever

Perforated tube
sealing
Wrinkled tube
sealing

1.2.b. The coding cam
lever timing degree
did not same as the
main timing cam
degree.

Wrinkled tube
sealing
Perforated tube
sealing
Leaked tube
sealing

Prediction graph is
not making a circle
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4. Implementation Discussion

PdM machine learning system using RF regression prediction has implemented in
Norden NML 150 tube filling machine for three month trials, and its effectivity will be
evaluated with:

1. Total machine UPDT comparison three months before and three months after;
2. Targeted machine UPDT comparison three months before and three months after;
3. Comparison of machine output three months before and three months after.

Figure 12 shows OEE data of the monitored tube filling machine three months before
and three months after system implementation to observe system effectiveness. The
OEE graphic represented each improvement aspect—lessening human error (such as
setting errors in the filling and coding cams, better troubleshooting in the event of UPDT),
predictive maintenance, and improving the quality control system.
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From Figure 11, before system implementation, the OEE percentile of NML 150 could
not reach 80% each month because of the low availability rate (AR) from many UPDT
cases—from the human factor, machine breakdown, and other factors. After implementing
the PdM system, the average machine OEE reached 85.35% because of predicted fail-
ure in the machine components, especially in the monitored parts stated in Section 2.1.
Paolanti et al. also state that PdM is a good strategy for minimizing downtime and associ-
ated costs when dealing with maintenance issues [20]. Minimalized downtime shows in
Table 10; there is a direct average OEE comparison between three months before and three
months after PdM implementation, including its average performance rate (PR), quality
rate (QR), and AR.

Table 10. System implementation effectiveness OEE measurements.

Before
(May–July 2021)

Measurement
Parameter

After
(August–October)

75.10% Average AR 86.30%
97.40% Average PR 99.60%
99.00% Average QR 99.50%
72.42% Average OEE 85.53%

Overall improvement in the OEE case can be seen in Table 10, where the most signifi-
cant increase was in the AR aspect, with an increase of 11.20% because there is a decrease
in UPDT cases, frequency, and time. More details can be shown in the UPDT graph in
Figure 13.

In Figure 13, the impact of system implementation is decreased in the UPDT case from
machine breakdown and product quality issues because of unstable components/unpredicted
breakdown in the monitored component. There are 14 cases of UPDT, with a reduction
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percentage of 93.33% after implementing the system. From these reductions, some other
factors are involved:

1. Improvement in human resource/machine operator;
2. Improvement in raw material qualities;
3. Improvement in operational methods.
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These improvements are also a part of condition monitoring effects because the data
shows a different trend for each problem, for example, each material/product type has
its data characteristics. Each technician also has other characteristics when repairing the
components for the incorrect data. There is a 1494-min breakdown reduction (the equivalent
of 2 working days) with a 62.38% downtime percentage that can be decreased; details can
be seen in Table 11.

Table 11. The effectiveness of downtime reduction in system implementation.

Before
(min) Downtime Case After

(min)
Reduction

(%)

474 Leaked tube sealing 544 +14.77%
152 Perforated tube sealing 13 −91.45%
228 Wrinkled tube sealing 104 −54.39%
327 Unstable tube weight 62 −81.04%
425 Filling pump no movement 65 −88.18%
229 Filling pump overload 7 −96.94%
166 Leak in seal rotary valve 0 −100.0%
65 Coding station overload 0 −100.0%

329 Runny Nozzle 106 −67.78%
2520 Total Monitored Downtime 901 −64.25%

In conclusion, the PdM system using random forest regression prediction can be said
to have succeeded in increasing OEE by 11.2% and reducing the downtime percentage of
the monitored component UPDT by 64.25%

5. Conclusions

From the experiment, the actual ranges from the acceleration or vibration in the moni-
tored component differ from 0.34 mm to 1.05 mm, and the temperature range varies from
0.02 ◦C to 1.93 ◦C. If the data occurs outside the said range, it may lead to component
failure/component breakdown/quality issue of the product. The random forest regression
prediction accuracy rate is better than the linear regression accuracy rate (88% to 59%),
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which gained from the prediction data using the training data set. Implementation of the
PdM system using the random forest regression prediction method effectively increased the
OEE of the NML 150 tube filling machine with the said condition in Section 2.1. In addition,
the cost-effective equipment works well with data acquisition and machine learning pro-
cessing (predicting machine movements). The system successfully increased the machine
OEE to an average of 11.31% three months after implementation (August–October 2021)
and decreased the downtime to 62.38% from the monitored component. It also increased
the machine output to an average of 2.20% for three months and repaired the product
quality up to an average of 0.5% for three months. The increase in machine effectivity
also means that the machine gets the right handling in carrying out maintenance activities
and makes it easier for technicians to identify problems that occur in the machine. The
conclusion is that the system can be implemented for tube filling machines and monitor
the machine condition for proper PdM activity. Some future recommendations that can be
done to improve the overall system are:

1. Improve microcontroller and hardware for data acquisition with a higher baud rate
and sampling rate to have more accuracy of the data and a faster processing time in
algorithm run;

2. Improvement in accelerometer and vibration sensor with a higher detection range
and a higher sampling rate to make possible the fine-tuning of the system to obtain a
faster failure prediction and a faster PdM action;

3. For further recommendation, the system can predict another component, product
reject detection and prediction, minimize human error in the operational machine,
and synchronize the environmental conditions with machine parts conditions.

Author Contributions: Conceptualization, methodology, software, formal analysis, investigation,
resources, data curation, writing—original draft preparation, visualization, D.N.; conceptualization,
methodology, writing, review and editing, supervision, H.S.; project administration, funding acquisi-
tion, D.N. and H.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Institution of Research and Community Service, the Atma
Jaya Catholic University of Indonesia in the 2021 grant.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We want to express our sincere gratitude to the Institution of Research and
Community Service, the Atma Jaya Catholic University of Indonesia for funding this applied research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Emovon, I.; Norman, R.A.; Murphy, A.J. Elements of maintenance system and tools for implementation within the framework of

Reliability Centred Maintenance-A review. J. Mech. Eng. Technol. 2016, 8, 1–34.
2. Saha, R.; Azeem, A.; Hasan, K.W.; Ali, S.M.; Paul, S.K. Integrated economic design of quality control and maintenance manage-

ment: Implications for managing manufacturing process. Int. J. Syst. Assur. Eng. Manag. 2021, 12, 263–280. [CrossRef]
3. Li, R.; Verhagen, W.J.; Curran, R. A systematic methodology for Prognostic and Health Management system architecture definition.

Reliab. Eng. Syst. Saf. 2019, 193, 106598. [CrossRef]
4. Cinar, Z.M.; Abdussalam Nuhu, A.; Zeeshan, Q.; Korhan, O.; Asmael, M.; Safaei, B. Machine Learning in Predictive Maintenance

towards Sustainable Smart Manufacturing in Industry 4. Sustainability 2020, 12, 8211. [CrossRef]
5. Calabrese, F.; Regattieri, A.; Bortolini, M.; Gamberi, M.; Pilati, F. Predictive Maintenance: A Novel Framework for a Data-Driven,

Semi-Supervised, and Partially Online Prognostic Health Management Application in Industries. Appl. Sci. 2021, 11, 3380.
[CrossRef]

6. Chen, C.; Wang, C.; Lu, N.; Jiang, B.; Xing, Y. A data-driven predictive maintenance strategy based on accurate failure prognostics.
Eksploat. Niezawodn. 2021, 23, 387–394. [CrossRef]

7. Wang, K.; Wang, Y. How AI affects the future predictive maintenance: A primer of deep learning. In Proceedings of the
International Workshop of Advanced Manufacturing and Automation, Singapore, 11 September 2017.

http://doi.org/10.1007/s13198-021-01053-7
http://doi.org/10.1016/j.ress.2019.106598
http://doi.org/10.3390/su12198211
http://doi.org/10.3390/app11083380
http://doi.org/10.17531/ein.2021.2.19


J. Manuf. Mater. Process. 2022, 6, 108 20 of 21

8. Florian, E.; Sgarbossa, F.; Zennaro, I. Machine learning-based predictive maintenance: A cost-oriented model for implementation.
Int. J. Prod. Econ. 2021, 236, 108114. [CrossRef]

9. Selcuk, S. Predictive maintenance, its implementation and latest trends. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231,
1670–1679. [CrossRef]

10. Baban, C.F.; Baban, M.; Suteu, M.D. Using a fuzzy logic approach for the predictive maintenance of textile machines. J. Intell.
Fuzzy Syst. 2016, 30, 999–1006. [CrossRef]

11. Misra, D.; Bennett, A.; Blukis, V.; Niklasson, E.; Shatkhin, M.; Artzi, Y. Mapping Instructions to Actions in 3D Environments with
Visual Goal Prediction. Available online: https://arxiv.org/abs/1809.00786 (accessed on 4 August 2022).

12. Setiawan, A.; Silitonga, R.Y.; Angela, D.; Sitepu, H.I. The Sensor Network for Multi-agent System Approach in Smart Factory of
Industry 4.0. Int. J. Automot. Mech. Eng. 2020, 17, 8255. [CrossRef]

13. Li, L.; Wang, Y.; Lin, K.-Y. Preventive maintenance scheduling optimization based on opportunistic production-maintenance
synchronization. J. Intell. Manuf. 2020, 32, 545–558. [CrossRef]

14. Lei, Y.; Li, N.; Guo, L.; Li, N.; Yan, T.; Lin, J. Machinery health prognostics: A systematic review from data acquisition to RUL
prediction. Mech. Syst. Signal Process. 2017, 104, 799–834. [CrossRef]

15. Shin, J.H.; Jun, H.B. On condition-based maintenance policy. J. Comput. Des. Eng. 2015, 2, 119–127. [CrossRef]
16. Jayasinghe, S.A.M.P.; Karunarathne, E.A.C.P. Minimizing wastage by improving process capability: Study in toothpaste manufac-

turing section. In Proceedings of the 3rd Symposium on Applied Science, Business and Industrial Research, Kuliyapitiya, Srilanka,
6 April 2011; pp. 88–94.

17. Cakir, M.; Guvenc, M.A.; Mistikoglu, S. The experimental application of popular machine learning algorithms on predictive
maintenance and the design of IIoT based condition monitoring system. Comput. Ind. Eng. 2020, 151, 106948. [CrossRef]

18. Bzdok, D.; Krzywinski, M.; Altman, N. Machine learning: A primer. Nat. Methods 2017, 14, 1119–1120. [CrossRef]
19. Paolanti, M.; Romeo, L.; Felicetti, A.; Mancini, A.; Frontoni, E.; Loncarski, J. Machine learning approach for predictive maintenance

in industry 4.0. In Proceedings of the 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems
and Applications (MESA), Oulu, Finland, 12 July 2018; IEEE: New York, NY, USA, 2018.

20. Norden Machinery. Instruction Manual of Norden NML 150; Norden Machinery: Kalmar, Sweden, 2019; pp. 59–71.
21. Tambe, P.P.; Mohite, S.; Kulkarni, M.S. Optimisation of opportunistic maintenance of a multi-component system considering the

effect of failures on quality and production schedule: A case study. Int. J. Adv. Manuf. Technol. 2013, 69, 1743–1756. [CrossRef]
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