
Citation: Hussain, M.; Chen, T.;

Hill, R. Moving toward Smart

Manufacturing with an Autonomous

Pallet Racking Inspection System

Based on MobileNetV2. J. Manuf.

Mater. Process. 2022, 6, 75. https://

doi.org/10.3390/jmmp6040075

Academic Editor: Steven Y. Liang

Received: 26 May 2022

Accepted: 4 July 2022

Published: 8 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Manufacturing and
Materials Processing

Journal of

Article

Moving toward Smart Manufacturing with an Autonomous
Pallet Racking Inspection System Based on MobileNetV2
Muhammad Hussain , Tianhua Chen * and Richard Hill

School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;
muhammad.hussain@hud.ac.uk (M.H.); r.hill@hud.ac.uk (R.H.)
* Correspondence: t.chen@hud.ac.uk

Abstract: Pallet racking is a fundamental component within the manufacturing, storage, and distri-
bution centers of companies around the World. It requires continuous inspection and maintenance
to guarantee the protection of stock and the safety of personnel. At present, racking inspection is
manually carried out by certified inspectors, leading to operational down-time, inspection costs
and missed damage due to human error. As companies transition toward smart manufacturing, we
present an autonomous racking inspection mechanism using a MobileNetV2-SSD architecture. We
propose a solution that is affixed to the adjustable cage of a forklift truck, enabling adequate coverage
of racking in the immediate vicinity. Our proposed approach leads to a classifier that is optimized for
deployment onto edge devices, providing real-time alerts of damage to forklift drivers, with a mean
average precision of 92.7%.

Keywords: defect detection; deployment; rack damage; smart manufacturing; warehouse automation

1. Introduction

Smart Manufacturing also known as Industry 4.0 is the coined term for referring to
manufacturing facilities that are fully integrated, collaborative, and able to action on data
in real time. Looking deeper into the concept at a production floor level, we find that
the automation of specific tasks leads to the generation of data; this data, facilitated by
communication protocols is collected, processed, and then actioned upon. The collection
and actioning of the data and its ability to provide interconnectedness between the different
operations within the facility and beyond is concisely known as Smart Manufacturing. This
research focuses on the initial part of this hierarchy, that is the need for automation of a
particular process.

Warehouses, distribution centers, and storage sites have a common storage infrastruc-
ture that is critical to the daily operation of their respective businesses, known as pallet
racking. Racking allows businesses to store their stock in a secure and accessible manner.
Such infrastructure also presents potential safety hazards. Damaged racking can lead to
spoiled stock, injured employees, and also loss of life, particularly if the racking subse-
quently collapses. There are two major causes that can lead to racking collapsing. The first is
a result of incorrect installation of racking. This can lead to an accumulation of stress within
the racking over time as stock is loaded onto it. The second is a result of careless operation
of forklifts whilst loading on/from racking. In this case, the driver may unintentionally
damage the racking through impact whilst trying to pick or place stock with a forklift. This
damage can remain unnoticed for long periods of time, leading to an accumulation of stress
damage, until the racking fails completely. This paper focuses on the timely detection of
the latter type of damage through the use of computer vision-based algorithms.

J. Manuf. Mater. Process. 2022, 6, 75. https://doi.org/10.3390/jmmp6040075 https://www.mdpi.com/journal/jmmp

https://doi.org/10.3390/jmmp6040075
https://doi.org/10.3390/jmmp6040075
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com
https://orcid.org/0000-0001-8458-6202
https://orcid.org/0000-0003-4495-1871
https://doi.org/10.3390/jmmp6040075
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com/article/10.3390/jmmp6040075?type=check_update&version=2

J. Manuf. Mater. Process. 2022, 6, 75 2 of 17

1.1. Literature Review

At present there is a dearth of literature examining the use of deep learning for racking
inspection. We have broadened our literature search to include related work in the use of
computer vision for structural health monitoring.

Chuan-Zi Dong et al. [1] provides a review of computer vision (CV) techniques and
applications for structural health monitoring (SHM). He starts by categorizing SHM into
two distinct groups: local and global. In the former category he identifies use cases such
as crack, delamination, and loose bolt detection. The global group includes placement
measurement, structural behavior analysis, vibration serviceability, modal identification,
and damage detection. The author concludes that CV-SHM requires high quality data
to provide fruitful results. In many applications the scale of data required to train the
model can be huge. The lack of data acquisition setups referring to image data within the
manufacturing industry can be highlighted as one of the major constraints for the slow
growth of CV within this industry.

Hong-Hu Zhu et al. [2] reviewed image processing techniques adapted by researchers
for CV-SHM applications. They author presents, the “inherent distinctive” advantages of
CV-SHM as non-contact, long distance, electromagnetic inferences, and multiple object
detection. Discussing the constraints of the technology and its applications, the author
explains how most of the work around CV-SHM is limited to laboratories. He argues due to
this “constrained-environment” testing, that trained models have a higher risk of failing in
production owing to complicated site conditions. In our research we address this issue by
training our models on data originating directly from the production facility. Furthermore,
once the model is trained, testing is not constrained to the software realm, but rather we
deploy our model to a hardware device and conduct inferences in production without
specifying any test rig. The author also highlights another adverse effect as data quality
issues, such as environmental lighting and ground variations. Our research proves how this
no longer is a major issue in the field of CV due to the introduction of “data augmentation”
techniques. However, our research also provides evidence of diminishing model accuracy
due to random data augmentation without domain knowledge.

Taking a deeper look into the backend infrastructure of computer vision, we find the
recent and rapid development of deep learning techniques in particular convolutional
neural networks (CNN) combined with transfer learning have been major contributors
in delineating CV. AlexNet [3], was developed by Hinton and team in 2012, introducing
a graphics processing unit (GPU) to accelerate calculations. To increase the speed of
model convergence, the team implemented a rectified linear activation function (ReLU).
Over the last decade, myriad of state-of-the-art CNN networks have been developed by
GoogleNet [4], VGGNet [5], R-CNN [6], Fast R-CNN [7], Faster R-CNN [8]. The motive
behind the development of all these algorithms was to continuously improve the level of
accuracy in object detection.

The above models are widely implemented in certain industries such as medicine [9–11],
and autonomous vehicles [12–16]. However, their use is mostly limited to R&D in many
businesses. A similar trend is also seen in the manufacturing industry [17]. The lack of
device deployment within production is due to the fact that all algorithms mentioned above
demand a significant amount of computational resources [18]. Therefore, in most cases
they reside in the cloud and data are transferred from the production facility to the cloud
for inferences based on which an action may be triggered. With the continuous evolvement
of IoT, Industry 4.0 and GDPR [19], in general, businesses are more vigilant to the issue of
data security. This has given rise to edge device deployments, where internet connectivity
may not be required making the system less vulnerable to attack.

Developers across the deep learning domain have been working on addressing the
challenges of deploying computer vision models on edge devices. Two algorithms, Single
Shot Detector (SSD MobileNets) [20] and You Only Look Once (YOLO), are lightweight with
considerations given to speed and accuracy on edge devices. Researchers are continuously

J. Manuf. Mater. Process. 2022, 6, 75 3 of 17

improving the architecture of these models with the fifth version of YOLO introduced in
April 2021, YOLOv5 [21].

Dhiraj et al. [22], present a 1-D CNN-based architecture for the detection and classifi-
cation of bearing faults on time-series data. The research is based on four different datasets
with the aim to provide a computationally light-weight solution to problem. The work com-
pares the feature extraction capabilities of the proposed 1-D convolutional network with a
2-D network via sensitivity analysis achieving an accuracy in the range of 99.34–99.49% as
compared to 97.74% for the 2-D CNN. The authors present their contribution as a computa-
tionally inexpensive solution and an alternative to the computationally intensive bearing
fault detection processes found in the industry.

Venkat Anil et al. [23], proposed a YOLOv2 object detection model for the inspection
of printed circuit boards (PCB). The model was trained on 11,000 images annotated by
domain experts, achieving a detection accuracy of 98.79%. Although, the accuracy is very
impressive for a defect detection model, the author does not carry out any data augmen-
tation techniques in order to introduce more variance and cater for environmental and
site-specific condition at the manufacturing site, such as dim lightning, various production
line configurations. In our research, we propose domain-specific augmentations to be
applied to datasets in the absence of large amounts of data for improved generalization.

Yiting Li et al. [24], proposed a MobileNet-SSD model for real-time accurate detection
of surface defects such as breaches, dents, and abrasions on sealing surfaces of a container.
The author presents a two-stage data pre-processing and augmentation process, however,
the relationship between selected augmentations and ground floor reality is not explicit.
Furthermore, results show the model was able to detect all types of “breach” defect class.
However, other classes had a noticeable reduction in detection accuracy with “dent” only
being detected with an accuracy of 90%. The author justifies this by explaining that the
“dent” class was much harder to visualize with the human eye, which in turn makes it
difficult for the model to detect.

Fahimeh Farahnakian et al. [25], present the only available research literature found to
directly focus on the implementation of automated pallet racking inspection (2021). The
authors collect their own racking data, after acknowledging that no racking data were
publicly available. The authors chose to take the image segmentation approach rather
than the popular object detection for localization and defect classification. The authors
select the Mask-RCNN architecture with ResNet-101 as the backbone for feature extrac-
tion. The report network performance achieves mean-average-precision (MAP) of 93.45%
at Intersection over Union (IoU) of 50%. However, the selection of image segmentation
adds additional processing and computational load into the workflow, rendering deploy-
ment onto computationally constrained edge devices infeasible. We provide an in-depth
comparison with our proposed methodology based on object detection and [25] in the
results section.

The majority of products commercially available are designed to limit the severity
of impact to racking legs in the form of polymer guards such as “Rack Armour” from
Rack Group [26] and “Rack Bull” from Boplan [27]. The issue with these products is that
they are purely mechanical and as a result, they can only be deployed for dampening
the impact rather than discovering, alerting, and classifying damage. Companies such as
A-Safe [28] have tried to embed intelligence into their racking solutions by shifting their
R&D toward sensor-enabled products, Rackeye [28], respectively. Although, the transition
toward intelligence-based rack monitoring enables continuous monitoring of racking, it has
certain logistical, technical, and financial limitations. Rackeye fundamentally determines
an impact based on the readings from an accelerometer. As a result, large distribution
centers such as Amazon or Coca Cola would require thousands of these sensor devices (one
for each racking leg) to provide coverage of every racking leg. This is costly to purchase
and also creates on-going maintenance cost for powering the devices (battery replacement).
Furthermore, accelerometers have a sensitivity range (couple of meters), hence, even after

J. Manuf. Mater. Process. 2022, 6, 75 4 of 17

attaching a sensor to every racking leg, damage caused to higher level racking (more likely
due to less driver visibility) may go unnoticed.

Summing the literature, we find that there is a lack of consideration given to model
quantization for deployment purposes. For example, the opting of defect segmentation
in [25] as opposed to bounding box approach, eliminates the potential of the trained MaskR-
CNN, being deployed onto an edge device for close to source inferences. Furthermore,
there is a lack of domain-specific augmentation implementation, this is a key factor when it
comes to addressing data scarcity, whilst maintaining representative network performance.
From the deployment side, we observe the lack of intelligence based solution deployment,
this again circles back to the design decisions taken in algorithmic development stage,
resulting in computationally demanding architectures, incapable of being deployed onto
computationally constrained (CPU-based) edge devices.

1.2. Paper Contribution

To overcome the issues attached to purely mechanical and sensor-based solutions
discussed in the previous section and the computational inefficiencies of two-stage de-
tectors, we propose the implementation of a MobileNet-SSD architecture for detecting
damage to pallet racking. Furthermore, we extend our research to deployment of the
trained architecture onto an edge device (Raspberry Pi [29]). We demonstrate how the
strategic placement of the edge device onto the forklift rather than the racking itself enables
coverage to all levels of racking.

The selection of the forklift for facilitating the edge device means it can be directly
powered from the host (Forklift), hence no external power costs are involved i.e., periodic
battery replacements. Additionally, our solution means the required number of devices are
proportional to the number of forklifts rather than the number of racking legs. This makes
our solution attractive to large distribution centers as it reduces the amount of hardware
required for coverage. Figure 1 presents a high-level overview of our proposed solution
against the conventional systems, benchmarked on three key metrics: placement, coverage,
and cost.

J. Manuf. Mater. Process. 2022, 6, 75 4 of 17

hence, even after attaching a sensor to every racking leg, damage caused to higher level

racking (more likely due to less driver visibility) may go unnoticed.

Summing the literature, we find that there is a lack of consideration given to model

quantization for deployment purposes. For example, the opting of defect segmentation in

[25] as opposed to bounding box approach, eliminates the potential of the trained

MaskRCNN, being deployed onto an edge device for close to source inferences. Further-

more, there is a lack of domain-specific augmentation implementation, this is a key factor

when it comes to addressing data scarcity, whilst maintaining representative network per-

formance. From the deployment side, we observe the lack of intelligence based solution

deployment, this again circles back to the design decisions taken in algorithmic develop-

ment stage, resulting in computationally demanding architectures, incapable of being de-

ployed onto computationally constrained (CPU-based) edge devices.

1.2. Paper Contribution

To overcome the issues attached to purely mechanical and sensor-based solutions

discussed in the previous section and the computational inefficiencies of two-stage detec-

tors, we propose the implementation of a MobileNet-SSD architecture for detecting dam-

age to pallet racking. Furthermore, we extend our research to deployment of the trained

architecture onto an edge device (Raspberry Pi [29]). We demonstrate how the strategic

placement of the edge device onto the forklift rather than the racking itself enables cover-

age to all levels of racking.

The selection of the forklift for facilitating the edge device means it can be directly

powered from the host (Forklift), hence no external power costs are involved i.e., periodic

battery replacements. Additionally, our solution means the required number of devices

are proportional to the number of forklifts rather than the number of racking legs. This

makes our solution attractive to large distribution centers as it reduces the amount of

hardware required for coverage. Figure 1 presents a high-level overview of our proposed

solution against the conventional systems, benchmarked on three key metrics: placement,

coverage, and cost.

Figure 1. Abstract solution comparison.
Figure 1. Abstract solution comparison.

J. Manuf. Mater. Process. 2022, 6, 75 5 of 17

2. Methodology
2.1. Data Procurement

To the best of our understanding no open-source data consisting of representative
racking images is available, a plausible explanation for the lack of automated architectures
for racking damage. Our research addresses this primary requirement by partnering with
various local warehouses within West Yorkshire, UK, enabling us to accumulate the first
racking dataset, that could be used for training object detection architectures.

Figure 2 presents our methodological approach for collecting the dataset. To obtain
a representative dataset, we attached a smartphone to the cage of the forklift with the
camera facing towards the racking. The video recorder was enabled whilst the forklift was
being operated around the warehouse loading and unloading stock onto the racking. The
collected data were transferred onto a laptop via Dropbox, and the video stream was split
based on one-second per split.

J. Manuf. Mater. Process. 2022, 6, 75 5 of 17

2. Methodology

2.1. Data Procurement

To the best of our understanding no open-source data consisting of representative

racking images is available, a plausible explanation for the lack of automated architectures

for racking damage. Our research addresses this primary requirement by partnering with

various local warehouses within West Yorkshire, UK, enabling us to accumulate the first

racking dataset, that could be used for training object detection architectures.

Figure 2 presents our methodological approach for collecting the dataset. To obtain

a representative dataset, we attached a smartphone to the cage of the forklift with the

camera facing towards the racking. The video recorder was enabled whilst the forklift was

being operated around the warehouse loading and unloading stock onto the racking. The

collected data were transferred onto a laptop via Dropbox, and the video stream was split

based on one-second per split.

Figure 2. Data procurement strategy.

As an alternative strategy for data collection, we could have taken random images of

racking via an online search for “warehouse racking”. However, data collected in this

fashion would not have the variance, background details, various levels of damage, to

train a well generalized architecture that can be deployed onto an actual production floor

for live testing.

2.2. Data Pre-Processing

The methodological process for preprocessing of the static dataset is shown in Figure

3. First, due to the selection of video for data capturing without human intervention, the

captured dataset was indiscriminate of racking. Therefore, after splitting of the frames,

many images contained no racking, for example as the forklift moved away from the rack-

ing area, hence these images were filtered out of the network.

Figure 2. Data procurement strategy.

As an alternative strategy for data collection, we could have taken random images
of racking via an online search for “warehouse racking”. However, data collected in this
fashion would not have the variance, background details, various levels of damage, to train
a well generalized architecture that can be deployed onto an actual production floor for
live testing.

2.2. Data Pre-Processing

The methodological process for preprocessing of the static dataset is shown in Figure 3.
First, due to the selection of video for data capturing without human intervention, the
captured dataset was indiscriminate of racking. Therefore, after splitting of the frames,
many images contained no racking, for example as the forklift moved away from the
racking area, hence these images were filtered out of the network.

J. Manuf. Mater. Process. 2022, 6, 75 6 of 17J. Manuf. Mater. Process. 2022, 6, 75 6 of 17

Figure 3. Data preprocessing.

Although this process was carried out manually, an innovative idea arose from this

process, that is, the development of a sub-classifier that can determine the presence of

racking in an image and remove images that lack any racking content. This is not the scope

of this research, however, a key direction for future work that will assist with streamlining

huge amounts video content for creating representative racking datasets and can be

extended to other applications.

Next, auto-orientation of pixel data was carried out. When capturing an image, the

metadata dictating the pixel deployment is stored in the Exchangeable Image File Format

(EXIF). This enables faster image encoding so the camera device sample data without un-

desirable artifacts. All images were resized to 416 × 416 pixels as the final step of the pre-

processing stage.

As the task here was to determine and localize the fault i.e., object detection rather

than image classification, creating bounding boxes around the areas of interest (damaged

racking), was critical. Computer Vision Annotation Tool (CVAT) by OpenCV was used

for applying bounding boxes to the dataset. The determination of bounding boxes was as

critical as these would serve as the ground truth priors to which the accuracy of predicted

bounding boxes during the training phase would be judged. The applying of bounding

boxes was based on the nature of our dataset. From the sample images shown in Figure 4,

it can be observed that the image is “rich” in content, that is to say there are many details

around the area of interest (damaged racking). Hence, the applying of bounding boxes

would need to be “tightly-bound”, focusing on only the area of damage, in order to pro-

vide the training phase with sufficient data for generalization. Figure 4A presents the

Figure 3. Data preprocessing.

Although this process was carried out manually, an innovative idea arose from this
process, that is, the development of a sub-classifier that can determine the presence of
racking in an image and remove images that lack any racking content. This is not the
scope of this research, however, a key direction for future work that will assist with
streamlining huge amounts video content for creating representative racking datasets and
can be extended to other applications.

Next, auto-orientation of pixel data was carried out. When capturing an image, the
metadata dictating the pixel deployment is stored in the Exchangeable Image File Format
(EXIF). This enables faster image encoding so the camera device sample data without
undesirable artifacts. All images were resized to 416 × 416 pixels as the final step of the
pre-processing stage.

As the task here was to determine and localize the fault i.e., object detection rather
than image classification, creating bounding boxes around the areas of interest (damaged
racking), was critical. Computer Vision Annotation Tool (CVAT) by OpenCV was used
for applying bounding boxes to the dataset. The determination of bounding boxes was as
critical as these would serve as the ground truth priors to which the accuracy of predicted
bounding boxes during the training phase would be judged. The applying of bounding
boxes was based on the nature of our dataset. From the sample images shown in Figure 4,
it can be observed that the image is “rich” in content, that is to say there are many details
around the area of interest (damaged racking). Hence, the applying of bounding boxes
would need to be “tightly-bound”, focusing on only the area of damage, in order to provide
the training phase with sufficient data for generalization. Figure 4A presents the correctly

J. Manuf. Mater. Process. 2022, 6, 75 7 of 17

applied bounding box, whilst Figure 4B captures unwanted pixels details that can mislead
the generalization of the architecture during training.

J. Manuf. Mater. Process. 2022, 6, 75 7 of 17

correctly applied bounding box, whilst Figure 4B captures unwanted pixels details that

can mislead the generalization of the architecture during training.

Figure 4. Considerations for bounding boxes (A) Tightly bound (correct), (B) Loosely bound (in-

correct), (C) Occluded Damage (correct) and (D) Occluded Damage (incorrect)

Another factor that was observed in the dataset was the issue of background-pixel

neutralization with respect to the racking. For example, in Figure 4C,D, it can be observed

that the distinctness of the racking is compromised due to the background also being the

same color. In addition to this, we also observe that the stock (white rolls) introduces a

slight degree of occlusion near the damaged racking section. Endorsing, the possibility of

the level of occlusion being of a greater degree, Figure 4C presents our approach for ap-

plying the bounding box. It can be seen that rather than avoiding the small section of

occlusion, this is included in the bounding area so that the architecture during training

appreciates the fact that occlusions are a real possibility rather than ignoring all racking

containing occlusions. Figure D shows the application of the bounding box, ignoring the

occluded area, as a result it can be seen that a section of the damage is also not included

in the area of interest.

2.3. Data Augmentations

The next phase of the methodology involves the introduction of domain-specific aug-

mentations for introducing variance into the dataset and aims to boosting the generaliza-

tion ability of the architecture during training.

The first augmentation to be applied was the random cropping of image; specifically,

0–3% of the image would be cropped. This would essentially create a random subset of

the original sample. The rationale for selecting random cropping was due to the fact that

the area of interest, i.e., damaged racking would not always be entirely visible due to

stock-based occlusions nor the same distance with respect to the camera.

Second, random rotation augmentation between −6 and +6 degrees was applied to

the original dataset. The rationale for this was due to the fluctuations in angles that the

racking appeared in the image as a result of the camera being placed on the Forklift (con-

tinuously in motion i.e., approaching and moving away from the racking). Figure 5A pre-

sents a sample image from the racking dataset. As explained in the dataset collection sec-

tion earlier, the image is a biproduct of a video captured via a smartphone placed on the

Forklift. Figure 5B presents an augmented sample of the original image with a random

rotation of 6 degrees. This simulates a very realistic scenario where the placement of the

camera is offset whilst loading or off-loading stock due to its close proximity.

Figure 4. Considerations for bounding boxes (A) Tightly bound (correct), (B) Loosely bound (incor-
rect), (C) Occluded Damage (correct) and (D) Occluded Damage (incorrect).

Another factor that was observed in the dataset was the issue of background-pixel
neutralization with respect to the racking. For example, in Figure 4C,D, it can be observed
that the distinctness of the racking is compromised due to the background also being the
same color. In addition to this, we also observe that the stock (white rolls) introduces a
slight degree of occlusion near the damaged racking section. Endorsing, the possibility
of the level of occlusion being of a greater degree, Figure 4C presents our approach for
applying the bounding box. It can be seen that rather than avoiding the small section of
occlusion, this is included in the bounding area so that the architecture during training
appreciates the fact that occlusions are a real possibility rather than ignoring all racking
containing occlusions. Figure 4D shows the application of the bounding box, ignoring the
occluded area, as a result it can be seen that a section of the damage is also not included in
the area of interest.

2.3. Data Augmentations

The next phase of the methodology involves the introduction of domain-specific aug-
mentations for introducing variance into the dataset and aims to boosting the generalization
ability of the architecture during training.

The first augmentation to be applied was the random cropping of image; specifically,
0–3% of the image would be cropped. This would essentially create a random subset of
the original sample. The rationale for selecting random cropping was due to the fact that
the area of interest, i.e., damaged racking would not always be entirely visible due to
stock-based occlusions nor the same distance with respect to the camera.

Second, random rotation augmentation between−6 and +6 degrees was applied to the
original dataset. The rationale for this was due to the fluctuations in angles that the racking
appeared in the image as a result of the camera being placed on the Forklift (continuously in
motion i.e., approaching and moving away from the racking). Figure 5A presents a sample
image from the racking dataset. As explained in the dataset collection section earlier, the
image is a biproduct of a video captured via a smartphone placed on the Forklift. Figure 5B
presents an augmented sample of the original image with a random rotation of 6 degrees.
This simulates a very realistic scenario where the placement of the camera is offset whilst
loading or off-loading stock due to its close proximity.

J. Manuf. Mater. Process. 2022, 6, 75 8 of 17
J. Manuf. Mater. Process. 2022, 6, 75 8 of 17

Figure 5. Domain specific augmentations (A) original, (B) Random Rotation, (C) Brightness adjust-

ment (darker), (D) Brightness adjustment (lighter) and (E) Gaussian blur

Next, random brightness adjustment was introduced varying between −5 and +5%.

The justification for this was to simulate the fluctuations in the light level intensity (LUX)

that may be experienced at different distribution centers. Figure 5C,D presented darker

and lighter augmented samples of the original image in Figure 5A circling back to the

selection criteria based on domain specific augmentation selection, it can confidently be

stated that the generated augmentations (Figure 5C,D) are representative of production

floor camera output due to various lightning conditions.

Furthermore, to address the issue of non-static camera placement, Gaussian Blur was

introduced. As mentioned earlier, the edge device housing the camera would be placed

on the adjustable forks on the Forklift. Whilst this provides coverage to all levels of rack-

ing, relative to the Forklift, the device is exposed to continuous movement, which can lead

to blurred output. However, due to the reduced speed of Forklifts whilst operating

around racking, the blur factor would not completely render the image content as unread-

able. Hence, we introduced pixel wise Gaussian Blur for simulating blurred image sam-

ples. Figure 5E shows the generated output image after applying pixel-wise Gaussian Blur

to the original image (Figure 5A). Similar to the case for applying random brightness ad-

justments, Gaussian Blur would introduce representative variance that might be caused

due to an impact leading to reduced camera focus.

Summarizing the selection of augmentations, we would like to point out that deep

learning development frameworks such as Pytorch, TensorFlow, and Keras provide a

wide range of inbuilt augmentations that can be deployed without much effort. However,

rather than indiscriminate use of augmentations we opted for representative sample gen-

eration based on our deployment environment. As a result, we were able to train our ar-

chitecture in a couple of hours using Google Collaboratory GPU’s without any timeout

issue. Conversely, the use of wide-ranging augmentations without any justification would

have led to increased training time, increased training time and the need for dedicated

GPU’s rather than utilizing freely available cloud GPU resources offered by Google, Mi-

crosoft Azure, Amazon Web Services etc.

Figure 5. Domain specific augmentations (A) original, (B) Random Rotation, (C) Brightness adjust-
ment (darker), (D) Brightness adjustment (lighter) and (E) Gaussian blur.

Next, random brightness adjustment was introduced varying between −5 and +5%.
The justification for this was to simulate the fluctuations in the light level intensity (LUX)
that may be experienced at different distribution centers. Figure 5C,D presented darker and
lighter augmented samples of the original image in Figure 5A circling back to the selection
criteria based on domain specific augmentation selection, it can confidently be stated that
the generated augmentations (Figure 5C,D) are representative of production floor camera
output due to various lightning conditions.

Furthermore, to address the issue of non-static camera placement, Gaussian Blur was
introduced. As mentioned earlier, the edge device housing the camera would be placed on
the adjustable forks on the Forklift. Whilst this provides coverage to all levels of racking,
relative to the Forklift, the device is exposed to continuous movement, which can lead to
blurred output. However, due to the reduced speed of Forklifts whilst operating around
racking, the blur factor would not completely render the image content as unreadable.
Hence, we introduced pixel wise Gaussian Blur for simulating blurred image samples.
Figure 5E shows the generated output image after applying pixel-wise Gaussian Blur to the
original image (Figure 5A). Similar to the case for applying random brightness adjustments,
Gaussian Blur would introduce representative variance that might be caused due to an
impact leading to reduced camera focus.

Summarizing the selection of augmentations, we would like to point out that deep
learning development frameworks such as Pytorch, TensorFlow, and Keras provide a wide
range of inbuilt augmentations that can be deployed without much effort. However, rather
than indiscriminate use of augmentations we opted for representative sample generation
based on our deployment environment. As a result, we were able to train our architecture
in a couple of hours using Google Collaboratory GPU’s without any timeout issue. Con-
versely, the use of wide-ranging augmentations without any justification would have led to
increased training time, increased training time and the need for dedicated GPU’s rather
than utilizing freely available cloud GPU resources offered by Google, Microsoft Azure,
Amazon Web Services etc.

J. Manuf. Mater. Process. 2022, 6, 75 9 of 17

2.4. Architecture Selection

Once the dataset transformation was complete, the next step was the selection of
the architecture that would be used for training in the dataset. There are many object
detection architectures available for defect detection, however the majority of these require
dedicated GPU’s and are usually hosted on the cloud due to the high computational
demand. This is due to the deployment of a “two-stage” detection methodology, whereby,
the architecture first generates regional proposals and then object classification is carried
out on each proposal. Although this does provide a higher degree of accuracy, the increased
computational load makes it undeployable at the edge. The purpose of this research was
to train a Lightweight architecture that is able to carry out inference within an enclosed
environment (raspberry pi) with a high degree of accuracy and in real-time. Hence, we
decided to select a “one-shot” detector, carrying out both classification and bounding-box
regression in a single stage.

2.5. Examining the Single Shot Multibox Architecture

Single Shot Detector (SSD) is a popular single-stage architecture for high-speed infer-
ence where the highest degree of accuracy is not a primary requirement. The SSD network
architecture, implemented with the VGG16 network as the backbone providing six feature
maps with varying dimensions and aspect ratios for the back-end detection of objects.

Next, a non-maximum suppression (NMS) mechanism is applied to the detection
outputs. In the case of multiple overlapping detection outputs, the detection output with
the highest confidence score is proposed. While the use of VGG16 as the backbone enables
useful feature extraction capabilities, its internal architecture is extremely deep, containing
over 130 million parameters making it difficult to attain real-time inference on edge devices
with constrained computational capacities.

2.6. MobileNetV2 Coupling with SSD

To address the issue of computational complexity as a result of VGG16 as backbone
for the SSD detector, Google [15] replaced the VGG16 architecture with the Mobilenet
network, leading to improved real-time inference for the SSD architecture. Figure 6 presents
Mobilenet-v2, as the backbone of the SSD network for our application.

J. Manuf. Mater. Process. 2022, 6, 75 9 of 17

2.4. Architecture Selection

Once the dataset transformation was complete, the next step was the selection of the

architecture that would be used for training in the dataset. There are many object detection

architectures available for defect detection, however the majority of these require dedi-

cated GPU’s and are usually hosted on the cloud due to the high computational demand.

This is due to the deployment of a “two-stage” detection methodology, whereby, the ar-

chitecture first generates regional proposals and then object classification is carried out on

each proposal. Although this does provide a higher degree of accuracy, the increased com-

putational load makes it undeployable at the edge. The purpose of this research was to

train a Lightweight architecture that is able to carry out inference within an enclosed en-

vironment (raspberry pi) with a high degree of accuracy and in real-time. Hence, we de-

cided to select a “one-shot” detector, carrying out both classification and bounding-box

regression in a single stage.

2.5. Examining the Single Shot Multibox Architecture

Single Shot Detector (SSD) is a popular single-stage architecture for high-speed infer-

ence where the highest degree of accuracy is not a primary requirement. The SSD network

architecture, implemented with the VGG16 network as the backbone providing six feature

maps with varying dimensions and aspect ratios for the back-end detection of objects.

Next, a non-maximum suppression (NMS) mechanism is applied to the detection

outputs. In the case of multiple overlapping detection outputs, the detection output with

the highest confidence score is proposed. While the use of VGG16 as the backbone enables

useful feature extraction capabilities, its internal architecture is extremely deep, contain-

ing over 130 million parameters making it difficult to attain real-time inference on edge

devices with constrained computational capacities.

2.6. MobileNetV2 Coupling with SSD

To address the issue of computational complexity as a result of VGG16 as backbone

for the SSD detector, Google [15] replaced the VGG16 architecture with the Mobilenet net-

work, leading to improved real-time inference for the SSD architecture. Figure 6 presents

Mobilenet-v2, as the backbone of the SSD network for our application.

Figure 6. SSD coupled with MobileNetV2 as backbone.
Figure 6. SSD coupled with MobileNetV2 as backbone.

Mobilnetv2-SSD implements a concept known as depth-wise separable convolutions.
This is essentially a form of factorized convolutions, factorizing any standard convolution
into two parts: depth-wise convolutions and point-wise convolutions. This factorization of

J. Manuf. Mater. Process. 2022, 6, 75 10 of 17

the convolutions in this manner drastically reduces the computation depth and overall size
of the architecture. Notice the importance of NMS in suppressing the potential positive
candidate predictions to the one with the highest Intersection Over Union (IoU) with the
ground truth bounding box (red).

The computational ratio for the depth-wise convolutions and standard convolutions is
expressed in Equation (1), where the dimensions of the convolution kernel are Dk×Dk×M,
depth-wise, pointwise filters are Dk × Dk × 1 and 1 × 1 ×M, respectively, M represents
number of input channels and N gives number of output channels.

Dk × Dk ×M× DF × DF + M× N × DF × DF
Dk × Dk ×M× N × DF × DF

=
1
N

+
1

D2
k

(1)

2.7. System Architecture

The overall system architecture is presented in Figure 7. After completing the data
transformation stage and selection of architecture (discussed in preceding sections), the next
stage was the training of the selected architecture on the data. The hyperparameters used
for training along with the results are discussed in details in the result section. However,
we would like to discuss the proposed deployment process post architectural training.

J. Manuf. Mater. Process. 2022, 6, 75 10 of 17

Mobilnetv2-SSD implements a concept known as depth-wise separable convolutions.

This is essentially a form of factorized convolutions, factorizing any standard convolution

into two parts: depth-wise convolutions and point-wise convolutions. This factorization

of the convolutions in this manner drastically reduces the computation depth and overall

size of the architecture. Notice the importance of NMS in suppressing the potential posi-

tive candidate predictions to the one with the highest Intersection Over Union (IoU) with

the ground truth bounding box (red).

The computational ratio for the depth-wise convolutions and standard convolutions

is expressed in (1), where the dimensions of the convolution kernel are �� × �� × �,

depth-wise, pointwise filters are �� × �� × 1 and 1 × 1 × M, respectively, M represents

number of input channels and N gives number of output channels.

�� × �� × � × �� × �� + � × � × �� × ��

�� × �� × � × � × �� × ��

=
1

�
+

1

��
� (1)

2.7. System Architecture

The overall system architecture is presented in Figure 7. After completing the data

transformation stage and selection of architecture (discussed in preceding sections), the next

stage was the training of the selected architecture on the data. The hyperparameters used

for training along with the results are discussed in details in the result section. However, we

would like to discuss the proposed deployment process post architectural training.

Figure 7. Proposed system architecture.

Once the architecture was trained, the next stage was the conversion of the Tensor-

Flow code to the OpenVino format, in order to facilitate its deployment on the edge de-

vice. The edge device selected for our application was Raspberry Pi 4 Model B. The small

size of the device was suitable, but the main reason for its selection over similar devices

Figure 7. Proposed system architecture.

Once the architecture was trained, the next stage was the conversion of the TensorFlow
code to the OpenVino format, in order to facilitate its deployment on the edge device. The
edge device selected for our application was Raspberry Pi 4 Model B. The small size of
the device was suitable, but the main reason for its selection over similar devices such
as Arduino was its enhanced onboard processing power coupled with Wi-Fi connectivity.
The latter i.e., Wi-Fi was a fundamental component, required for fulfilling the theme of
Smart Manufacturing as it provides a medium for interconnectivity between the devices
and extraction of key data. In our case, if the edge device, attached to the forklift, detected
damage to the racking it was operating on, the buzzer would go high, alerting the driver to

J. Manuf. Mater. Process. 2022, 6, 75 11 of 17

inspect the damage but also an email alert with the time stamp, type of damage, and an
image of the damaged racking would be emailed to the assigned personnel.

2.8. Strategic Placement for Extended Coverage

One of the primary advantages our proposed solution has over all existing sensor-
based rack damage products in the market is its ability to provide coverage to all levels of
racking. As mentioned earlier, our proposed system is not placed on the racking, rather we
utilize the forklift for device placement.

We strategically proposed the placement of the device onto the adjustable forklift
cage. The rationale for this is due to the fact that the case is relative to the “forks” used for
accessing the racking. Figure 8, illustrates the extending of the racking cage for accessing
racking at various heights whilst the forklift is stationary. Hence the placement of the
device onto the cage enables coverage to racking at any level whilst loading and off-loading
is being carried out.

J. Manuf. Mater. Process. 2022, 6, 75 11 of 17

such as Arduino was its enhanced onboard processing power coupled with Wi-Fi connec-

tivity. The latter i.e., Wi-Fi was a fundamental component, required for fulfilling the

theme of Smart Manufacturing as it provides a medium for interconnectivity between the

devices and extraction of key data. In our case, if the edge device, attached to the forklift,

detected damage to the racking it was operating on, the buzzer would go high, alerting

the driver to inspect the damage but also an email alert with the time stamp, type of dam-

age, and an image of the damaged racking would be emailed to the assigned personnel.

2.8. Strategic Placement for Extended Coverage

One of the primary advantages our proposed solution has over all existing sensor-

based rack damage products in the market is its ability to provide coverage to all levels of

racking. As mentioned earlier, our proposed system is not placed on the racking, rather

we utilize the forklift for device placement.

We strategically proposed the placement of the device onto the adjustable forklift

cage. The rationale for this is due to the fact that the case is relative to the “forks” used for

accessing the racking. Figure 8, illustrates the extending of the racking cage for accessing

racking at various heights whilst the forklift is stationary. Hence the placement of the de-

vice onto the cage enables coverage to racking at any level whilst loading and off-loading

is being carried out.

Figure 8. Proposed device placement and resultant coverage.

3. Results

3.1. Hyper-Parameters

The size of the transformed dataset used for training the MobileNetV2-SSD architec-

ture is presented in Table 1. The training and validation class contained a corresponding

“xml” file for each image with the co-ordinates for the bounding boxes around the dam-

age, for assisting with the evaluation process. It may be argued that the training set is

significantly higher than the validation and training sets. The reason for this was first due

to the fact that the training set alone contains all generated augmentations. Second, and

most importantly due to the limited number of damage samples it is important to validate

and test the model on unique samples rather than simply add repetitive samples to in-

crease the size. At the same time, we overcome the risk of overfitting on the validation

Figure 8. Proposed device placement and resultant coverage.

3. Results
3.1. Hyper-Parameters

The size of the transformed dataset used for training the MobileNetV2-SSD architecture
is presented in Table 1. The training and validation class contained a corresponding “xml”
file for each image with the co-ordinates for the bounding boxes around the damage, for
assisting with the evaluation process. It may be argued that the training set is significantly
higher than the validation and training sets. The reason for this was first due to the fact that
the training set alone contains all generated augmentations. Second, and most importantly
due to the limited number of damage samples it is important to validate and test the model
on unique samples rather than simply add repetitive samples to increase the size. At the
same time, we overcome the risk of overfitting on the validation dataset due to the limited
number of samples as compared to the training set. The hyperparameters used for training
MobileNetV2-SSD architecture are presented in Table 2.

J. Manuf. Mater. Process. 2022, 6, 75 12 of 17

Table 1. Transformed dataset.

Data Samples

Training 19,600
Validation 78

Test 39

Table 2. Hyperparameters.

Batch Size 24
Steps 10,000

Learning Rate 0.004
Optimizer RMS-PROP

3.2. Model Evaluation

The training of the architecture was undertaken in Google Colab, as this provides free
GPU access for speeding-up the training time, albeit with time restrictions on use. The
results for model evaluation are presented in Table 3.

Table 3. Model evaluation.

MAP@50 (IOU) 92.7%
Initial Loss 4.54
Final Loss 1.96

Training Time 1 h:54 m:41 s

Before dwelling into the results presented in Table 3, it is important to provide the
rationale for the selection of metrics for the model evaluation. Intersection over Union (IoU)
also known as the Jaccard Index is the fundamental and guiding principal for evaluating
object detection architectures. IoU enables the quantification of similarity between the
predicted Bp and ground truth Bg bounding boxes, as shown in Equation (2):

IoU =
area

(
Bp ∩ Bg

)
area

(
Bp ∪ Bg

) (2)

In our case the defined overlap between Bp and Bg was 50%, so a 50% overlap between
the ground truth bounding box Bg (defined in the annotation stage by the user), and the
predicted bounding box Bp had to be achieved by the model for a correct classification.

Furthermore, MAP (mean average precision) was selected as it provides an appropriate
measure of the model’s sensitivity. The precision, recall, and F1-score were computed for a
confidence threshold defined as 50%. The MAP was computed as Equation (3), where APi
is the average precision for the i-th class and C is the number of classes:

MAP =
1
C

C

∑
i=1

APi (3)

Circling back to Table 3, we observe that the model was evaluated based on the mean
average precision based on an IoU of 50%. The model achieved an 92.7% (MAP@50 (IoU)).
This is an impressive performance on many fronts. First, the network was only trained
for 10,000 steps, whereas object detection architectures for production floor deployments
can require over 100,000 steps for reaching acceptable performance. This endorses our
methodological approach in determining appropriate augmentations for enabling true
generalization of the architecture during training.

Second, the dataset was directly acquired from the production floor rather than uti-
lizing a pre-processed readily available dataset. As a result, the size of the dataset was
less than 20,000 samples in total, whilst convolutional neural networks (CNN) require

J. Manuf. Mater. Process. 2022, 6, 75 13 of 17

humongous amounts of image data for training and high generalization. The small sized
dataset even after applying augmentations (<20,000 samples) again is a manifestation of
the successful capturing of the domain specific variance through tailored generation of new
samples as discussed in the methodology section.

From Table 3, we observe that the initial loss was at 4.54 reaching a final loss of 1.96. We
are confident that the loss could have been further reduced to less than zero by increasing
considerably the training duration, i.e., increasing steps. However, due to the limitations
on free GPU accessibility in Google Colab, we constrained our training to 10,000 steps.
Nevertheless, we feel the overall performance of the architecture at 92.7% MAP shows the
effectiveness of our approach.

Finally, Table 3 shows that the architecture required less than 2 h for generalization
at 92.7% MAP with 10,000 steps. It is well-known that CNN architectures for image
classification and in particular object detection in general require significant amounts of
training time, in some cases weeks, for acceptable performance. However, by providing a
quality dataset coupled with the selection of a light-weight architecture utilizing depth-wise
convolutions to limit the number of parameters, we were able to present a high performant
model achieving an MAP of 92.7% @ IoU-50 in less than 2 h.

4. Discussion
4.1. Two Stage Detector Comparison

Table 4 compares the architectural performance of the MobileNetV2-SSD architecture
against a two-stage detector. Here we evaluate the Faster-RCNN with a VGG backbone for
feature extraction against the proposed MobileNetV2 as the backbone.

Table 4. Architectural performance.

Model Input GMAC (G) Parameters (MB)

MobileNetv2-SSD 300 × 300 2.88 22
Faster-RCNN 600 × 850 344 523

Observing the architectural metrics in Table 4, it is evident that the selected archi-
tecture is computationally more effective and hence more suitable for deployment onto
computationally demanding devices such as a Raspberry Pi. Looking at the input dimen-
sion requirements, it can be observed that the two-stage detector required an input image of
600× 850 pixels leading to more computational parameters through the convolutional process.

4.2. Proposed Solution vs. Similar Research Comparison

As mentioned earlier, Ref. [25] was the only research found to be based on the detection
of pallet racking damage within warehouses. Table 5 presents a comparison of our research
with that undertaken recently by [25] for automated damage detection of pallet racking.

Table 5. Recent work comparison.

Our Research Research by [25]

Approach Object Detection Image Segmentation
Dataset Size 19,717 75

Detector Single Shot Two Stage
Architecture MobileNetV2-SSD Mask-RCNN-ResNet-101

MAP@0.5(IoU) 92.7% 93.45%

Starting with the research approach, it can be observed from Table 5, there is a distinct
difference between the two works. Authors in [25] decide to go down the image segmenta-
tion approach for proposing a defect detection mechanism for pallet racking. Although this
is a perfectly reasonable methodological approach, we would point out that this approach
increases the preprocessing work required post data acquisition. As acknowledged by the

J. Manuf. Mater. Process. 2022, 6, 75 14 of 17

authors, the dataset required segment-specific annotations utilizing polygons for capturing
the overall shape of the defect region on a pixel basis. Although, this would not have
been a major issue for the authors as the dataset only consisted of 75 images, in realistic
terms the dataset would consist of thousands of images (in our case ~20,000), therefore the
segmented annotation requirement would demand much more pixel-wise accuracy, effort,
and time. In our case, the selection of object detection as opposed to image segmentation,
allowed us to annotate images using rectangular bounding boxes and provided more
pixel-wise flexibility.

Looking at the architecture selection, Table 5 shows that authors in [25] opted for
a two-stage detector in the form of Mask-RCNN with ResNet-101 as the backbone for
feature extraction. Although this results in better accuracy compared to our selected
architecture, albeit by a small margin of 0.75%, the selection of the ResNet-101 means
additional computational load making the architecture undeployable on constrained edge
devices. Simply, comparing the number of learnable parameters, the ResNet-101 contains
44.5 M whilst the MobileNetV2 contains 22 M. Although, authors in [25] do not mention
training time, we feel this would be significantly higher as compared to less than 2 h for
training on our dataset due to the substantially higher amount of parameters that need to
be tuned for the ResNet-101.

Figure 9 presents visual image comparison between the two works. When comparing
our dataset with that of [25], it can be observed that although both works aim to solve
the issue of rack damage detection in warehouses, the images are distinctly different in
their content.

J. Manuf. Mater. Process. 2022, 6, 75 15 of 17

Figure 9. Inference comparison between the two architectures, (A) Fahimeh Farahnakian, (B) Pre-

dictions on our dataset.

5. Conclusions

In conclusion, our research has led to the proposal of the first Deep Learning-based

real-time damage detection of pallet racking within distribution centers, warehouses, and

retail storage facilities. Our proposed solution provides an overall MAP of 92.7% and the

selection of MobileNetV2-SSD as the CNN underlying architecture facilitates edge device

deployment with a detection latency of 1 s. The inference can be termed as real-time based

on our application. That is the forklift operating close to the racking i.e., whilst loading

onto or from the racking would be stationary, therefore the device has a leverage of at

least a couple of seconds for scanning the status of the racking and providing an alert in

the case of detecting damage. Our successful methodological approach for selective data

augmentations based on production floor variations, enabled us to achieve over mean av-

erage precision at 0.5 of 92.7%. Although, [25] achieved a higher accuracy, the difference

was 0.75%. however, looking at the broader implications of the decision decisions, our

approach was based on the implementation of a single shot detector making it a feasible

option for edge device deployment. Whilst the MaskRCNN had slightly higher accuracy

(margin of 0.75%), its computationally demand due to 44.5 Million (ResNet-101 backbone)

learnable parameters, ruled out edge device deployment on a CPU device. We also feel

that our data collection and augmentation strategy was more representative, that is the

dataset consisted of the background stock as opposed to a close-up image of just the rack-

ing. This again enabled the model to highly generalize. It also saves computational pro-

cessing steps, as the model no longer requires a background subtraction mechanism be-

fore it is able to carry out the inference.

Figure 9. Inference comparison between the two architectures, (A) Fahimeh Farahnakian, (B) Predic-
tions on our dataset.

J. Manuf. Mater. Process. 2022, 6, 75 15 of 17

Our dataset was collected with the aim to provide representative data for training
an architecture that can truly generalize for racking defect detection. Hence, the images
contained deployed pallet racking with various loads. Conversely, authors in [25] base
their research on racking that is not actually deployed in the warehouse (Figure 9), but
rather single close-up images of racking are taken and then segmentation is applied to the
damaged region. Although, this may provide high training performance we feel, when
deployed within a warehouse environment for real-time monitoring, the model would face
significant data drift issues due to the lack of variance captured for training the dataset.

5. Conclusions

In conclusion, our research has led to the proposal of the first Deep Learning-based
real-time damage detection of pallet racking within distribution centers, warehouses, and
retail storage facilities. Our proposed solution provides an overall MAP of 92.7% and the
selection of MobileNetV2-SSD as the CNN underlying architecture facilitates edge device
deployment with a detection latency of 1 s. The inference can be termed as real-time based
on our application. That is the forklift operating close to the racking i.e., whilst loading
onto or from the racking would be stationary, therefore the device has a leverage of at
least a couple of seconds for scanning the status of the racking and providing an alert in
the case of detecting damage. Our successful methodological approach for selective data
augmentations based on production floor variations, enabled us to achieve over mean
average precision at 0.5 of 92.7%. Although, [25] achieved a higher accuracy, the difference
was 0.75%. however, looking at the broader implications of the decision decisions, our
approach was based on the implementation of a single shot detector making it a feasible
option for edge device deployment. Whilst the MaskRCNN had slightly higher accuracy
(margin of 0.75%), its computationally demand due to 44.5 Million (ResNet-101 backbone)
learnable parameters, ruled out edge device deployment on a CPU device. We also feel that
our data collection and augmentation strategy was more representative, that is the dataset
consisted of the background stock as opposed to a close-up image of just the racking. This
again enabled the model to highly generalize. It also saves computational processing steps,
as the model no longer requires a background subtraction mechanism before it is able to
carry out the inference.

In contrast from conventional products, we have proposed the placement of the
deployed solution onto the adjustable forklift cage for extended coverage to higher level
racking. Additionally, our research collects and collates the first racking dataset based
on real pallet racking images procured from various operational warehouses. We aim to
further enhance the solution, contributing toward smart manufacturing by interconnecting
forklifts via damage detection alerts and creating damage racking reports, and defect cluster
reporting to assist floor managers with pallet racking optimization.

A limitation of this research was that only a single damage class was examined, that is
vertical damage. This was due to the data only being available for this class. We aim to
extend our research by incorporating multiple types of damage detection classes such as
horizontal, support, and base plate damage. We aim to work with the standard racking
agency SEMA for developing a defect detection architecture that ensures damage levels set
by the agency can be successfully detected via our network. We also aim to categorize each
damage into major or minor enabling floor managers to make informed decision on the
urgency of replacement on a case by case basis. This would provide the racking industry
with a mechanism for continuous monitoring of the racking as opposed to quarterly or
annual racking inspections, providing a more safer operating environment.

Author Contributions: Conceptualistion, Methodology, Software, Investigation, Formal Analysis,
Data Curation, Writing—original draft preparations, M.H.; Writing—review and editing, Supervision,
T.C., Writing—review and editing, R.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

J. Manuf. Mater. Process. 2022, 6, 75 16 of 17

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: We would like to appreciate Spark Intelligence UK for providing access to the
warehouses for the data collection. We would also like to show our appreciation to all warehouses
within the Yorkshire region UK, for permitting us to procure and assemble a representative dataset
without which this research would not have been possible. As a result of this collaboration, we
have been successful in assembling the first racking defect dataset based on real images, that can be
utilized by developers for creating novel AI enabled architectures for automated racking inspection.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dong, C.-Z.; Catbas, F.N. A review of computer vision–based structural health monitoring at local and global levels. Struct. Health

Monit. 2020, 20, 692–743. [CrossRef]
2. Zhu, H.-H.; Dai, F.; Zhu, Z.; Guo, T.; Ye, X.-W. Smart sensing technologies and their applications in civil infrastructures 2016.

J. Sens. 2016, 2016, 8352895. [CrossRef]
3. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
4. Ran, H.; Wen, S.; Shi, K.; Huang, T. Stable and compact design of Memristive GoogLeNet neural network. Neurocomputing 2021,

441, 52–63. [CrossRef]
5. Yang, Z. Classification of picture art style based on VGGNET. J. Phys. Conf. Ser. 2021, 1774, 012043. [CrossRef]
6. Gajja, M. Brain tumor detection using mask R-CNN. J. Adv. Res. Dyn. Control Syst. 2020, 12, 101–108. [CrossRef]
7. Liu, S. Pedestrian detection based on Faster R-CNN. Int. J. Perform. Eng. 2019, 15, 1792. [CrossRef]
8. Fu, L.; Majeed, Y.; Zhang, X.; Karkee, M.; Zhang, Q. Faster R–CNN–based apple detection in dense-foliage fruiting-wall trees

using RGB and depth features for robotic harvesting. Biosyst. Eng. 2020, 197, 245–256. [CrossRef]
9. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I.

A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef]
10. Farinella, G.M.; Kanade, T.; Leo, M.; Medioni, G.G.; Trivedi, M. Special issue on assistive computer vision and robotics—Part I.

Comput. Vis. Image Underst. 2016, 148, 1–2. [CrossRef]
11. Hansen, L.; Siebert, M.; Diesel, J.; Heinrich, M.P. Fusing information from multiple 2D depth cameras for 3D human pose

estimation in the operating room. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 1871–1879. [CrossRef]
12. Ghosh, S.; Pal, A.; Jaiswal, S.; Santosh, K.C.; Das, N.; Nasipuri, M. SegFast-V2: Semantic image segmentation with less parameters

in deep learning for autonomous driving. Int. J. Mach. Learn. Cybern. 2019, 10, 3145–3154. [CrossRef]
13. Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of deep learning techniques for autonomous driving. J. Field Robot.

2019, 37, 362–386. [CrossRef]
14. Grigorescu, S.; Cocias, T.; Trasnea, B.; Margheri, A.; Lombardi, F.; Aniello, L. Cloud2Edge elastic AI framework for prototyping

and deployment of AI inference engines in autonomous vehicles. Sensors 2020, 20, 5450. [CrossRef] [PubMed]
15. Grigorescu, S.M.; Trasnea, B.; Marina, L.; Vasilcoi, A.; Cocias, T. NeuroTrajectory: A Neuroevolutionary approach to local state

trajectory learning for autonomous vehicles. IEEE Robot. Autom. Lett. 2019, 4, 3441–3448. [CrossRef]
16. Cocias, T.; Razvant, A.; Grigorescu, S. GFPNet: A deep network for learning shape completion in generic fitted primitives. IEEE

Robot. Autom. Lett. 2020, 5, 4493–4500. [CrossRef]
17. Zubritskaya, I.A. Industry 4.0: Digital transformation of manufacturing industry of the Republic of Belarus. Digit. Transform.

2019, 3, 23–38. [CrossRef]
18. Cao, B.; Wei, Q.; Lv, Z.; Zhao, J.; Singh, A.K. Many-objective deployment optimization of edge devices for 5G networks. IEEE

Trans. Netw. Sci. Eng. 2020, 7, 2117–2125. [CrossRef]
19. Sun, S.; Zheng, X.; Villalba-Díez, J.; Ordieres-Meré, J. Data handling in industry 4.0: Interoperability based on distributed ledger

technology. Sensors 2020, 20, 3046. [CrossRef]
20. Wang, X.; Hua, X.; Xiao, F.; Li, Y.; Hu, X.; Sun, P. Multi-object detection in traffic scenes based on improved SSD. Electronics 2018,

7, 302. [CrossRef]
21. Hu, X.; Liu, Y.; Zhao, Z.; Liu, J.; Yang, X.; Sun, C.; Chen, S.; Li, B.; Zhou, C. Real-time detection of uneaten feed pellets in

underwater images for aquaculture using an improved YOLO-V4 network. Comput. Electron. Agric. 2021, 185, 106135. [CrossRef]
22. Neupane, D.; Kim, Y.; Seok, J.; Hong, J. CNN-based fault detection for smart manufactuing. Appl. Sci. 2021, 11, 11732. [CrossRef]
23. Adibhatla, V.A.; Chih, H.-C.; Hsu, C.-C.; Cheng, J.; Abbod, M.F.; Shieh, J.-S. Defect detection in printed circuit boards using

you-only-look-once convolutional neural networks. Electronics 2020, 9, 1547. [CrossRef]
24. Li, Y.; Huang, H.; Xie, Q.; Yao, L.; Chen, Q. Research on a surface defect detection algorithm based on MobileNet-SSD. Appl. Sci.

2018, 8, 1678. [CrossRef]
25. Farahnakian, F.; Koivunen, L.; Makila, T.; Heikkonen, J. Towards Autonomous Industrial Warehouse Inspection. In Proceedings of

the 2021 26th International Conference on Automation and Computing (ICAC), Portsmouth, UK, 2–4 September 2021. [CrossRef]

http://doi.org/10.1177/1475921720935585
http://doi.org/10.1155/2016/8352895
http://doi.org/10.1145/3065386
http://doi.org/10.1016/j.neucom.2021.01.122
http://doi.org/10.1088/1742-6596/1774/1/012043
http://doi.org/10.5373/JARDCS/V12SP8/20202506
http://doi.org/10.23940/ijpe.19.07.p5.17921801
http://doi.org/10.1016/j.biosystemseng.2020.07.007
http://doi.org/10.1016/j.media.2017.07.005
http://doi.org/10.1016/j.cviu.2016.05.010
http://doi.org/10.1007/s11548-019-02044-7
http://doi.org/10.1007/s13042-019-01005-5
http://doi.org/10.1002/rob.21918
http://doi.org/10.3390/s20195450
http://www.ncbi.nlm.nih.gov/pubmed/32977409
http://doi.org/10.1109/LRA.2019.2926224
http://doi.org/10.1109/LRA.2020.3000851
http://doi.org/10.38086/2522-9613-2019-3-23-38
http://doi.org/10.1109/TNSE.2020.3008381
http://doi.org/10.3390/s20113046
http://doi.org/10.3390/electronics7110302
http://doi.org/10.1016/j.compag.2021.106135
http://doi.org/10.3390/app112411732
http://doi.org/10.3390/electronics9091547
http://doi.org/10.3390/app8091678
http://doi.org/10.23919/icac50006.2021.9594180

J. Manuf. Mater. Process. 2022, 6, 75 17 of 17

26. Rack Armour. The Rack Group. Available online: https://therackgroup.com/product/rack-armour/ (accessed on 25 May 2022).
27. RE RackBull®. Boplan, 25 September 2015. Available online: https://www.boplan.com/en/products/flex-impactr/rack-

protection/re-rackbullr (accessed on 25 May 2022).
28. Warehouse Racking Impact Monitoring|RackEye from A-SAFE. A-SAFE. Available online: https://www.asafe.com/en-gb/

products/rackeye/ (accessed on 25 May 2022).
29. Raspberry Pi 4 Model B. The Pi Hut. Available online: https://thepihut.com/collections/raspberry-pi/products/raspberry-pi-4-

model-b (accessed on 25 May 2022).

https://therackgroup.com/product/rack-armour/
https://www.boplan.com/en/products/flex-impactr/rack-protection/re-rackbullr
https://www.boplan.com/en/products/flex-impactr/rack-protection/re-rackbullr
https://www.asafe.com/en-gb/products/rackeye/
https://www.asafe.com/en-gb/products/rackeye/
https://thepihut.com/collections/raspberry-pi/products/raspberry-pi-4-model-b
https://thepihut.com/collections/raspberry-pi/products/raspberry-pi-4-model-b

	Introduction
	Literature Review
	Paper Contribution

	Methodology
	Data Procurement
	Data Pre-Processing
	Data Augmentations
	Architecture Selection
	Examining the Single Shot Multibox Architecture
	MobileNetV2 Coupling with SSD
	System Architecture
	Strategic Placement for Extended Coverage

	Results
	Hyper-Parameters
	Model Evaluation

	Discussion
	Two Stage Detector Comparison
	Proposed Solution vs. Similar Research Comparison

	Conclusions
	References

