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Abstract: Acoustic emission (AE) signals collected from different locations might provide various
sensitivities to tool wear condition. Studies for tool wear monitoring using AE signals from sensors
on workpieces has been reported in a number of papers. However, it is not feasible to implement
in the production line. To study the feasibility of AE signals obtained from sensors on spindles to
monitor tool wear in micro-milling, AE signals obtained from the spindle housing and workpiece were
collected simultaneously and analyzed in this study for micro tool wear monitoring. In analyzing both
signals on tool wear monitoring in micro-cutting, a feature selection algorithm and hidden Markov
model (HMM) were also developed to verify the effect of both signals on the monitoring system
performance. The results show that the frequency responses of signals collected from workpiece
and spindle are different. Based on the signal feature/tool wear analysis, the results indicate that
the AE signals obtained from the spindle housing have a lower sensitivity to the micro tool wear
than AE signals obtained from the workpiece. However, the analysis of performance for the tool
wear monitoring system demonstrates that a 100% classification rate could be obtained by using
spindle AE signal features with a frequency span of 16 kHz. This suggests that AE signals collected on
spindles might provide a promising solution to monitor the wear of the micro-mill in micro-milling
with proper selection of the feature bandwidth and other parameters.

Keywords: AE signals; micro-milling; hidden Markov model (HMM); tool wear monitoring

1. Introduction

Micro-mechanical cutting technology has attracted more attention in the past decades
in micro-manufacturing due to the increase in demand for mechanical components with
micro-features. A number of studies by Masuzawa [1], Dornfeld et al. [2], Chae et al. [3],
and Balázs et al. [4] have been reported in the discussion of potential applications and
challenges for the development of micro-mechanical cutting technology [1–4]. Micro-tool
condition monitoring plays a vital role in maintaining the reliability and efficiency of the
system in industry applications because of the weakness of micro-tools compared to their
conventional counterparts. Tool condition monitoring uses signal features to identify the
tool wear or breakage condition indirectly during cutting. A system, in general, includes a
sensing module, a feature generation and selection module, and a classifier module. A num-
ber of studies that focused on conventional cutting tool condition monitoring have been
reported over the past 40 years [5–12]; however, work related to micro-tool condition moni-
toring is still in the developing stages. Byrne et al. [5], Dimla et al. [6], and Rehorn et al. [7]
reviewed the development of tool condition monitoring technology before Industry 4.0
was promoted around the world. In the past five years, Hopkins et al. [8], Nath et al. [9],
Wong et al. [10], Serin et al. [11], and Kuntoğlu et al. [12] have also reviewed the develop-
ment of tool condition monitoring technologies, focusing more on the application of deep
learning algorithms. Kuntoğlu et al. [13] focused on a review of the features of various
sensors and their applications in machining processes. Indirect sensing technologies, such
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as power, cutting force, vibration, and acoustic emission (AE) signals are considered as the
candidates for detecting micro-tool condition based on the knowledge accumulated from
the conventional cutting tool condition monitoring research [6]. Acoustic emission sensors
attract considerable attention for tool condition monitoring in micro-cutting because of
its high-frequency characteristics and the generation from the dislocation motion in the
material [14–16]. In the early stages of application of AE signals to tool condition monitor-
ing, Emel et al. [14] studied and confirmed the feasibility of applying AE signals to monitor
tool wear in turning. In 2002, Lee et al. [15] used AE signals to explore the grain orientation
and grain boundary effect in the precision cutting process. This study confirmed that, due
to its high signal-to-noise ratio at very low depths of cut, AE is a leading sensing technology
for monitoring precision machining processes. In the same year, Li [16] also reviewed the
application of AE signals to monitor tool condition in turning. Griffin et al. [17] reported the
use of AE signals to control the dimension deviations and prediction of surface roughness in
the micro-machining of THz waveguides. In the development of the tool wear monitoring
system, a stable sensor installation with reliable signals sensitive to tool wear change is a
crucial issue for developing a reliable tool wear monitoring system. In general, the closer
the sensors are installed to the cutting point, the more reliable are the AE signals that can be
received for detecting tool wear change. Moreover, the increase in the path or interface for
the AE signal transmission will reduce the signal energy significantly. Therefore, a number
of researches have focused on the signals obtained from AE sensors installed on the work-
piece in conventional or micro-milling/drilling processes [18–26], or the tool holder in the
turning process [27,28]. For tool wear monitoring in conventional cutting, Klocke et al. [18]
used AE signals obtained from sensors attached to the workpiece to separate the different
cutting-edge engagements or different wear conditions of the drilling tools in step drilling.
The k-means algorithm was used to classify different conditions. Hu et al. [19] also installed
the AE sensor on the workpiece to collect AE signals to monitor four states of tool wear
conditions in the milling of titanium alloy Ti-6Al-4V under MQL conditions. Support vector
machine (SVM) integrated with linear discriminant analysis was adopted as the classifier.
In 2021, Twardowski et al. [20] reported the use of workpiece AE signals to monitor flank
wear in the milling of an aluminum-ceramic composite containing 10% SiC. A decision
tree was adopted in this study to identify the tool condition. For tool wear monitoring
in micro-machining, Tansel et al. [21] reported the use of AE signals to estimate the tool
wear and breakage in micro-end-milling. Jemielniak and Arrazola [22] presented a study
of applying the workpiece AE and cutting force signals to tool condition monitoring in
the micro-milling of cold-work tool steel. The results revealed the strong influence of
tool wear on acoustic emission signals. Kang et al. [23] presented results showing that
acoustic emission (AE) signals acquired from a workpiece jig have para-metric features
from 400 kHz to 600 kHz for variable machining conditions in micro-lens machining with a
200 µm diameter ball end mill. Malekiana et al. [24] reported the study of applying sensors
including vibration, cutting force, and workpiece AE signals to the monitoring of tool
wear in micro-milling, along with neuro-fuzzy algorithms. The results suggest that the
fusion of three sensors provides a better classification rate than adopting only one sensor.
Feng et al. [25] investigated the grinding force, system vibration, workpiece AE signals, and
spindle load for tool wear monitoring in the micro-end grinding of ceramic materials. The
results suggest that the combination of workpiece vibration and grinding force provides a
better solution than AE signals. Prakash and Kanthababu [26] presented a study on tool
condition monitoring using workpiece AE signals in the micro-end-milling of different
materials including aluminum, copper, and steel alloys. A strong relationship between
the tool wear (flank wear) and acoustic emission (AERMS) signals could be observed in
this study. For tool wear monitoring in the turning process, Segreto et al. [27] presented
work on tool wear estimation during the turning of Inconel 718 by the fusion of cutting
force, AE, and vibration signal features along with artificial-neural-network-based machine
learning paradigms. Chacon et al. [28] studied various AE signal features to predict flank
tool wear in turning. For the tool wear monitoring in turning, an AE sensor installed on
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the tool holder will not interrupt the normal operation procedure and could be applied to
the production line. However, an AE sensor with a cable installed on the workpiece for
the milling/drilling process is not a good solution for industry applications. A tool wear
monitoring system developed based on AE signals obtained from locations other than the
workpiece in general cannot provide the same performance as AE signals obtained from
locations on the workpiece. Therefore, how to find a proper location for AE installation and
also improve the tool wear monitoring performance in micro-milling plays an important
role to implement an AE-based tool wear monitoring system on the production line. In
the conventional milling process, an AE sensor installed on the spindle, in general, could
not provide enough signal features with respect to tool wear due to the signal being easily
contaminated by the high-level AE energy generated by the spindle bearing. However,
an AE sensor on the spindle housing might provide a practical solution in the production
line due to the lower loading and AE signal generated from the bearing in micro milling,
although the long and complex transmission path from the tool point to the sensor location
still makes it more challenging to develop a reliable tool wear monitoring system compared
to using AE signals collected from sensors on the workpiece.

To evaluate the effect of AE sensor location on tool wear monitoring performance,
reduce the amount of data for model training, and increase the reliability of the monitoring
system in micro-milling, a sensor integrated with feature selection algorithms and the
classifier design is necessary. A number of classifiers were reported for conventional tool
condition monitoring systems in a number of review papers [5–13]. The hidden Markov
model (HMM) is one of the classifiers generally used in tool condition monitoring sys-
tems. By properly assigning the observation sequences in the HMM model development,
it provides the potential to consider the feature variation over the time domain or other
feature space and reduce the noise effect on the system to improve the system reliability. A
number of sensors have been reported in the application of HMM to tool condition moni-
toring for conventional sizes of tool in metal cutting, including the accelerometer [29,30],
dynamometer [31–34], AE sensors [35], and multi-sensor integration [30,32]. Vallejo [29]
monitored the cutting tool-wear condition in a milling process by using a continuous HMM
and an accelerometer mounted to the fixture of the workpiece. The result demonstrates
that the HMM classifier was capable of detecting the cutting tool condition within large
variations in spindle speed and feed rate, with an accuracy of 84.19%. Kang et al. [30]
proposed a method to identify three tool wear states with vibration signals and cutting
force, along with a classifier design based on discrete hidden Markov models (DHMMs).
The results suggest that the proposed method is effective for tool wear recognition and
failure prediction. Baruah and Chinnam [31] presented a method for employing hidden
Markov models (HMMs) and a Kistler 9257B dynamometer to identify the state of the
cutting tool as well as facilitate estimation of the remaining useful life in the drilling process.
Ertunc et al. [32] presented a study for the on-line identification of tool wear based on
the measurement of cutting forces and power signals. The HMM is the selected classifier
model in this study. Zhu et al. [33] proposed a multi-category classification approach, with
continuous HMMs and cutting force features, for tool flank wear state identification in
micro-milling. Averages of 92.5% and 90.5% could be achieved in this study for the micro-
milling of copper and steel, respectively. Li and Liu [34] proposed an improved HMM along
with cutting force to describe the tool wear process under switching cutting conditions in
micro-milling. Ray et al. [35] reported the use of hidden Markov models (HMMs) along
with in-process recorded workpiece acoustic emission (AE) data, to probabilistically classify
a tool’s current wear state, its likely future state, and to detect potential damage during
ball-nosed milling of Titanium-5Al-5Mo-5V-3Cr. However, no study has been reported for
studying the location effect by comparing AE signals obtained simultaneously from the
workpiece to those obtained from the spindle area in micro-milling. In this study, to solve
the problem of transferring the developed tool wear monitoring system with AE signals on
the workpiece to the production line in micro-milling, AE signals collected from the AE
sensor installed on a fixture clamped on the spindle housing were analyzed and compared
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to the signals obtained from the AE sensor installed on the workpiece. At the same time,
due to the significant variation in signal distribution over frequency for various time spans
in a single cutting pass, a hidden Markov model (HMM) was adopted as a classifier for
identifying the tool wear condition based on the retrieved AE signals from both sensors to
verify the effect of sensor location on the monitoring system in micro-milling. For collecting
the signal for system analysis and development, an experiment was implemented with a
700 µm diameter micro-mill and an SK2 workpiece. The AE signals were collected by both
AE sensors simultaneously. The frequency-domain features that closely correlated to the
tool wear change were selected by the class mean scatter criteria for both AE signals. To
evaluate the performance of a tool wear monitoring system based on spindle AE signals,
the HMM-based classifiers were developed by AE signal features collected from sensors
on the workpiece and spindle. For classifier design, the effect of system parameters on its
performance was also analyzed.

2. Monitoring System Development

The schematic of the tool condition monitoring system developed to study the AE
signals from both locations is shown in Figure 1. The AE signals obtained from the sensor
on the spindle (spindle AE) and from the sensor on the workpiece (workpiece AE) were first
collected simultaneously. The frequency domain features for both signals were generated
by transforming time domain signals to frequency domain features by FFT. The HMM
models for the sharp and worn tool were subsequently developed by the selected features
of collected training signals. Once the models were developed, the unknown tool condition
was determined by the AE signals and corresponding developed models. The process for
the model development is shown in Figure 2, in which Fn represents the nth frequency
feature, and λsn is the sharp tool model developed by the nth selected frequency feature of
the AE signals with sharp tool implementation. λwn denotes the worn tool model developed
by the same selected frequency of features with the worn tool set-up. In the evaluation of
the monitoring system, the signals collected from the events other than those used for model
development serve as the input data to the developed model. The system performance is
determined by comparing the tool wear condition determined by the developed monitoring
system to the tool wear condition determined on-line by a microscope. The schematic of
determining the unknown tool condition with the developed model is shown in Figure 3,
in which the tool state Sn based on the one selected feature is determined by referring to the
model with a larger probability value based on the Vitervi algorithm. With a combination
of the results obtained from various selected features, the final decision for the tool state is
determined by fusing all decisions.
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In signal analysis, a number of parameters including the bandwidth size of the fre-
quency features, the choice of selected features, and the size of the observation sequences
theoretically will affect the performance of the developed system. For the analysis of
the feature-bandwidth effect on system performance, three bandwidth sizes, comprising
64 kHz, 32 kHz, and 16 kHz for the frequency features, were set up to investigate its effect
on the noise reduction and classification performance. For the analysis of selected features
that serve as input to the HMM model, three types of selections, comprising one-feature,
three-feature, and five-feature selections, were studied to investigate its effect on the system
performance. In studying the effect of the observation sequence on the system performance,
observation vectors with 3, 10, 20, and 30 symbols were implemented to verify the system
performance. For the study of the effect of the hidden states on the system, the features
were normalized first and assigned to the corresponding hidden state designed in the
model. The integers from 1 to 15 were chosen as the candidate hidden states, and 3, 5, and
7 hidden states were implemented to investigate the effect of the transition of states on the
system performance.

3. Experimental Set-Up

An experiment was implemented on a micro-milling research platform to collect
signals for the establishment of the HMM model and to evaluate the effect of the sensor
location and system parameters on the performance of the monitoring system in the
micro-milling, as shown in Figure 4. This set-up included a high-speed spindle of up
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to 60,000 rpm, an AE sensor (Kistler 8152B121, Kistler Instrument Corp., Amherst, NY,
USA) on the fixture clamped onto the spindle housing, and the other AE sensor (the same
type as that on the spindle) directly attached to the workpiece surface. The WC micro end
mill, the workpiece with hardness of HRC65, and the cutting conditions adopted in the tests
are shown in Tables 1–3, respectively.
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Table 3. Cutting parameters.

Tool Diameter
(mm)

Spindle Speed
(rpm)

Feed Rate
(µm/rev)

Depth of Cut
(mm)

Workpiece
Material

0.7 50,000 0.6 0.2 SK2 Steel

In the test, the signals from both sensors were collected simultaneously for each cutting
pass. For each new micro end mill, five micro-milling passes were conducted and each
cutting path was maintained in a consistent direction. To collect training and testing data for
the signal feature analysis and the development of the tool monitoring system, 200 cutting
passes with 40 new tools were conducted in this study. To avoid the orientation change of
the tool with respect to the workpiece during tool installation, which would result in the
change of the cutting edge/workpiece contact condition after measurement, the flank wear
on the micro-tool was measured and recorded on-line with a portable microscope installed
inside the workspace of the machine tool (Figure 5) when the cutting tool was stopped and
remained on the tool holder. Wear measurement for each tool wear condition was repeated
three times and the average values were recorded.
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4. Results and Discussion
4.1. AE Signal Analysis for Tool Wear Change from Spindle Housing and Workpiece

To analyze the sensitivity and characteristics of spindle AE signals compared with
workpiece AE signals, the time domain AE signals obtained from both sensors and their
frequency responses were investigated. Tool wear condition and corresponding time do-
main AE signals obtained from the sensors installed on the spindle housing and workpiece
are shown in Figure 6. In Figure 7, the frequency response of signals shown in Figure 6
could be observed. The tool wear levels obtained after each cutting path are shown in
Table 4. As shown in Figure 7, the energy level increased as tool wear proceeded for both
AE sensors; however, the frequency distribution of signals differed from each other with
various installation locations. The energy of the signals obtained from the spindle housing
were concentrated in the frequency range between 50 kHz and 150 kHz. By contrast, the
energy of the signals obtained from the workpiece were concentrated between 150 kHz and
250 kHz. In addition, the signal change as tool wear proceeded for the AE signal on the
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spindle also differed from that obtained from the workpiece. A larger change was observed
for the signal on the workpiece than that obtained from the AE sensor on the spindle. This
result demonstrates that the spindle AE signal has a lower sensitivity to tool wear than the
workpiece AE signal.
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Figure 6. Tool wear level and corresponding time domain signal for tool condition: (a) sharp tool;
(b) worn tool.
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Figure 7. Change in frequency response of AE signals for the increase in tool wear: (a) signals on
spindle; (b) signals on workpiece.

Table 4. Flank wear level after cutting.

Cutting Path After 1st
Cutting

After 2nd
Cutting

After 3rd
Cutting

After 4th
Cutting

After 5th
Cutting

Wear average
(mm) 0.012 0.013 0.016 0.026 0.038

To reduce the amount of required data for the training of the classifier, it is important
to find signal features that have a strong correlation with the change in monitored target.
In this study, the class-mean-scattering criterion was used to investigate the scattering of
each feature between tests to quantify the sensitivity of each frequency feature to the tool
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wear change. The scatter index J, which is defined by the ratio of between-class scattering
to in-class scattering of the selected features [13], indicates the correlation of the features to
the tool wear change (Figure 8) for spindle AE and workpiece AE signals. In comparison to
the workpiece AE signals, the lower level of the index was observed for spindle AE signals.
This result corresponds well to the analysis of signal energy change over the increase in tool
wear. By considering the frequency features with the highest index J, the 360 kHz feature
was observed as the highest for signals from the spindle. By contrast, the 180 kHz, 300 kHz,
and 380 kHz features were the highest features for the workpiece AE signal. Based on the
frequency response of the spindle AE signal in Figure 7, the frequency features that have
strong correlation with the tool wear (with the higher index J) for spindle AE signals are at
frequencies higher than 150 kHz. However, the signal in this frequency span has a lower
signal energy. By contrast, most of the features with the higher index J for the workpiece
AE are located in the frequency span with the higher energy in the frequency response.
This result suggests that, differing from the workpiece AE signal, more composition of
signals generated from events other than the cutting process contribute significantly to the
spindle AE signal. However, the frequency signals higher than 150 kHz provide potential
features to monitor the tool wear in micro-milling.
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Figure 8. Scatter index J for tool condition change with (a) signals on spindle; (b) signals on workpiece.

Because of the AE signals generated from the dislocation motion in the material, the
signals detected by the AE sensor will closely relate to the chip formation and vary over
time, as shown in Figure 9. Figure 8 shows the signals obtained in the first cutting path for
a new tool. Therefore, if only a small time period of the signal is chosen for determining
the tool condition, it will lose a number of characteristics of signals closely related to tool
condition change and create a model that cannot efficiently represent the tool condition.
The frequency response of the AE signal corresponding to three time-spans of the signals in
Figure 9 are shown in Figure 10. Signal (a) represents the lowest energy period of signals,
followed by signal (c). Signal (b) represents the highest energy for the collected signals.
By comparing the frequency domain signal for three spans of signals in Figure 10, the
frequency locations of the top energy features do not change considerably for the three
cases; however, the feature energy level changes over the three cases. This result proves that
the model created will fail in tool condition monitoring by only considering one span of
collected signals and comparing the feature energy level in determining the tool condition.
Therefore, the HMM model established by observing the series of span signals is expected
to solve the problem and improve the system performance.
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Figure 9. Spindle AE signal in the first cutting path for a new tool.
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Figure 10. Spindle AE signals: (a) span a; (b) span b; (c) span c.

4.2. Effect of Feature Bandwidth on the System Performance

Noise caused by the background events or cutting system/material variation is always
a significant issue to reduce the performance of a monitoring system in the production line.
To increase the system robustness, generating and selecting proper features as input to the
classifier is always an important step to increase the robustness of a developed monitoring
system. In this study, after signals are transformed from the time domain to the frequency
domain, the average energy amplitude for the individual frequency span of signals will be
considered as a feature. Since the large frequency span will lower the contribution of signals
that represent the monitored target and a small frequency span will increase the sensitivity
to the noise or system variation, it is important to determine the proper frequency span
for features. The effect of the corresponding bandwidth size (span of frequency) of the
selected features on the system performance was analyzed in this study, comprising 64 kHz,
32 kHz, and 16 kHz set-ups. By considering the feature scattering between each test as
tool wear proceeded, the index J for each feature was obtained for the spindle AE with
various bandwidth sizes, as shown in Figure 11. The results were obtained based on 20 sets
of data; that is, 10 sets for the sharp tool test and 10 sets for the worn tool test. Those
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for the workpiece AE signals are shown in Figure 12. For the spindle AE features, the
32 kHz bandwidth size set-up provided the higher index J for the features than the other
two bandwidth size set-ups. In comparison with workpiece AE features, the higher index J
of the spindle AE features was lower than the workpiece AE signal. However, the index J
of 0.1 was still at the same level as the highest index J of 0.3 for the workpiece AE features.
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Figure 11. Feature scattering index J for adopting spindle AE signals: (a) bandwidth size 64 KHz;
(b) bandwidth size 32 KHz; (c) bandwidth size 16 KHz.
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Figure 12. Feature scattering index J for adopting workpiece AE signals: (a) bandwidth size 64 KHz;
(b) bandwidth size 32 KHz; (c) bandwidth size 16 KHz.
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The classification rate for tool conditions in the test stage using spindle AE features
(other than the features used for HMM model development) and the HMM-based classifier
are shown in Table 5 with various bandwidth size selections. The effect of the bandwidth
size selection on the classification rate is demonstrated, and the 16 kHz bandwidth size
selection provided superior classification than the other two cases with 3 and 5 features
selected. By considering the features obtained from the sensor on the workpiece, the
classification rate shown in Table 6 is higher than the case with features obtained from
the spindle. The trend was consistent with the results observed for the feature scattering
index J. Moreover, unlike the case for spindle AE features, the effect of the bandwidth size
change on the classification rate cannot be observed clearly for the case with the workpiece
AE features. The results suggest that, although the signals obtained from the spindle
housing demonstrate a lower sensitivity to tool wear than its counterpart on the workpiece,
proper bandwidth size selection is crucial and can provide a superior classification rate for
HMM-based tool condition monitoring in micro-milling using the features retrieved from
the spindle AE signal in this study.

Table 5. Classification rate with AE signals on spindle and 30 observation sequences. Unit (%).

Bandwidth Size 64 KHz 32 KHz 16 KHz

Num. of Feature Selection 3 5 3 5 3 5

Num. of
Hidden State

3 70 80 80 85 95 90
5 80 80 80 80 100 100
7 80 80 85 90 100 95

Table 6. Classification rate with AE signals on workpiece and 30 observation sequences. Unit (%).

Bandwidth Size 64 KHz 32 KHz 16 KHz

Num. of Feature Selection 3 5 3 5 3 5

Num. of
Hidden State

3 100 100 95 100 100 100
5 100 100 100 100 100 90
7 100 100 100 100 100 100

4.3. Effect of HMM Parameters on the System Performance

In general, the volume of the hidden state selected and the length of the observation
sequence were crucial in improving the monitoring system performance by reducing the
effect from the variation of the cutting system, material, and the background noise. Two
parameters (hidden state and observation sequence) were studied for both AE signals, and
the various classification rates were obtained for spindle and workpiece AE features, as
shown in Tables 7 and 8, by changing both parameters in the study, along with changing the
number of the selected features. The results indicate that, in both cases, the various features
selected altered the final classification rate; however, its effect was not as substantial as
that by the bandwidth size of the features. The improvement was observed by increasing
the volume of the features selected from 1 to 3 in the case with the 32 kHz bandwidth and
a higher size of the observation sequence set-up for spindle AE features. However, its
effect cannot be observed clearly for the other case for the AE spindle feature. By contrast,
the improvement in classification rate by selecting 5 features over 1 and 3 features was
observed for workpiece AE features. The difference between the spindle AE and workpiece
spindle cases may be caused by the higher frequency range features of the workpiece AE
signal, which provides more information closely related to the tool wear condition change.

The average classification rates for various lengths of observation sequence are shown
in Figures 13–15 with the various bandwidth size set-ups. For the case with spindle AE
signals and the 64 kHz or 32 kHz feature bandwidth set-ups, more than 10 observation
events provided a superior classification rate than the 3-observation-events set-up. In the
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case with 16 kHz, 20 and 30 observation events provided superior solutions compared to
the 3 and 10 observation set-ups. By considering the cases with workpiece AE signals, the
length increase of the observation vector demonstrated improvement in classification of
the tool condition. However, its effect was reduced in the case with the 64 kHz feature
bandwidth. The results suggest that the noise effect on the misclassification can be reduced
by increasing the number of observation events; however, its improvement was reduced
with the higher feature bandwidth size because the higher feature bandwidth size also
provides superior noise reduction capability.

Table 7. Classification rate with different feature bandwidths and observation sequences (spindle AE
signals). Unit: %.

Num. of Feature
Selection

1 2 3

Num. of Observation Sequence

3 10 20 30 3 10 20 30 3 10 20 30

64 kHz
Sharp 100 100 100 100 100 100 100 100 100 100 100 100
Worn 60 40 60 40 60 40 60 40 50 40 80 60
Average 80 70 80 70 80 70 80 70 75 70 90 80

32 kHz
Sharp 100 50 50 50 100 100 100 100 100 90 100 100
Worn 80 90 80 60 80 70 80 60 90 80 80 70
Average 90 70 65 55 90 85 90 80 95 85 90 85

16 kHz
Sharp 100 100 90 100 100 100 100 100 100 100 100 100
Worn 80 100 100 90 80 100 100 100 80 100 100 90
Average 90 100 95 95 90 100 100 100 90 100 100 95

Table 8. Classification rate with different feature bandwidths and observation sequences (workpiece
AE signals). Unit: %.

Num. of Feature
Selection

1 2 3

Num. of Observation Sequence

3 10 20 30 3 10 20 30 3 10 20 30

64 kHz
Sharp 100 100 100 100 100 100 100 100 100 100 100 100
Worn 90 80 100 100 80 100 100 100 100 100 100 100
Average 95 90 100 100 90 100 100 100 100 100 100 100

32 kHz
Sharp 100 90 80 100 100 100 100 100 90 100 100 100
Worn 50 100 100 100 90 100 100 90 90 100 100 100
Average 75 95 90 100 95 100 100 95 90 100 100 100

16 kHz
Sharp 100 100 100 100 100 100 100 100 100 100 100 100
Worn 70 80 80 80 90 100 100 100 90 100 90 100
Average 85 90 90 90 95 100 100 100 90 100 95 100

The resolution of the hidden states is another parameter that must be determined by
applying the HMM on tool condition monitoring. Using the same span range (from 1 to
15), 3, 5, and 7 hidden states were chosen to verify their effect on the final classification
rate of the tool condition, as shown in Figures 16–18. In the case with the 32 kHz feature
bandwidth set-up and spindle AE signals, the increase in the hidden states improved
the classification rate. However, the effect of changing the hidden state resolution on
classification rate cannot be observed clearly in the other cases.
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Figure 15. Effect of observation sequence on classification rate (16 kHz feature bandwidth).

In comparing the cases with spindle AE signals to those with workpiece AE signals,
the workpiece AE signals, as expected, provided superior performance in determining the
tool condition of the micro-mill. However, based on the results obtained from Table 7 in
this study, the AE signals obtained from the spindle housing demonstrated potential to
provide a solution to monitor the micro-mill with the proper selection of feature bandwidth
and other parameters. This could solve the problem that the developed system with the
AE sensor on the workpiece in the laboratory could not be transferred directly to the
production line.
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Figure 18. Effect of hidden state on the classification rate of tool wear condition (16 KHz
feature bandwidth).

5. Conclusions

To solve the problem of transferring the developed tool wear monitoring system with
the AE signal on the workpiece to the production line in micro-milling, an AE sensor
installed on a fixture on the spindle housing was proposed and implemented on a micro-
milling research platform. Based on the results obtained in this study, contributions from
this study can be summarized as follows:
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1. To evaluate the sensor location effect on the micro tool wear monitoring, the results
demonstrate that the signals obtained from both locations exhibited differing fre-
quency ranges of energy distribution and the characteristics of signal change as tool
wear proceeded. Moreover, the significant variation in signal distribution over fre-
quency for various time spans in a single cutting pass was demonstrated in this study.

2. By applying the feature selection by the class mean scattering criterion and the HMM
algorithm in determining the tool wear condition, the change in the feature bandwidth
size exhibited a considerable effect on the monitoring performance for the cases using
spindle AE signals, but a lower effect on the cases using workpiece AE signals.

3. By considering the effect of the HMM parameters on the system performance, the
increase in the observation events will improve the classification rate of monitoring
micro tool wear. However, its effect was more crucial for the cases with the lower
classification rate and was reduced when more than 10 observation events were set up.

4. In the performance analysis of the developed system, the results demonstrated that a
100% classification rate could be obtained by using spindle AE signal features with
a frequency span of 16 kHz. This suggests that the set-up with the AE sensor on
a fixture on the spindle housing provides a potential solution to monitor the tool
wear change in micro-milling in a production line with the proper selection of feature
bandwidth and other parameters.
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