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Abstract: This paper analyzes the surface grinding of unfilled and glass-filled polyamides. The
process is performed by varying the workpiece velocities to evaluate applied practical applications
in the industry while being energy efficient. During the machining, the temperatures, normal
forces, tangential forces, and spindle power were collected, and the surface quality was evaluated
by a scanning electron microscope (SEM), helping to determine material removal mechanisms and
study their behavior under grinding. One of the primary outcomes of the present research was
that, different from most metallic and ceramic materials, polyamides benefited from the material
removal rate increase. We had higher quality material removed efficiently. Also, the specific energy
of both materials converged to previously demonstrated values, showing once again that it is highly
dependent on the matrix. Moreover, the time-dependent mechanical properties of the material
during processing were identified. The fast application of the force at high speed gave less time to
respond to the mechanical strain, determining an improvement in the surface quality of the samples.
Consequently, the surface quality of the final product improved with a speed increase, leading to low
roughness values.

Keywords: grinding; thermoplastics; measurements

1. Introduction

The surface conditions of a component broadly influence its properties, such as haptics,
optics, tribology, and its lifetime. Therefore, the proper judgment of expected machined
surfaces is crucial in designing and manufacturing high-quality parts [1]. The surface
improvement of polymer matrix composites (PMCs) is focused on the study of carbon
and glass fiber reinforced plastics (CFRPs and GFRPs) [2–4]. Process signatures are thus
required for these materials to evaluate the interactions between the internal material loads
in manufacturing processes and the resulting material modifications, allowing a deeper and
more comprehensive understanding of the correlations between machining mechanisms
and parameters, surface properties, and surface integrity [5]. The surface improvement
from grinding is essential concerning other machining processes, especially when PMCs
parts are realized with Additive Manufacturing.

Grinding involves an increased risk of thermal damage to the machined workpieces
due to high temperatures and larger contact zones compared to other manufacturing pro-
cesses such as milling and turning [6]. In the case of polymers, a grinding limit is the glass
transition temperature Tg, defined as a temperature at which the polymer changes from a
rigid glassy material to a soft one. If this threshold is passed, the material resistance changes
with a reduction of the mechanical properties, requiring coolant in the tool-workpiece con-
tact zone to shorten undesired effects [7]. Heat generation is critical because dimensional
and shape accuracy decreases due to thermal deformation and grinding burn. Usually
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optimized in metals, the process allows for avoiding burnings and defects on the workpiece
surface. Optimal results are achieved by accurately monitoring the temperature during
grinding, using conventional or innovative techniques [8]. Dry machining provides a valid
alternative [9], but it exposes fibers and accumulated chips during processing [10], with the
risk of grinding wheel blockage [11]. The use of large grinding depths (>300 µm) without
coolant is usually used to validate the results of the thermal simulations [12]. Cutting with
large grinding depths, combined with low velocities, is not productive because an increase
in the production of large batches occurs. Low coolant flow rates are desired to face strict
ecological and economic requirements without lowering process reliability and worsening
workpiece quality. A free jet flow can break through the air barrier caused by the rotation
of the grinding wheel [13].

The Tg not only limits the use of thermoplastics during processing, but the temperature
control is highly desired to achieve acceptable results [14]. Changes in surface and subsur-
face properties during grinding are linked to processing parameters and quantities. Due to
missing information on the internal material loads, such as stresses, strains, temperature
values, or gradients, a reasonable selection of machining parameters to achieve a desired
surface integrity state is not always possible [15]. The viscous deformation of a polymer
also plays a decisive role in determining the quality of a machined surface. To minimize
the surface roughness, the machining conditions should be selected so that the material
removal deformation in the regime falls without viscoplastic scaling/tearing and brittle
cracking [16]. This condition is typically implemented with thermoplastics by working
below Tg and employing moderate cutting depths and conventional refrigeration. If the
temperatures are under control, the whole system provides high efficiency and high surface
quality [17]. However, there is a need for large material removal since multiple grinding
passes can be applied, assuring the benefits of lower cutting depths [6].

This paper aims to evaluate the resulting surface properties of natural and glass fiber-
filled polyamides (PA66 and PA66GF30) after the surface grinding process was performed
by varying the workpiece velocities to determine whether this process can be applied prac-
tically in the industry while being energy efficient. During the machining, the temperatures,
normal forces, tangential forces, and spindle power were collected, and the surface quality
was evaluated by a scanning electron microscope (SEM), helping to determine material
removal mechanisms and study their behavior under grinding.

2. Materials and Methods
2.1. Sample Production

Rough samples were milled from a plate of dimensions 6 × 500 × 3000 mm3 pro-
duced with extruded TECAMID® PA66 and PA66GF30 provided by Ensinger GmbH
(Nufrigen, Germany). These samples were reduced to a dimension of 5 × 30 × 60 mm3

and drilled in the center to fit a thermocouple. The hole diameter was 1.5 mm, while
its depth was 29.5 mm. Table 1 reports the machining parameters to realize the samples.
These parameters were selected after significant preliminary testing leading to free-defect
specimens, following the machining guidelines suggested by the supplier for this class
of materials. Dimensions of the milled specimens before grinding were measured using
a digital micrometer with a resolution of 1 µm. The ground surface of 5 × 60 mm2 was
opposite the hole entrance. Sixty mm was a sufficient path length to acquire enough data for
high workpiece speeds while having a small area to concentrate the normal and tangential
forces. This condition was essential for an adequate reading of the forces during grinding
for materials with low elastic moduli. The specimen height of 30 mm avoided machining
the sensor’s tip while giving enough stock material to normalize the ground surface before
sensor readings.
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Table 1. Machining parameters.

Property Value Unit

Milling

Tool Diameter 100 mm
Tool Speed 900 rpm
Feed Speed 1000 mm/min

Drilling

Tool Diameter 1.5 mm
Tool Speed 1400 rpm

The thermomechanical properties of the investigated materials, as provided by the
supplier, are summarized in Table 2.

Table 2. Main properties of the TECAMID materials (from supplier datasheets).

Property PA66 PA66GF30

Value Unit

General

Material class PA66 PA66 -
Reinforcement (glass fiber) 0 30 %

Physical

Density ρ 1.15 1.34 g/cm3

Glass transition temperature Tg 47 48 ◦C
Melting (Softening) temperature Tm 258 254 ◦C

Thermal conductivity k 0.36 0.39 W/(K ×m)
Thermal diffusivity α 0.20 0.24 mm2/s

Water absorption (24 h/96 h @ 23 ◦C) 0.2/0.4 0.1/0.2 %

Mechanical (Tensile test)

Young’s modulus E 3500 5500 MPa
Yield tensile strength σY 84 91 MPa

Ultimate tensile strength σR 85 91 MPa
Elongation at break A% 9.6 2.1 %

Coefficient of thermal expansion αCTE 120 50 µm/m/◦C

Since polyamides were susceptible to property variation due to environmental condi-
tions, the samples were tested using differential scanning calorimetry (DSC) to check for
any Tg variation from supplier data [17]. Analysis was performed on small samples (5 mg)
with a DSC 403 F3 Pegasus (Netzsch-Gerätebau GmbH, Selb, Germany), equipped with a
silver furnace, setting up a thermal cycle from −50 to 340 ◦C at a heating/cooling rate of
20 ◦C/min and N2 condition.

2.2. Grinding Setup and Sensors

The prerequisite for a technological signature of grinding was the thermo-mechanical
load characterization during processing. An inline measurement system of forces and
temperatures was implemented on an industrial computerized numerical control (CNC)
machine with a specialized setup (Figure 1). A Planomat 408 CNC machine (Blohm Jung
GmbH, Hamburg, Germany) was improved using a SINUMERIK 840d sl control (Siemens
AG, Munich, Germany) with a Data Acquisition (DAQ) system capable of spindle power
registration at a sampling of 0.002 s. The maximum machine spindle limits were 1450 rpm
and 7.5 kW. Two Slimline cells (Kistler Group AG, Winterthur, Switzerland) were added to
measure the normal and tangential forces. A MAXYMOS TYP5877A/B (Kistler Group AG,
Winterthur, Switzerland) acquired the cell signals, working as an amplifier and monitoring
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system, with a sampling of 0.001 s. The applied filter was 5 Hz. A Type K-thermocouple
(1.0 mm diameter and 500 mm length) measured processing temperatures up to 1200 ◦C.
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Figure 1. Sensor diagram and the internal configuration of the grinding machine.

A Multicon CMC-99 controller (Simex Sp. z o.o, Gdansk, Poland) recorded the logged
data of the thermocouple with a sampling interval of 0.1 s. The temperature sensor’s tip
was 29.5 mm far from the bottom surface, and the hole was filled with epoxy resin to
prevent measurement errors derived from movements of the sensor axis. The temperature
and the power were filtered post-processing after the data acquisition was completed.

A stationary 0.6 × 0.6 × 5 mm3 diamond plate, equipped with three tips, allowed the
dressing of the wheel with a low-pressure coolant with oil emulsion CIMCOOLCIMTECH
A31F (Cimcool Industrial Products B.V., Vlaardingen, NL, USA) plus water at 3.5% in
volume. The grinding machine had two cooling nozzles. The first nozzle was oriented to
the contact point between the wheel and workpiece for controlling temperatures during
machining. The second nozzle, oriented to the wheel rear, cleaned the grinding wheel of
debris accumulated in the porous structure, causing possible non-cutting and temperature
rises. Furthermore, the two cooling settings were low pressure (3 bar) and high pressure
(6 bar). The aluminum oxide Al2O3 grain wheel was selected based on previous experience
with the same materials [11]. The wheel was coded as 45A120-5G11RM-LV233/35 (ELBE
Schleifmittelwerk GmBh & Co KG, Sachsenheim, Germany) and had an initial diameter
D equal to 400 mm and a thickness t of 30 mm. Table 3 reports the dressing parameters
employed during experiments.

Table 3. Dressing Parameters.

Property Value Unit

Grinding wheel speed vc 40 m/s
Dressing quota in Y 0.036 mm

Z-axis speed 120 mm/min
Number of passes 1 -
Coolant pressure 3 bar

After every process step, surface quality was evaluated to observe the microscopic
alterations on the samples. Firstly, the pieces were cleaned and mounted after processing
on an Evo MA25 Scanning Electronic Microscope (Carl Zeiss AG, Oberkochen, Germany)
to examine the ground surface and systematically appraise the surface quality and possible
factors of defects. The ground surface was coated with gold to reveal the initial microstruc-
ture without polishing it to alter the surface quality. The surface images were taken with
20 kV using a Back Scattered Electron (BSE) detector to identify backscattered electrons un-
der very low angles and a maximum magnification of 500× [18]. In the case of undamaged
parts, the surface roughness was then measured using a MarSurf XCR20 surface contour
and roughness unit (Mahr GmbH, Göttingen, Germany). This instrument had a resolution
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of 0.19 µm using the 175 mm probe arm and 0.04 µm relative to the measuring system,
using a mechanical probe MFW250 at a speed of 0.5 mm/s and a measuring distance of Ls
equal to 3.2 mm in a normal direction to the grinding path. The principal surface quality
parameters were the arithmetic mean height Ra and the maximum height parameter Rz,
according to definitions of ISO 21920-2:2021. Ra and Rz were sampled by the unity analysis
PGK120 integrated with the instrument, automatically filtering the results and presenting a
surface profile.

3. Results and Discussion
3.1. Initial Considerations

After rough milling and drilling the plate to realize the samples, the top cutting surface
was evaluated to assess the quality before grinding. The machined PA66 samples had a Ra of
4.2 µm and an Rz of 20.4 µm, while the corresponding values for the machined PA66GF30
samples were 7.2 µm and 40.1 µm, respectively. A higher roughness of the PA66GF30
samples was expected because of the presence of the fibers. Five infeed velocities vw were
chosen to observe the effects of this parameter on the cutting zone, endeavoring to increase
the temperature influence by reducing the Peclet number Pe, defined as:

Pe =
vw × lg

4× α
(1)

with α, the material’s thermal diffusivity, and the length lg,

lg =
√

ae × D (2)

Defined as the geometrical contact length between the tool and the workpiece. Its
value determined the amount of heat transferred to the workpiece due to the diffusive
effects compared to the advective effects [19]. A Peclet number is a similarity number,
characterizing the cutting regime’s relative influence on the workpiece material’s thermal
properties. For Pe greater than 10, the heat source (the cutting tool) moves over the
workpiece faster than the velocity of thermal wave propagation. The thermal energy
generated in cutting due to the plastic deformation of the work material and friction at the
tool-chip interface did not affect the work material ahead of the tool. On the contrary, for
Pe less than 10, the thermal energy due to the plastic deformation and friction makes an
essential contribution to the process of plastic deformation during cutting, affecting the
mechanical properties of the work material [20]. The contact time tc was

tc =
lg

vw
(3)

defined as the time the tool was in contact with the workpiece. Its value ranged between
0.211 and 0.632 s for a contact length lg of 6.32 mm. As the speed increased, less heat
was transferred to the samples because of a reduction in the contact time. In the case of
polyamide samples, the coolant flow was sufficient to avoid significant thermal variations.
The low thermal diffusivity value combined with the proposed speeds led to situations
where the Peclet number Pe in this application was higher, in the range 60–200, than most
conventional grinding operations on metals, making the advective effects dominant [21].
The contact zone was not expected to increase as the values of vw were much less dom-
inant to the process than the cutting speed vc. In the fastest scenario with vw equal to
1800 mm/min, the grinding wheel speed vc was three orders greater than the infeed speed
vw, making a micrometrical growth in the geometric contact zone. The grinding parameters
are presented in Table 4.



J. Manuf. Mater. Process. 2022, 6, 81 6 of 11

Table 4. Grinding Parameters.

Property Value Unit

Grinding wheel speed vc 30 m/s
Cutting depth ae 0.1 mm
Infeed speed vw 600, 900, 1200, 1500, 1800 mm/min

Grinding thickness b 5 mm
Coolant pressure pc 6 bar

3.2. Forces and Energy Evaluation

The maximum values of the normal force Fn and tangential force Ft measured by the
loading cells during processing are shown in Figure 2. These values were collected after
stabilization, making three repetitions of grinding with the same processing parameters.
Previous experience suggested that the lubricant could influence the obtained values, and
in this case, the nozzle angle and flow rate were adjusted to minimize interference during
data acquisition [17]. Normal and tangential forces on both materials tended to increase
as the infeed speed vw grew. This behavior agreed with previous works in PMCs [2,12],
revealing small tangential forces with low infeed speeds. The material removal rate Q,
defined as

Q = b× ae × vw (4)

increased with the cutting depth ae and infeed speed vw, making larger values easily mea-
sured. A cutting depth increase generated high forces combined with a good measurement
of temperature and power. However, using this technique proved to cause much debris
in the grinding wheel requiring constant dressing. This condition was very unfavorable
for a productive reality, and the infeed speed was increased until practically measuring
the forces correctly. The cutting power P on the surface was the product of the measured
tangential force Ft, normal force Fn, the grinding wheel speed vc, and the normal radial
speed vn,

P = Ft × vc + Fn × vn (5)
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Since vn was equal to zero for surface grinding, P was only the product of Ft and vc.
This power was directly compared to the measured spindle power Pspindle, defining the
energy cutting partition η as

η =
P

Pspindle
(6)

The values of the power and force were taken at the same point as the temperature
measurement made by the thermocouple. The energy cutting partition η measured how
much energy was directly transferred to cutting the workpiece. A η reduction suggested an
increase in wasted energy. Analyzing the process, three main phases existed. The rubbing
phase occurred at small depths with elastic deformations at the surface of the workpiece.
Plowing was accomplished by some material becoming plastically deformed with a depth
increase. This plastic deformation typically presented itself in the form of upheaval around
the leading edge of the grain, and it was most often characterized by the formation of a
scratch or groove. Finally, at yet more significant depths, a chip was formed and ejected
from the workpiece surface [22]. Power was lost during the grinding process primarily by
heat generated on the surface by rubbing and plastic deformation. The secondary loss was
the mechanical energy for chip removal. The specific energy es was computed from the
valuable part of the mechanical energy.

es =
P
Q

=
Ft × vc

b× ae × vw
(7)

The knowledge of specific energy was essential in grinding because it influenced the
surface integrity of machined components in ductile materials. The specific grinding energy
was a helpful process parameter to control ductility since the specific grinding energy was
accompanied by a transition from ductile-regime to brittle-regime [23]. It indicated how
much energy was used to remove one cubic millimeter of material. The value of es was
typically material-dependent [6]. Figure 3 shows how the infeed speed vw affected the
process efficiency in grinding both materials.
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The energy cutting partition η quickly raised with a speed increase, starting from the
initial value of 55%, and arriving at the maximum value of 75%. Since the temperature was
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not a factor directly involved in the process analysis, the outcome was that high degrees of
lost power 1-η at low speeds were explicitly related to mechanical phenomena. A high Pe
coupled with conventional refrigeration promoted the thermal dissipation of the generated
heat directly to the grinding wheel-coolant system. The results pointed out that the specific
energy es at a low infeed speed vw of 900 mm/min was subject to an immediate sharp
decline of 28% from the previous value of 600 mm/min. At the highest infeed speed vw of
1800 mm/min, the required energy to remove one cubic millimeter of material was reduced
by more than a half of that at 600 mm/min. The converging specific energy es matched
other experiences with these materials [17].

Of particular interest was that η and es of both materials converged to similar values.
This behavior could be attributed to the cutting mechanisms at different infeed speeds.
In low infeed speeds, the applied forces in the unfilled material allowed a full plastic
deformation and then breaking for the chip formation. The PA66GF30 was more brittle,
and less energy was required to remove a fraction of the material. Adding the glass
fibers to the PA66 matrix improved mechanical properties such as elastic modulus, yield
strength, and ultimate tensile strength, drastically reducing the elongation at break (Table 2).
Consequently, a lower cutting force was required to grind the material, as reported in
previous research [17]. With an infeed speed increase, forces were applied on the PA66
sample in less time, and the process became more efficient with less energy required to
remove material.

3.3. Surface Quality Results

The thermo-mechanical loads applied during grinding modified the surface part in-
tegrity. The processing parameters directly influenced the combined load. A higher cutting
velocity usually increased the tool-workpiece temperatures while the forces remained
stable or decreased due to thermal softening. On the contrary, the tool wear increased the
process forces, surface load, and process temperatures by frictional heat [24]. However, the
faster the workpiece moved during grinding, the less time the tool was in contact with the
workpiece at the same point. The slower the piece moved, the wheel passed more times at
the same point, increasing smoothness.

The above-described phenomena partially diverged in the case of the grinding of
polymeric materials. As Figure 4 shows, the surface quality of the natural PA66, represented
by Ra and Rz, advanced with the increase of the infeed speed vw. On the contrary, PA66GF30
material presented a slight growth in surface roughness, with less influence of the infeed
speed on the final workpiece quality. The Rz values of PA66GF30 samples were within
2.30 µm (low speed) and 3.30 µm (high speed), while the Rz values of PA66 were within
3.51 µm (high speed) and 7.74 µm (low speed). All Ra and Rz values were lower than
those of the milled samples. The arithmetic roughness Ra followed the same trend, with
the values reduced from 1.0 µm to 0.5 µm for PA66 and between 0.4 µm and 0.6 µm for
PA66GF30. The above results suggested the hypothesis of the time-dependent mechanical
properties of the material.

The fast application of the force gave less time to respond to the mechanical strain,
determining an improvement in the surface quality of the samples. At a low strain rate,
the material presented a typical viscoelastic response with a delayed deformation and
stress relaxation, while at a high strain rate, the behavior was ideally plastic. The material
stiffness changed suddenly with strain rate, probably due to the chain relaxation. The chain
motion kept up with the strain rate at low values, causing more significant deformation
while presenting minor deformation at a higher rate [25]. The stress-strain relationship and
high strain rates caused higher flow stress but more softening. An increasing trend in the
maximum stress was associated with increased strain rates [26].
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The SEM analysis also confirmed the time-dependent mechanical properties of the
material. In Figure 5, the ground surfaces of both materials are shown with a 300×
magnification. In the PA66 surfaces, nerving as vestiges of long plastic deformation were
present on the surfaces at low infeed speed vw. With a speed increase, the surfaces were less
nerving and smoother, revealing some defects for not perfect cutting. As for the PA66GF30,
the fibers did not seem to protrude from the surface at low speeds. Instead, the fibers
tended to break with speed growth because of the higher strain rate. In both materials,
incomplete cuts caused material accumulation.
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Figure 5. SEM images of the ground surface at 300× amplification.

4. Conclusions

In this study, an energy approach was used to analyze the surface grinding and to
consider the effects of infeed speed on the final surface quality of unfilled (PA66) and glass-
filled polyamides (PA66GF30). The first result identified the time-dependent mechanical
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properties of the material during processing. The fast application of the force gave less time
to respond to the mechanical strain, determining an improvement in the surface quality
of the samples. The material acted as a viscoelastic response at a low strain rate, while
the behavior was ideal plastic at a high strain rate. The specific energy decreased, and the
energy cutting partition increased with an increase of the infeed speed, converging to the
same values for both materials.

Furthermore, the resulting roughness (arithmetic and maximum height) of PA66
improved with infeed speed, reaching its lowest at the highest speed due to process-
induced material brittleness. In the case of PA66GF30, the roughness remained stable in the
investigated infeed range, with a slight increase with an infeed increase. These results were
also confirmed by the image analysis of the ground surfaces with a scanning electronic
microscope.

Further research should be addressed to investigate the morphology of the ground
surface, considering the grinding wheel grit size and structure to identify the active grit
number and distribution. This way, a surface-focused process control could be implemented
to digitally evaluate the grinding process before experimentation and real application in
industrial cases.
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