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Abstract: This paper is focused on the hybridization of additive manufacturing with single-point
incremental forming to produce stiffening grooves in thin metal parts. An analytical model built upon
in-plane stretching of a membrane is provided to determine the tool force as a function of the required
groove depth and to estimate the maximum allowable groove depth that can be formed without
tearing. The results for additively deposited stainless-steel sheets show that the proposed analytical
model can replicate incremental plastic deformation of the stiffening grooves in good agreement
with experimental observations and measurements. Anisotropy and lower formability caused
by the dendritic-based microstructure of the additively deposited stainless-steel sheets justifies
the reason why the maximum allowable depth of the stiffening grooves is approximately 27%
smaller than that obtained for the wrought commercial sheets of the same material that are used for
comparison purposes.

Keywords: hybrid metal additive manufacturing; incremental forming; stiffening grooves; analytical
modeling; experimentation

1. Introduction

Stretching is a metal forming process in which an initially flat sheet, gripped along its
edges, is stretched and bent simultaneously with the intention of obtaining a contoured
panel by enlargement of the surface and reduction of thickness (Figure 1a). The process is
widely used in aerospace, automotive, shipbuilding and civil construction for producing
panels with various dimensions that, in some cases, may exceed 50 m2 [1].

Strengthening the panels produced by stretching by means of individual stringers
(Figure 1b) that are welded, riveted or rigidly fastened to their surfaces is a necessary
and commonly used procedure to allow panels to withstandg the tension, compression,
bending, shear and torsion efforts that may be applied to them in service.

The inverse approach of strengthening the panels with stringers before stretching is
often limited by cracking and plastic instability (buckling) of the stringers and panels due
to the tensile or compressive stresses that may be induced during the forming process.
However, recent developments by Köhler et al. [2], who proposed a cam-actuated mecha-
nism to provide lateral support of stringers during forming of the panels, show potential
to make the inverse approach feasible even though the suppression of buckling may lead
to new failure modes, higher amounts of spring back after forming and increased tooling
costs when compared with the conventional stretching and strengthening approach.

An alternative to panels with stringers made from multiple parts that require assembly
before or after forming is the fabrication of monolithic panels with integrated stringers

J. Manuf. Mater. Process. 2021, 5, 140. https://doi.org/10.3390/jmmp5040140 https://www.mdpi.com/journal/jmmp

https://www.mdpi.com/journal/jmmp
https://www.mdpi.com
https://orcid.org/0000-0002-3599-7053
https://orcid.org/0000-0003-3837-5185
https://orcid.org/0000-0002-2630-4593
https://doi.org/10.3390/jmmp5040140
https://doi.org/10.3390/jmmp5040140
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jmmp5040140
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com/article/10.3390/jmmp5040140?type=check_update&version=1


J. Manuf. Mater. Process. 2021, 5, 140 2 of 13

by milling, or by additive manufacturing on the surface of the already formed panels.
Monolithic panels produced by milling are homogeneous, offer excellent strength-to-
weight ratios and provide significant cost savings in assembly, labor and tooling. However,
their application is limited by surface roughness, machining time, geometry accuracy and
material wastage (typically, above 95% of the initial blank) [3,4]. These panels are mainly
used in aerospace applications.
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Recent developments in incremental sheet metal forming processes opened the pos-
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rying out forming and stiffening stages simultaneously, in a single-clamping operation, 
has the potential for great economic benefits. Moreover, the dieless characteristics of SPIF 
provides a level of flexibility much higher than that offered by the conventional forming 
of grooves with punch and die sets [7,8], which are panel and groove-shape dependent. 
Alternative solutions based on electromagnetic forming are groove-shape dependent and 
limited to highly conductive materials and to small geometries due to the available coil 
sizes [9]. 

The need for additional reinforcements is not exclusive to large panels because there 
are other thin metal parts of smaller dimensions that have bends in more than one plane 
which also need to be strengthened in order to withstand the efforts that are applied to 
them in service. This is particularly important in the case of lightweight additive manu-
factured parts, which require the use of support structures whenever complex out-of-
plane-shaped features are to be included to preserve the overall geometric integrity of the 
parts, and prevent the occurrence of defects and failures, such as deformations, dross for-
mation or warpage [10]. In such cases, it makes sense to investigate the possibility of im-
plementing a new hybrid metal additive manufacturing approach [11] that combines ad-
ditive manufacturing and in-plane stretching by SPIF to produce local, customized, stiff-
ening grooves. 

The term ‘hybrid manufacturing’ is hereafter used to designate a process sequence 
and is strongly associated to the gains of combining innovative manufacturing ap-
proaches instead of traditional manufacturing routes. This open definition of hybrid man-
ufacturing [12] is different from the classical (narrow) definition in which two or more 

Figure 1. (a) Fabrication of sheet metal panels by stretching; strengthening of sheet metal panels by (b) longitudinal stringers
and by (c) longitudinal stiffening grooves.

Direct manufacture of stringers through additive manufacturing has recently been
proposed for the self-reinforcement of aircraft fuselage panels [5]. However, the advantages
resulting from the elimination of assembling procedures with rivets or screws and the
reduction in material waste when compared to monolithic panels fabricated by milling
must be equated in view of the potential disadvantages resulting from the occurrence of
heat-affected zones with metallurgical changes in the material of the panels and thermal-
induced distortions that may compromise the final required geometry and performance of
the panels.

Recent developments in incremental sheet metal forming processes opened the pos-
sibility of using single-point incremental forming (SPIF) to produce stiffening grooves in
monolithic panels [6] (Figure 1c). Stiffening grooves are a special type of stringers that
are produced by local pressing of the sheet panels during forming, and the possibility of
carrying out forming and stiffening stages simultaneously, in a single-clamping operation,
has the potential for great economic benefits. Moreover, the dieless characteristics of SPIF
provides a level of flexibility much higher than that offered by the conventional forming
of grooves with punch and die sets [7,8], which are panel and groove-shape dependent.
Alternative solutions based on electromagnetic forming are groove-shape dependent and
limited to highly conductive materials and to small geometries due to the available coil
sizes [9].

The need for additional reinforcements is not exclusive to large panels because there
are other thin metal parts of smaller dimensions that have bends in more than one plane
which also need to be strengthened in order to withstand the efforts that are applied
to them in service. This is particularly important in the case of lightweight additive
manufactured parts, which require the use of support structures whenever complex out-
of-plane-shaped features are to be included to preserve the overall geometric integrity of
the parts, and prevent the occurrence of defects and failures, such as deformations, dross
formation or warpage [10]. In such cases, it makes sense to investigate the possibility of
implementing a new hybrid metal additive manufacturing approach [11] that combines
additive manufacturing and in-plane stretching by SPIF to produce local, customized,
stiffening grooves.

The term ‘hybrid manufacturing’ is hereafter used to designate a process sequence
and is strongly associated to the gains of combining innovative manufacturing approaches
instead of traditional manufacturing routes. This open definition of hybrid manufactur-
ing [12] is different from the classical (narrow) definition in which two or more processes
are combined in situ at the time and has been previously utilized in a process sequence
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combining additive manufacturing, metal cutting and coining to fabricate collector coins
with complex intricate contoured holes [13].

Under these circumstances, this paper is focused on the combination of wire-arc
additive manufacturing (WAAM) and SPIF to produce stiffening grooves in thin metal
parts. In a broader perspective, the work can also be seen as a first attempt to hybridize
additive manufacturing with dieless incremental forming for the embossing of stiffeners,
letters, numbers and decorative designs with moderate-to-high depths and thickness
changes in the parts.

The work is performed in additively deposited stainless-steel sheets and includes a
new analytical model to predict the force and the maximum admissible stiffening groove
depth produced by SPIF. Wrought commercial stainless-steel sheets are included for com-
parison purposes and the overall results show that the proposed analytical model can be
successfully used to characterize plastic deformation and failure by the tearing in hybrid
additive manufacturing of stiffening grooves. Microstructure observations and anisotropy
justify the differences in the mechanical response of the additively deposited and wrought
commercial stainless-steel sheets, in agreement with previous observations of the authors
in the same material [14] and of other authors in different materials [15].

2. Materials and Methods
2.1. Additively Deposited and Wrought Commercial Materials

Hybrid additive manufacturing of stiffening grooves was carried out in AISI 316L
stainless-steel sheets deposited by WAAM in a 3-axis CNC system equipped with an ESAB
LUC Aristo 400 gas metal arc welding machine. The material was supplied as a wire with
1-mm diameter through a welding torch and melted, at the time of deposition, onto a
260 × 70 × 15 (mm) hot-rolled AISI 316L baseplate (Figure 2a).
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Figure 2. (a) Schematic representation of the hybrid manufacturing route to produce the AISI 316L stainless-steel sheets
with stiffening grooves. (b) Photograph showing the additively manufactured and wrought commercial sheets before
creating the stiffening grooves.

Deposition was carried out one layer at a time with a single bead and the torch
was programmed with a reciprocate movement and a working angle of 90◦ to avoid
concentrating the overlapped beads along the same edge of the built parts. The built parts
consisted of walls with approximately 175 mm height, 200 mm width and 4 mm thickness
and the main parameters utilized in material deposition are summarized in Table 1. Argon
99.9% was utilized as a shielding gas.

Table 1. Main parameters used in the deposition of AISI 316L stainless-steel by WAAM.

Current
(A)

Voltage
(V)

Wire Feed
Speed

(m/min)

Travel
Speed

(m/min)

Stick-Out
Length
(mm)

Gas Flow
Rate

(L/min)

Bead
Height
(mm)

100 16.5 6 0.6 10 10 1.8
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After deposition, the built parts were milled and polished to match the dimensions
and surface conditions of the wrought commercial AISI 316L sheets with 130 mm length,
50 mm width and 1 mm thickness that were used for comparison purposes (Figure 2b). The
manufacturing route to produce the additively deposited sheets is schematically depicted
in Figure 2a.

The flow curves of the additively deposited and wrought commercial AISI 316L
stainless-steel sheets were determined by means of tensile tests on an INSTRON 5900
universal testing machine. The tests were carried out in accordance with the ASTM
standard E8/E8 M-16 [16] and required cutting out specimens from the sheets at 0◦(P-
parallel), 45◦(I-inclined) and 90◦(T-transversal) inclination with respect to the build or
rolling directions for each type of sheet. The results of these tests are shown in Figure 3,
and Table 2 includes a summary of the mechanical properties for each testing direction.
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Figure 3. Flow stress of the additively deposited and wrought commercial AISI 316L stainless-steel
sheets for the parallel (P), inclined (I) and transverse (T) directions with respect to the build or rolling
directions, respectively.

Table 2. Mechanical properties of the additively deposited and wrought commercial AISI 316L stainless-steel sheets.

Material Direction Yield Stress (MPa) Elongation at Break (%) Anisotropy Coefficient

Additively deposited

P 395.6 ± 5.0 23.7 ± 5.1 0.81

I 410.2 ± 5.5 54.5 ± 10.1 0.02

T 392.5 ± 4.5 41.4 ± 9.8 3.35

Wrought commercial

P 320.7 ± 4.4 64.9 ± 3.3 0.94

I 313.5 ± 3.1 63.6 ± 3.5 0.97

T 310.5 ± 3.8 61.2 ± 4.1 0.98

The formability limits of the additively deposited and wrought commercial AISI
316L stainless-steel sheets were determined by combining the surface strains acquired
by a digital image correlation (DIC) during tensile tests with measurements of the final
thickness of the cracked surfaces with a stereomicroscope to obtain the gauge length strains
at the fracture. The procedure is comprehensively explained in a previous paper published
by the authors [14], from where the fracture forming limits (FFLs) of the two types of sheets
that are shown in Figure 4 were retrieved.
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2.2. Single-Point Incremental Forming of the Stiffening Grooves

The additively deposited and wrought commercial AISI 316L stainless-steel sheets
were placed in the experimental apparatus that is schematically shown in Figure 2a for
producing the stiffening grooves (hereafter referred to simply as ‘grooves’) by single-point
incremental forming. The main components of the apparatus are (a) the semi-hemispherical
forming tool with a 12 mm diameter, (b) the backing plate with a slot width of 20 mm and
(c) the screw-loaded pressure pad located at the outer perimeter of the blank to prevent the
sheets from drawing-in.

The tool is made from a cold working alloy tool steel with chromium, vanadium
and tungsten (120WV4—DIN), hardened and tempered to 60 HRC, and the tests were
performed with a reciprocating straight tool path along the longitudinal direction and a
vertical step size of 1 mm per tool path. The tool feed rate was set equal to 200 mm/min
and the rotation of the tool was set to 100 rpm. A ceramic grease Weicon ASW 040P was
applied on the tool–sheet contact interface.

Reciprocating straight tool paths to produce grooves with smaller lengths are often
used to evaluate the tearing depth of wrought commercial sheets [6,17], but its use in
additively deposited sheets has never been investigated as far as the authors are aware.

The experimental distribution of in-plane strains
(
εφ, εz

)
on the surface of the grooves

was determined by a circle grid analysis (CGA). For this purpose, a grid of overlapping
circles with a 2 mm initial diameter was electrochemically etched on the sheets and the
major and minor axis of the ellipses that resulted from plastic deformation of the circles
were measured in various groove configurations corresponding to different depths H
(Figure 5). The measurements were performed with a computer-aided system consisting of
a 3Com USB camera and the GPA 3.0 software.

Assuming that stretching of the grooves by single-point incremental forming is carried
out under proportional strain loading paths with a slope β = dεz/dεφ = 0, as will be shown
later in Section 3, and making use of the Hill’s 48 anisotropic yield criterion [18] under
plane stress σt = 0 conditions along the thickness direction, the experimental distribution
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of effective strain ε along the perimeter of the groove can be obtained from the circle grid
measurements of meridional strain εφ, as follows:

ε =

√
2
3
(2 + r)(1 + r)

(1 + 2r)
εφ (1)

where r = 1/4(r0 + 2r45 + r90) is the normal anisotropy.
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The result obtained in (1) allows for determining the experimental distributions
of effective σ stress (assuming a Ludwik–Hollomon strain-hardening relationship), and
meridional σφ stress, as indicated,

σ = kεn

σφ =
√

2
3 (1 + r) σ

(2)

2.3. Analytical Model for the Incremental Forming of the Stiffening Grooves

The stiffening grooves are incrementally formed under plane strain deformation
conditions. There is an exception to this type of material flow at the beginning of the
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process during which the tool is vertically pressed against the sheet such as in biaxial
stretching with a semi-hemispherical punch. However, the beginning of the process
will be left out of the model and the derivation is only valid for steady-state material
flow conditions.

A typical cross-section of the groove is approximated by a shell with three-main
regions corresponding to (i) the wrap angle θ around the semi-hemispherical tool, (ii) the
straight unsupported surface with a length Ls making an angle αs with the tool center and
(iii) the curvature radius Rb at the transition between the undeformed and the plastically
deformed material. These regions and associated notation are schematically shown in
Figure 5a, where the symbol R denotes the radius of the tool and the symbols H and W are
the depth and half-width of the groove, respectively.

The shell is assumed as a membrane so that bending moments are neglected (i.e.,
the forces are essentially transmitted through the sheet surfaces subjected to in-plane
stretching), and the meridional (φ), thickness (t) and longitudinal (z) directions are assumed
as principal directions. Further simplifications in the model consider the material to be
(i) rigid-plastic (i.e., no elastic effects are included) and (ii) anisotropic, following the Hill’s
48 yield criterion [18] under plane stress conditions (σt ∼= 0). Moreover, it is presumed
that material strain hardening tends to balance the reduction in thickness so that the
force per unit of length Tφ = σφt in the meridional direction can be assumed as constant.
This last assumption is commonly used in the membrane analysis of sheet metal forming
processes [19].

The presentation of the analytical model is subdivided into two parts; firstly, the
authors focus on the calculation of the tool force F by modification of an earlier model
developed by Martins and Marques [20] for conventional stretching with a cylindrical
punch. Secondly, the authors explain the procedure to determine the maximum allowable
groove depth H without tearing, taking into consideration the material formability limits
(Section 2.2).

2.3.1. Tool Force

From Figure 5, the wrap angle θ around the semi-hemispherical tool can be written
as follows:

θ =
π

2
− αs − αb (3)

where the angles αs and αb of the straight unsupported surface and of the transition between
the undeformed and the plastically deformed material are related to H and W of the groove,
in the following way:

αb = arctan
(

R− H + Rb
W

)
(4)

αs = arccos

 Rb + R√{
W2 + (R− H + Rb)

2
}
 (5)

The half-perimeter of the groove Lφ for an arbitrary depth H is given by

Lφ = (R + Rb)θ + Ls (6)

where the length Ls of straight unsupported groove surface is determined from

Ls =

√
{W − (R + Rb)sinθ}2 + {H − (R + Rb)(1− cosθ)}2 (7)

Once the half-perimeter Lφ of the groove is known, the average value of the meridional
strain ε

avg
φ is obtained from

ε
avg
φ = ln

(
Lφ

W

)
(8)
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and the force F applied by the tool is written as

F = 2σ
avg
φ t0Lzsinθexp

(
−ε

avg
φ

)
(9)

In the above equation, the symbol t0 is the undeformed sheet thickness, Lz is the
contact length in the z-direction (Figure 5b) and σ

avg
φ is the average meridional stress. The

latter is obtained from the increments of average meridional strain dε
avg
φ within succes-

sive configurations (under plane stress conditions along the thickness direction σt = 0)
as follows:

σ
avg
φ =

σ

dε

(1 + r)2

(1 + 2r)
dε

avg
φ (10)

2.3.2. Maximum Allowable Depth

Merging the average meridional strain ε
avg
φ given by (8) with the constitutive equations

relating the increments of strain with the applied stresses under combined plane strain
(εz = 0) and plane stress (σt = 0) deformation conditions,

dεφ = dε
σ

(
1

1+r

)[
σφ + r

(
σφ − σz

)]
dεz =

dε
σ

(
1

1+r

)[
σz + r

(
σz − σφ

)]
= 0

dεt =
dε
σ

(
1

1+r

)[
−σz − σφ

] (11)

allows for writing the average distributions of thickness strain ε
avg
t and longitudinal stress

σ
avg
z for an arbitrary groove depth H as follows:

ε
avg
t = −ε

avg
φ (12)

σ
avg
z =

r
1 + r

σ
avg
φ (13)

The average thickness tavg of the groove is then obtained from (12),

tavg = t0exp
(
−ε

avg
t

)
(14)

Having determined the average thickness tavg and the average meridional stress σ
avg
φ

directly from the analytical model, it is possible to obtain the force per unit of length Tφ

that is assumed to have a constant value C for each groove depth H as follows:

Tφ = tavgσ
avg
φ = C (15)

By determining the critical meridional strain εcrit
φ under plane strain deformation

conditions through the intersection of the FFL with the vertical axis of Figure 4, and
subsequently obtaining the critical meridional stress σcrit

φ by replacement of the average
values by the critical values in Equation (10), and identifying the minimum thickness tmin
under the limiting material formability conditions of

tmin = t0exp
(
−εcrit

t

)
εcrit

t = −εcrit
φ , (16)

it is possible to estimate the critical force per unit of length Tcrit
φ as follows:

Tcrit
φ = tminσcrit

φ = Ccrit (17)

This last result allows for obtaining the maximum allowable depth Hmax by searching
for the groove geometry that provides a force per unit of length Tφ (15) equal to the critical
value Ccrit at the onset of failure by fracture (17).
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3. Results and Discussion
3.1. Strain Paths

Figure 6 shows the experimentally measured strains along the perimeter of the grooves
produced along the parallel (P), inclined (I) and transverse (T) directions with respect to
the build or rolling directions for the additively deposited and wrought commercial AISI
316L stainless-steel sheets. The results were obtained for the instant of time immediately
after tearing by crack opening and propagation along the longitudinal direction (i.e., tool
feed direction).
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As seen, all of the strains lie close to the vertical axis, in agreement with the assump-
tions of the material being subjected to plane strain deformation under linear strain loading
paths (refer to Sections 2.2 and 2.3). Moreover, the maximum strain values obtained from
the circle grid analysis are also close to the FFLs of both additively deposited and wrought
commercial sheets (Section 2.1), which are plotted as dashed straight lines falling from
right to left in principal strain space. This last result, obtained for the two types of sheets,
allows for concluding that incremental forming of the grooves fails by critical thickness
reduction without previous necking in close agreement with crack opening by tension
(mode I of fracture mechanics) [21].

Observation of the photographs included in Figure 6a reveals that the surface of the
grooves that were incrementally formed along the inclined direction of the additively
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deposited sheets contain a series of striations that coincide with the building direction
(approximately 45◦ to the inclined direction). This type of texture is not visible in the corre-
sponding specimen of the wrought commercial sheets and is attributed to the dendritic-
based microstructure of the additively deposited sheets, which is made of columnar grains
with primary arms aligned with the building direction and secondary arms bonding the
neighboring grains together (Figure 6b). This type of microstructure, which was previously
observed by the authors in tensile tests [14], is different from the equiaxial microstructure
of the wrought commercial sheets and is the main reason behind the anisotropic behavior
of the additively deposited sheets.

The last conclusion to be taken from Figure 6 is that, despite the differences in the
surface texture of the grooves produced along the inclined direction of the additively
deposited sheets, the strains at the fracture are close to those obtained for the other grooves
produced along the parallel or transverse directions. Therefore, in what follows, there will
be no distinction between the results obtained from each specific groove direction.

3.2. Maximum Allowable Depths

Figure 7 shows the theoretical evolution of the force per unit of length Tφ = tavgσ
avg
φ

(15) with the groove depth H for materials following a Ludwik–Hollomon strain-hardening
relationship σ = kεn, but having different values of the strain-hardening exponent n. To
facilitate the comparison, it was decided to normalize the force per unit of length as follows:

T̃φ = tavg
σ

avg
φ

k
with

σ
avg
φ

k
=

√
2
3
(1 + r)

σavg

k
(18)

where k is the constant of the Ludwik–Hollomon strain-hardening relationship.
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Figure 7. Influence of material strain hardening on the evolution of the normalized force per unit of
length with the groove depth.

As seen, the evolution of the normalized force per unit of length is very much influ-
enced by the strain-hardening exponent n, with peak values moving towards the vertical
axis as the stress–strain response approaches that of a perfectly rigid–plastic material. In
fact, when n = 0, the peak in the normalized force per unit of length occurs at the begin-
ning of the process (H = 0) because there is no material strain hardening to compensate
the reduction in thickness that is inherent to the incremental forming process, and the
normalized force per unit of length falls monotonically from left to right as the thickness
decreases with the groove depth H.

Increasing the strain-hardening exponent n gives rise to evolutions of the normalized
force per unit of length with growth and decay regions separated by a peak value. This
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means that strain hardening prevails at the beginning of the incremental forming process,
whereas a reduction in thickness eventually leading to fracture prevails at the end of the
process. The practical consequence of what was just said is that the identification of the
maximum allowable depth Hmax by searching the force per unit of length value C (15) that
matches the critical value Ccrit at the onset of failure by fracture (17) must only consider
the decaying regions of the evolutions.

Transposition of above conclusion to the results obtained for the additively deposited
and wrought commercial sheets that are depicted in Figure 8 results in the rightmost
intersections between the dashed horizontal lines corresponding to the critical values Ccrit

at the onset of failure by fracture (17) and the force per unit of length evolution that is
shown in the figure. The possible intersections on the left-growing evolution of the force
per unit of length are discharged.
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Figure 8. Evolution of the force per unit of length with the groove depth for the (a) additively deposited and (b) wrought
commercial AISI 316L stainless-steel sheets. The dashed horizontal lines in both graphics correspond to the critical values
and the intersections provide the maximum allowable predicted depths Hmax.

The maximum allowable predicted depths Hmax resulting from the above-mentioned
intersections correspond to an overestimation of the maximum allowable experimental
depths HExp

max below 20%. The experimental points included in Figure 8 serve only to
validate the theoretical evolutions of the force per unit of length with the groove depth.

3.3. Tool Forces

Figure 9 presents the experimental and analytical evolutions of the tool force with
the groove depth for the two different types of sheets. As seen, the analytical predicted
evolution can replicate the overall trend of the experiments results but with a slight under-
estimation of the real values. The discrepancies are attributed to the overall assumptions
of the analytical model, namely to the utilization of average instead of local values of the
main variables, but also to some degree of uncertainty in defining the contact length Lz in
the z-direction (Figure 5), because it may include a part of the tool surface located behind
the vertical symmetry axis.

Scattering of the experimental data is larger for the additively deposited sheets due
to anisotropy and, consequently, to different stress–strain responses during the tests per-
formed along different directions with respect to the build direction. In connection to this,
it is worth remembering that wrought commercial sheets are roughly isotropic (r ≈ 0.97).



J. Manuf. Mater. Process. 2021, 5, 140 12 of 13

J. Manuf. Mater. Process. 2021, 5, x FOR PEER REVIEW 12 of 14 
 

 

 
Figure 8. Evolution of the force per unit of length with the groove depth for the (a) additively de-
posited and (b) wrought commercial AISI 316L stainless-steel sheets. The dashed horizontal lines in 
both graphics correspond to the critical values and the intersections provide the maximum allowa-
ble predicted depths 𝐻௠௔௫. 

3.3. Tool Forces 
Figure 9 presents the experimental and analytical evolutions of the tool force with 

the groove depth for the two different types of sheets. As seen, the analytical predicted 
evolution can replicate the overall trend of the experiments results but with a slight un-
derestimation of the real values. The discrepancies are attributed to the overall assump-
tions of the analytical model, namely to the utilization of average instead of local values 
of the main variables, but also to some degree of uncertainty in defining the contact length 𝐿௭ in the z-direction (Figure 5), because it may include a part of the tool surface located 
behind the vertical symmetry axis. 

 
Figure 9. Evolution of the tool force with groove depth for the (a) additively deposited and (b) 
wrought commercial AISI 316L stainless-steel sheets. 

Scattering of the experimental data is larger for the additively deposited sheets due 
to anisotropy and, consequently, to different stress–strain responses during the tests per-
formed along different directions with respect to the build direction. In connection to this, 
it is worth remembering that wrought commercial sheets are roughly isotropic (𝑟 ≈ 0.97). 

All in all, the results show that a relatively simple analytical model based on a shell 
subjected to in-plane stretching can provide a good estimate of the tool forces. 

Figure 9. Evolution of the tool force with groove depth for the (a) additively deposited and (b) wrought commercial AISI
316L stainless-steel sheets.

All in all, the results show that a relatively simple analytical model based on a shell
subjected to in-plane stretching can provide a good estimate of the tool forces.

4. Conclusions

Hybridization of additive manufacturing with single-point incremental forming can be
utilized to produce stiffening grooves in thin sheets to improve their strength to withstand
the efforts that are applied to them in service. Because out-of-plane grooves are not
produced during material deposition, there is no need for using support structures to
preserve the overall geometric integrity of the parts.

The estimates of the required force to produce a specific groove depth and of the max-
imum allowable groove depth that can be formed without tearing by means of a simple
analytical model developed by the authors are in good agreement with the experimental ob-
servations and measurements. In particular, the results show that the maximum allowable
stiffening grooves that can be produced in additively deposited AISI 316L stainless-steel
sheets are approximately 27% smaller than those produced in wrought commercial AISI
316L stainless-steel sheets. This is due to anisotropy and to the lower formability induced
by the dendritic-based microstructures resulting from the growth of grains along the
temperature gradient during the heating–cooling cycles of material deposition.

Despite the above said disadvantages and limitations, the production of stiffening
grooves in additively deposited thin sheets is interesting and feasible because grooves can
undergo large plastic deformation before tearing.

Finally, it is worth mentioning that hybridization of additive manufacturing with
single-point incremental forming to produce stiffening grooves can also be used in tubes,
profiles and complex three-dimensional thin structures to improve their capability to
withstand the different efforts that are applied to them in service.
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