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Abstract: Lightweighting is a design strategy to reduce energy consumption through the reduction
of mass of a product. Lightweighting can be applied to machine tools to reduce the amount of energy
consumed during the use phase. Thus, the energy cost of machine operation will be reduced. One
might also hypothesize that since a lighter-weight machine tool requires less material to build, the
cost to produce such a machine will be less. However, it may also be the case that lightweighting a
machine tool increases its complexity, which will likely drive up the cost to manufacture the machine.
To explore the cost drivers associated with building a machine tool, data on the features associated
with a wide variety of vertical milling machine tools are collected. Then, empirical cost models are fit
to this data. The results from the cost models show that the machine tool mass is a significant cost
driver; other key drivers are the number of axes and spindle power. The models are used to predict
the cost benefits of lightweighting in terms of mass, which are compared to potential increased
manufacturing costs associated with complexities introduced due to lightweighting.

Keywords: machine tools; cost model; lightweighting; energy consumption

1. Introduction

Manufacturing plays an important role in the global economy through its job creation
and production of goods. In 2017, industry provided employment for close to 25% of the
global labor force of 3.43 billion people and accounted for 30% of the global Gross Domestic
Product (manufacturing is the dominant contributor to industrial activities) [1]. Along with
its role in the global economy, manufacturing has a significant environmental footprint
due to its energy and resource consumption and its waste generation. Considering this,
reducing the energy/resource consumption of manufacturing is important. In 2020, 36% of
end-use energy consumption in the U.S. was attributed to the industrial sector [2], with
a significant portion of the electricity being generated by fossil fuels [3]. Additionally, in
2018, worldwide industry accounted for about 42% of the electricity consumed, with 67%
of the electricity being generated by fossil fuels [4].

Machine tools (MTs) are essential manufacturing equipment that shape and form raw
material into desired products through grinding, cutting, bending, and forming operations.
MTs are everywhere; the global demand for MTs for material removal (in terms of sales)
grew from USD 119.7 billion in 2008 to USD 144.6 billion in 2018 and is projected to grow
to USD 174 billion by 2023 [5]. MTs, such as lathes, mills, drill presses, and grinders, can
vary greatly in size, from fitting on a tabletop to filling an entire room. They also vary in
complexity and technology, and over time, they have become more automated, accurate,
and powerful.

MTs have a significant environmental impact and reducing this impact is necessary
to reduce manufacturing’s large environmental footprint. Across an MT lifecycle, most of
the environmental impact associated with a machine is due to its use stage, in particular,
the energy consumed during MT use. Assuming an MT has a life of 10 years, based off

J. Manuf. Mater. Process. 2021, 5, 129. https://doi.org/10.3390/jmmp5040129 https://www.mdpi.com/journal/jmmp

https://www.mdpi.com/journal/jmmp
https://www.mdpi.com
https://orcid.org/0000-0002-5964-1078
https://orcid.org/0000-0002-2118-0907
https://doi.org/10.3390/jmmp5040129
https://doi.org/10.3390/jmmp5040129
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jmmp5040129
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com/article/10.3390/jmmp5040129?type=check_update&version=1


J. Manuf. Mater. Process. 2021, 5, 129 2 of 22

of global demand data for 2008, 2013, and 2018 from Freedonia Focus Reports [5], it is
estimated about 15 million MTs were in service during 2018. This set of MTs consumed
approximately 50 TWh of energy per year (calculated from data of Diaz et al. [6]). This
means that just a 10% energy reduction via an improved MT design will reduce energy
consumption by 5 TWh. This saved energy can power about 480,000 houses for a month [7].

One potential strategy to reduce MT energy consumption is lightweighting. Lightweight-
ing is a design strategy that lowers energy consumption of a product by reducing its mass
since smaller masses require less energy to move. Lightweighting of MTs is accomplished
by reducing the mass of moving components. Kroll et al. [8] found that lightweighting
of MTs has the potential to reduce energy consumption, improve acceleration capability,
and enhance process stability. Herrmann et al. [9] also examined lightweighting of MTs,
and, more broadly, lightweighting of components and products, and found the energy
savings in the use stage more than offsets any additional impacts occurring during the
manufacturing stage, e.g., using a more energy-intensive material, such as replacing steel
with aluminum.

However, reducing the mass of an MT, or any product, generally requires more than a
simple material change. Design changes may be required, such as dimensional changes,
due to differences in material stiffness, hardness, etc. A result of these design changes
may be that the material cost for an MT is less, but the design changes may also have
unintended or undesired consequences. One major concern from lightweighting is the
potential increase in the cost to manufacture the machine. While lightweighting may reduce
a user’s operation cost during the MT use stage through energy reduction, design changes
could increase the complexity of the machine and the manufacturing processes needed
to fabricate components to build the machine. As a result, the cost to build a lightweight
MT may be larger than a standard MT. If cost significantly increases, MT builders may be
hesitant to implement lightweighting—especially if the overall lifecycle cost to a customer
will be higher. Therefore, it is important to understand the cost drivers of MTs, including
how much of the cost is driven by the mass of the MT or materials in the MT and how
much of the cost is due to the complexity of design, i.e., whether additional complexity
will outweigh the reduction in mass in terms of cost.

Currently, there has been no investigation into how lightweighting with the intent
to reduce energy consumption affects the MT cost. Therefore, this paper explores the
cost drivers associated with building an MT. This is accomplished by collecting data on
the features associated with a wide variety of MTs and the associated cost/price of the
machines. Ideally the cost to manufacture the MT would be used in place of the price,
but since MT builders are hesitant to provide that data, the price of the machine is used
instead. Per personal communications [10], MT builders price their machines close to the
manufacturing cost since the MT industry is extremely competitive. Therefore, in this
paper, it is assumed the price of the machine is proportional to the cost to manufacture
the machine; there is a consistent markup among the machines. This markup is assumed
to be equal to the S&P 500 Operating Profit Margins for Industrial Machinery, which is
12.9% for 2021 [11]. Then, empirical models will be fit to this MT data. First, simple linear
regression models are fit to individually assess the relative importance of each feature in
describing the variation in price data. Then, using stepwise regression, empirical models
are fit for the price based on the features, as the features are not independent of each
other. The resulting cost/price models are examined to reveal insights into how design
changes (i.e., differences among the MTs) affect the overall cost/price of the MT. While
these models may not consider aspects such as some of the technology in the MT, they allow
us to link environmentally minded design changes (lightweighting) to the cost of MTs.
The remainder of this paper is organized as follows. Section 2 reviews the environmental
impact of MTs, the potential impact reduction through lightweighting, lightweighting cost
implications, and cost models related to MTs and manufacturing. Data collection and
model formulation are described in Section 3, along with the results. Section 4 discusses
the MT cost drivers, the implications of the results, and how this model can be used in



J. Manuf. Mater. Process. 2021, 5, 129 3 of 22

the design of lower-energy-consuming MTs. Finally, Section 5 concludes the paper and
provides insights for future directions.

2. Literature Review—Environmental Impact Reduction, Lightweighting, and Costs

Due to the importance of MTs and their impact on the environment, this section
reviews methods to reduce their carbon footprint, methods for lightweighting MTs, cost
implications of lightweighting, and cost models related to manufacturing and MTs.

2.1. Machine Tool Environmental Impact Reduction

MTs contribute significantly to manufacturing’s environmental impact through their
considerable carbon footprint and widespread use. Much of an MT’s carbon footprint is
due to its energy consumption during use. Because of the significant energy consumption
and carbon footprint of MTs, much work has been carried out to reduce their environmental
impact. This subsection reviews reported efforts for reducing MT energy consumption and
environmental impact.

A foundational study by Dahmus and Gutowksi [12] showed how cutting can account
for only a portion of the total energy consumed by MTs. Dahmus and Gutowski studied
multiple MTs and found that the supporting systems, those not directly related to cutting,
can account for a large portion of the MT energy consumption. Zein [13] showed that the
power demand of an MT, including the demand of the support systems, has become more
complex due to the implementation of automation. Therefore, it is important to look at a
variety of strategies to reduce MT energy consumption.

According to Flum et al. [14], methods for reducing MT energy consumption include
energy recovery (e.g., thermoelectric devices to recover waste heat), energy demand reduc-
tion, and energy reuse (e.g., kinetic energy associated with spindle braking/deceleration
is converted to electrical energy). Much work has focused on energy demand reduction
and is covered here as well. Energy demand reduction research can be conducted by
process-related and machine-related efforts [14] that are expanded upon in the following
subsections.

2.1.1. Process-Related Improvements for Energy Reduction

Toolpath selection is an important part of process design, and the proper choice of a
toolpath may lead to reduced energy consumption. Li et al. [15] presented a methodology
to optimize toolpaths for lower energy consumption and carbon footprint in the milling
process. The authors used their method to find toolpaths and then compared these with
conventional milling toolpaths; the proposed method reduced the toolpath length and
resulted in energy savings of up to 21%. Hu et al. [16] explored the relationship between
processing sequence of features of a part (PSFP) and the energy consumption during the
transition between features. The authors applied a depth-first search and genetic algorithm
(GA) to find the optimal PSFP and achieved a 28.6% energy reduction during feature
transition.

Cutting conditions can also be modified to reduce energy consumption. Jdidia et al. [17]
used particle swarm operation (PSO) to optimize the cutting parameters to lead to a lower
energy consumption during milling operations. The authors optimized the parameters of
rotational speed, feed per tooth, and axial depth of cut. Mori et al. [18] measured power
consumption of machining centers under various conditions with a goal of choosing better
process parameters. The authors found that for drilling and face/end milling, energy
consumption can be reduced by setting cutting conditions to a high feed/speed condition
but within a range that does not compromise tool life or surface finish. Beyond the issue of
energy consumed during cutting, Diaz et al. [19] noted that many elements within an MT
consume energy (e.g., controller, cutting fluid pump, chip conveyor), and that the energy
consumption of these elements allocated to a single component can be lowered by reducing
the cycle time per component (the noncutting energy is allocated to more components). It
should be noted that these works related to cutting parameters and conditions considered
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conventional cutting as opposed to high-speed machining (HSM), where cutting conditions
differ greatly. During HSM, it has been found that forces can decrease with an increased
cutting speed, and a higher dimensional accuracy and surface quality can be achieved
for certain materials of workpieces [20]. It is also important to note that if a machine sits
idle between jobs, even if the cutting time has been reduced based on Mori et al. [18] and
Diaz et al. [19], any energy savings is lost due to the machines running but not cutting
parts.

Modifying machine and component states can also reduce energy consumption.
Schlechtendahl et al. [21] designed a control system to change the state of systems and
components in the MT for energy consumption reduction. The control system would
change the state to a lower energy consumption state if possible. Can et al. [22] proposed a
method to shut down components and subsystems of MTs during nonproductive periods
while allowing them the ability to produce components on demand. The authors were able
to shut down two components during an idle state, while not compromising the readiness
of the machine, and reduced energy consumption by 25% when compared to a machine
with all components running while idle.

2.1.2. Machine-Related Improvements for Reducing Environmental Impact

A strategy of machine-related improvements for energy reduction is designing ma-
chines with more energy-efficient components and systems. Albertelli [23] investigated the
energy-saving potential of a spindle direct drive. The author analyzed two spindle units,
one traditional gear-based spindle and one direct-drive spindle. It was found that up to
7% of the overall MT energy consumption can be saved by replacing a traditional gear-
based spindle with a direct-drive spindle system. Mori et al. [24] investigated the energy
consumption of a hot-gas-bypass spindle cooling system. The authors proposed an on–off
cooling method that could reduce the power consumption of the cooling unit by up to 75%
with minimal thermal displacement. Zhao et al. [25] explored the relationship between
tool geometry, i.e., geometric angles, and energy consumption. The authors employed a
multi-objective optimization model to optimize tool geometry, e.g., cutting-edge diameter,
helix angle, and rake angle, along with cutting parameters. From the results, the authors
found an average energy savings of 16.6%.

Another machine-related improvement strategy is component structure and arrange-
ment. One example of this strategy is demonstrated by Gao et al. [26], where energy
consumption of a hydraulic press was reduced by optimizing the size of the clearances.
Clearance size affects the amount of oil leakage and friction but can also impact forming
accuracy. The authors optimized the clearance size to minimize energy loss while not
impacting forming accuracy. Lightweighting is another example of this strategy. Since
lightweighting is the focus of this paper, it is discussed in its own section.

2.2. Lightweighting Design to Reduce Environmental Impact

Lightweighting strategies usually fall into one of three categories: change in mate-
rial type, manufacturing-enabled design improvements, and product structure change.
Lightweighting via a material change involves replacing a high-density material with a
lower density material, e.g., replacing steel with aluminum or titanium. Implementing
manufacturing-enabled design improvements for lightweighting involves the use of “new”
manufacturing methods that allow for the reduction of parts or amount of material. Ex-
amples include semisolid thixo-forming, tailor-rolled blanks, and additive manufacturing
(to enable product changes not achievable with conventional manufacturing methods).
Product structure changes involve the design/redesign to optimize the product structure.
This includes topology analysis, shell design instead of frame construction, and the use
of fewer subassemblies and fasteners. It should be noted that there is overlap in these
three categories and that all require design changes, e.g., a change of materials requires
dimensional changes due to different material properties.
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Lightweighting has been used to reduce energy consumption and environmental
impact (through CO2 linked to energy consumption) of products, especially in the trans-
portation sector. Lightweighting can also reduce an MT’s energy consumption (and CO2
linked to energy) when it is applied to moving components. This is due to a smaller mass
needing less energy to move. Some applications of lightweighting MTs include the mass
reduction of a gantry machine. Sulitka et al. [27] explored lightweighting of crossbeam and
columns by applying composites and sandwich structures. The x-axis moving mass was
reduced by 35% and the crossbeam and columns mass was reduced by 52.3%. This mass
reduction allowed for the employment of a smaller motor with a 20% power reduction.
Another lightweighting MT application includes lathes. Lv et al. [28] explored reducing the
inertia of the spindle by using an aluminum chuck. The authors decreased the mass of the
chuck by 60% and the reduced spindle inertia from 0.3354 to 0.2380 kg m2. This decrease in
inertia reduced the energy consumption and peak power by 20.6% and 21.2%, respectively.

Other applications include milling machines. Zulaika et al. [29] explored lightweight-
ing through thinner wall thicknesses in the ram. The authors decreased the mass while
increasing stiffness with additional/redundant guideways of the frame. When redesigning
the ram, the authors modeled machine dynamics and representative milling operations.
Suh et al. [30] lightweighted a large computer numerical control (CNC) MT by reducing
the mass of the horizontal and vertical slides by 26% and 34% respectively. Carbon-fiber-
reinforced polymer (CFRP) composite sandwiches were bonded to welded steel structures
to reduce the mass. This also increased damping without reducing stiffness and allowed
for greater acceleration and deceleration. Zhao et al. [31] designed a lightweight working
table through different construction methods: hollow stem, sandwich node, and radial
root. To determine which construction method should be applied, the authors used a fuzzy
assessment to assist in the design. Another application of lightweighting milling machines
proposed by Triebe et al. [32,33] lightweighted the MT slide table. Since the table moves
throughout the use of the machine, for many types of mills, there is potential to reduce
energy consumption within the feed system. In Triebe et al. [32,33], the authors proposed a
GA to optimize the core of a sandwich structure table. Various types of sandwich structures
were proposed, including metal foam core, honeycomb core (cells running vertically), and
a single row of cells running horizontally. The proposed method allowed for a mass saving
of up to 50%. This application is discussed in more depth in Section 4.

2.3. Embodied Monetary and Environmental Costs of Materials

Cost of materials is very important within manufacturing. According to Kalpakjian
and Schmid [34], the approximate breakdown of costs in manufacturing is as follows:

1. Design: 5%.
2. Material: 50%.
3. Direct Labor: 15%.
4. Overhead: 30%.

While this is true in general, researchers may wish to develop cost breakdowns more
appropriate to specific applications, e.g., MTs. However, as, in general, materials make up
approximately 50% of the manufacturing cost, it is important to consider both the type and
amount of each material being used. This breakdown also helps to explain the economic
motivation for lightweighting: reduce the amount of materials to decrease the product cost,
though the method of lightweighting must be considered. For example, if lightweighting
is accomplished by a material change, then the new material cost must be considered.
Ashby [35] provided approximate ranges of material prices; the price range of metals from
Ashby can be found in Figure 1a.
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Figure 1. (a) Cost of materials based on mass (data taken from Ashby [35]). (b) Embodied energy and carbon footprint of
various metals (data taken from Ashby [35]).

If lightweighting is accomplished through a product structure change or manufac-
turing improvement, e.g., reducing the number of subassemblies and fasteners through
bonded structures or switching from high-pressure die-casting to super-vacuum die-casting,
then the new method of manufacturing must be considered. Allen and Swift [36] calculated
the costs of various manufacturing methods and showed that cost depends on both the
type of process being used and on how many parts are being made. This occurs for a
number of reasons, including the cost of the machinery and how long it takes to pay off the
machine or machines.

Besides material and manufacturing costs, lightweighting can reduce energy costs and
CO2 emissions. Reduction of energy and CO2 emissions during the use stage has already
been described in Section 2.2. However, there is potential for reducing energy and CO2
further upstream in the lifecycle. This potential comes from the extraction and processing
of the materials. Reducing the amount of material or substituting the material with a lower
embodied energy and carbon footprint can reduce the upstream energy and CO2 emissions.
Figure 1b shows which materials have lower energy and carbon footprints, and which
materials have the largest potential for reducing upstream impacts. In 2018, approximately
18.6 GJ of energy was consumed per metric ton of iron and steel produced [37]. The iron
and steel industry produced 2.1 Gt of CO2 [38], while 1.82 Gt of crude steel were produced
worldwide [39]. This means that for every kilogram of steel reduced in an MT, 5.167 kWh
of energy and 1.15 kg CO2 are saved during the extraction and processing of the ore to
produce the steel.

2.4. Manufacturing and MT Cost Models

Manufacturing and MT-related cost models typically consist of lifecycle cost (LCC)
models, total cost of ownership (TCO) models, and machining cost models. There are a few
cost models associated with the acquisition of large pieces of manufacturing equipment.
All these different types of cost models are reviewed here.

LCC consists of all costs related to a product from conception to end-of-life [40].
LCC models of MTs include that of Enparantza et al. [41], who built an LCC calculation
and management program that had a goal of providing LCC data to customers when
purchasing a machine and to assist in the design of MTs. The program allowed for the
calculation of LCC costs and performance data. Bengtsson and Kurdve [42] performed an
LCC analysis on turning equipment at an automotive driveline manufacturing company to
see if the machines, which were past their life length, should be replaced, reconditioned,
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or run with increased cost and risk. Using project costs, acquisition costs, operation costs,
and maintenance costs, the authors found that purchasing a new machine would have the
lowest LCC due to lower life support costs and life operations cost.

Total cost of ownership (TCO) is similar to LCC, but instead of adopting the product
perspective (costs related to the product from conception to end-of-life) as LCC does,
TCO adopts the purchaser’s perspective (costs incurred by the purchaser from purchase to
disposal) [43]. Roda et al. [44] proposed a methodology to build a TCO aimed at supporting
decision-making for manufacturing asset lifecycle management. The requirements to
address were uncertainty in asset operations, systemic performance losses, and quantifying
costs. Heilala et al. [45] developed a TCO through component-based simulation, overall
equipment efficiency (OEE), and cost of ownership to assist in the design of modular
assembly systems. The authors broke down costs into fixed and recurring or variable and
used a simulation of a semiautomated assembly line as a case study.

Other authors explored the costs of machining. Anderberg et al. [46] connected pro-
ductivity and cost-efficiency improvements with energy savings by building a machining
cost model that included energy and carbon costs. The machining costs comprised MT
costs, labor costs, and tool change costs, while energy costs included energy directly and
indirectly related to machining, e.g., costs associated with unloaded motors, fans, and
running of computers. Wang and Liang [47] proposed a method to ensure quality and
reduce production costs through addressing tolerance, process selection, and machining
parameter optimization. To calculate production cost, the authors considered machining
cost, quality cost, and expected cost to machine a feature.

Work related to acquisition cost models for MTs and other large equipment includes
that of Ciurana et al. [48], who built two cost models for vertical high-speed machining
centers based on machine characteristics. These models included a buyer’s cost model
and a manufacturer’s cost model. These were built through multiple regression analysis
(MRA) and artificial neural networks (ANN), and ANN was found to create more accurate
cost models. Chen and Keys [49] presented a method to model the total cost of heavy
equipment, including their use. The authors’ model included the delivered costs (cost of
the machine plus its delivery), installation costs, cost of securing capital, miscellaneous
ownership costs (e.g., taxes), and operating costs (maintenance, energy, and operators’
costs). Thokala et al. [50] examined the lifecycle costs of an unmanned aircraft vehicle
(UAV). The authors defined acquisition cost as the sum of each individual component and
defining characteristics such as material, type of component, and manufacturing method.
The authors then approximated repair costs through a simulation that calculated how often
a UAV would require repairs. Roth et al. [51] examined the costs of automobile bodies to
determine if aluminum could be a cost-effective alternative to steel. The motivation for this
switch comes from the regulatory pressures to meet fuel efficiency and recycling standards.
From the study, the authors found that for small and midsize automobiles, material cost
was the second largest contributor, with tooling cost being the first.

3. Cost Model Development

The cost to manufacture an MT depends on many factors, such as the size, number of
axes, and capability of the MT. Understanding how these characteristics and specifications
affect cost is important to both customers and manufacturers. For customers, being able
to choose a machine that will satisfy their requirements and be within budget is very
important. For MT builders, knowing how design changes will affect the final cost is also
important. It can allow for design improvements that reduce an MT’s energy consumption
without significantly increasing the price of the machine. With this knowledge, manufac-
turers may be better equipped to reduce environmental impact through lightweighting
without increasing manufacturing cost. To investigate the relationship between costs and
various MT features, data on the features associated with a wide variety of MTs and the
associated prices of the machines were collected. As MT builders are hesitant to supply
the cost to manufacture their machines, the price of the machine was used in place of cost
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to manufacture the machine. Per personal communications [10], MT builders price their
machines close to the manufacturing cost since the MT industry is extremely competitive.
Therefore, it is assumed that as the price of the machine is proportional to the cost to
manufacture the machine; there is a consistent markup among the machines. This markup
is assumed to be equal to the S&P 500 Operating Profit Margins for Industrial Machinery,
which is 12.9% for 2021 [11]. Two sets of empirical models were then fit to this MT data:
simple linear regression models and stepwise regression models; stepwise regression was
employed as the features are not independent of each other. The resulting cost/price
models, though built from price data instead of manufacturing cost data, reveal insights
into how differences among the MTs affect the overall cost/price of the MT. This section
describes the data collection and formulation of the model and demonstrates the results.

3.1. Data Collection and Model Formulation

The data collected includes various MT features and specifications in terms of capabil-
ities, sizes, and complexities. This data is used to build a model that considers a wide range
of machines. This section describes the data collection and construction of the model.

3.1.1. Data Acquisition

Data was acquired from three MT builders who were willing to provide price data:
Hurco, Mazak, and Haas. All the machines were CNC vertical milling machines. These
included a range of sizes and capabilities of MTs across the three different companies.
Information from Hurco, Mazak, and Haas was retrieved by various means, e.g., literature
from distributors and company websites. Hurco provided basic specifications of MTs
on their website but had no pricing information. However, a distributor provided price
information and a catalog of three machines with detailed specifications. Similarly, Mazak
only provided basic specifications on their website. A distributor provided more in-depth
catalogs as well as price ranges from the least to the most expensive. It was assumed that
the extremes of the price range accurately reflected the extremes of the machines. A total of
four Mazak machines were analyzed. The Haas website provided the specifications of each
machine as well as their pricing. A total of 72 machines were considered.

A single dataset was created using only the data provided by the Haas website. This
dataset included 72 MTs and considered a range of machine types. A second dataset was
constructed from the data provided by the three companies. However, due to having far
more data from Haas, not all the Haas machines were included in the multi-company
dataset to avoid skewing the results (a comparable number of each company’s machines
were included in the dataset). The multi-company dataset had 3 Hurco MTs, 4 Mazak MTs,
and 13 Haas MTs. Of these machines, both 3-axis and 5-axis machines were included from
different series.

When building the Haas dataset, 16 variables were used. For the multi-company
dataset, not all features could be found for all three companies, and therefore less features
were included than for the Haas-only dataset. The multi-company dataset included 12 vari-
ables. The MT price was used as the dependent variable (response). The 16 features for
the Haas dataset (e.g., working volume, travel in the x, y, and z axes, maximum speed,
number of axes, and mass) and the 12 features for the multi-company dataset served as
the independent variables. The Haas dataset can be found in Table 1. However, due to
confidentiality concerns, the data provided by Hurco and Mazak are not provided in this
paper, although a total list of features can be found in Table 2. For both datasets, the features
were standardized using Equation (1):

QC =

(
QU − Qmax + Qmin

2

)
2

Qmax − Qmin
(1)

where QC is the coded (standardized) value, Qmax is the maximum value of the features,
Qmin is the minimum value of the features, and QU is the uncoded feature value. Standard-
ization provides for similar scaling among all the features.
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Table 1. Haas data (dataset #1).

MTs Volume
mm3

Spindle
Speed
(RPM)

x-Axis
(mm)

y-Axis
(mm)

z-Axis
(mm) Axes

Max
Rating
(kW)

Max
Torque
(Nm)

Max
Cutting
(m/min)

Rapids
on x

(m/min)

Rapids
on y

(m/min)

Rapids
on z

(m/min)

Max
Thrust x

(N)

Max
Thrust y

(N)

Max
Thrust z

(N)

Mass
(kg) Price (USD)

VF-1 104,773,984 8100 508 406 508 3 22.4 122 16.5 25.4 25.4 25.4 11,343 11,343 18,683 3539 49,995.00
VF-2 157,160,976 8100 762 406 508 3 22.4 122 16.5 25.4 25.4 25.4 11,343 11,343 18,683 3539 52,995.00

VF-2TR 157,160,976 8100 762 406 508 5 22.4 122 16.5 25.4 25.4 25.4 11,343 11,343 18,683 3765 123,995.00
VF-2SS 157,160,976 12,000 762 406 508 3 22.4 122 21.2 35.6 35.6 35.6 8874 8874 13,723 3539 64,995.00
VF-2YT 196,644,768 8100 762 508 508 3 22.4 122 16.5 25.4 25.4 25.4 11,343 11,343 18,683 3539 60,995.00

VF-2SSYT 196,644,768 12,000 762 508 508 3 22.4 122 21.2 35.6 35.6 35.6 8874 8874 13,723 3539 71,995.00
VF-3 327,741,280 8100 1016 508 635 3 22.4 122 16.5 25.4 25.4 25.4 11,343 11,343 18,683 6124 67,995.00

VF-3SS 327,741,280 12,000 1016 508 635 3 22.4 122 21.2 35.6 35.6 35.6 13,723 13,723 17,450 6124 79,995.00
VF-3YT 425,805,600 8100 1016 660 635 3 22.4 122 12.7 18 18 18 11,343 18,238 18,238 6804 77,995.00

VF-3SSYT 425,805,600 12,000 1016 660 635 3 22.4 122 21.2 35.6 35.6 35.6 13,723 13,723 17,450 6804 89,995.00
VF-3YT/50 425,805,600 7500 1016 660 635 3 22.4 460 12.7 18 18 18 15,124 18,238 24,910 7485 99,995.00

VF-4 409,676,600 8100 1270 508 635 3 22.4 122 16.5 25.4 25.4 25.4 11,343 11,343 18,683 6124 70,995.00
VF-4SS 409,676,600 12,000 1270 508 635 3 22.4 122 21.2 35.6 35.6 35.6 13,723 13,723 17,459 6124 82,995.00
VF-5SS 532,257,000 12,000 1270 660 635 3 22.4 122 21.2 30.5 30.5 30.5 14,902 14,902 14,902 5761 99,995.00

VF-5/40 532,257,000 8100 1270 660 635 3 22.4 122 12.7 18 18 18 11,343 18,238 18,238 5761 85,995.00
VF-5/40TR 532,257,000 8100 1270 660 635 5 22.4 122 12.7 18 18 18 11,343 18,238 18,238 5761 163,995.00
VF-5/40XT 638,708,400 8100 1524 660 635 3 22.4 122 12.7 18 18 18 15,124 18,238 18,238 7100 96,995.00

VF-5/50 532,257,000 7500 1270 660 635 3 22.4 460 12.7 18 18 18 15,124 18,238 24,910 7371 114,995.00
VF-5/50TR 532,257,000 7500 1270 660 635 5 22.4 460 12.7 18 18 18 15,124 18,238 24,910 7371 177,995.00
VF-5/50XT 638,708,400 7500 1524 660 635 3 22.4 460 12.7 18 18 18 15,124 18,238 24,910 7371 128,995.00

VF-6/40 1,007,316,756 8100 1626 813 762 3 22.4 122 12.7 15.2 15.2 15.2 15,124 15,124 24,910 10,116 123,995.00
VF-6SS 1,007,316,756 12,000 1626 813 762 3 22.4 122 21.2 30.5 30.5 30.5 15,124 15,124 15,124 10,116 133,995.00

VF-6/40TR 1,007,316,756 8100 1626 813 762 5 22.4 122 12.7 15.2 15.2 15.2 15,124 15,124 24,910 11,839 194,995.00
VF-6/50 1,007,316,756 7500 1626 813 762 3 22.4 460 12.7 15.2 15.2 15.2 15,124 18,238 24,910 11,567 150,995.00

VF-6/50TR 1,007,316,756 7500 1626 813 762 5 22.4 460 12.7 15.2 15.2 15.2 15,124 18,238 24,910 12,003 212,995.00
VF-7/40 1,322,025,804 8100 2134 813 762 3 22.4 122 12.7 15.2 15.2 15.2 15,124 15,124 24,910 11,612 143,995.00
VF-7/50 1,322,025,804 7500 2134 813 762 3 22.4 460 12.7 15.2 15.2 15.2 15,124 18,238 24,910 12,021 170,995.00
VF-8/40 1,258,836,192 8100 1626 1016 762 3 22.4 122 12.7 15.2 15.2 15.2 15,124 15,124 24,910 11,250 154,995.00
VF-8/50 1,258,836,192 7500 1626 1016 762 3 22.4 460 12.7 15.2 15.2 15.2 15,124 18,238 24,910 13,155 182,995.00
VF-9/40 1,652,125,728 8100 2134 1016 762 3 22.4 122 12.7 15.2 15.2 15.2 15,124 15,124 24,910 12,837 175,995.00
VF-9/50 1,652,125,728 7500 2134 1016 762 3 22.4 460 12.7 15.2 15.2 15.2 15,124 18,238 24,910 13,109 203,995.00
VF-10/40 1,888,254,288 8100 3048 813 762 3 22.4 122 9.1 9.1 15.2 15.2 15,124 15,124 24,910 13,654 203,995.00
VF-10/50 1,888,254,288 7500 3048 813 762 3 22.4 460 9.1 9.1 15.2 15.2 15,124 18,238 24,910 14,334 230,995.00
VF-11/40 2,359,737,216 8100 3048 1016 762 3 22.4 122 9.1 9.1 15.2 15.2 15,124 15,124 24,910 15,150 225,995.00
VF-12/40 2,360,317,860 8100 3810 813 762 3 22.4 122 9.1 9.1 15.2 15.2 15,124 15,124 24,910 16,466 255,995.00
VF-12/50 2,360,317,860 7500 3810 813 762 3 22.4 460 9.1 9.1 15.2 15.2 15,124 18,238 24,910 16,874 279,995.00
VF-14/40 2,949,671,520 8100 3810 1016 762 3 22.4 122 9.1 9.1 15.2 15.2 15,124 15,124 24,910 16,466 299,995.00
VF-14/50 2,949,671,520 7500 3810 1016 762 3 22.4 460 9.1 9.1 15.2 15.2 15,124 18,238 24,910 16,874 319,995.00
UMC-500 100,549,960 8100 610 406 406 5 22.4 122 16.5 22.9 22.9 22.9 14,680 14,680 18,015 5400 124,995.00
UMC-750 196,644,768 8100 762 508 508 5 22.4 122 16.5 22.9 22.9 22.9 12,233 12,233 15,124 6464 154,995.00

UMC-750SS 196,644,768 12,000 762 508 508 5 22.4 122 16.5 30.5 30.5 30.5 12,233 12,233 15,124 6464 194,995.00
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Table 1. Cont.

MTs Volume
mm3

Spindle
Speed
(RPM)

x-Axis
(mm)

y-Axis
(mm)

z-Axis
(mm) Axes

Max
Rating
(kW)

Max
Torque
(Nm)

Max
Cutting
(m/min)

Rapids
on x

(m/min)

Rapids
on y

(m/min)

Rapids
on z

(m/min)

Max
Thrust x

(N)

Max
Thrust y

(N)

Max
Thrust z

(N)

Mass
(kg) Price (USD)

UMC-1000 409,676,600 8100 1016 635 635 5 22.4 122 16.5 22.9 22.9 22.9 14,680 14,680 18,015 7077 199,995.00
UMC-1000-

P 409,676,600 8100 1016 635 635 5 22.4 122 16.5 22.9 22.9 22.9 14,680 14,680 18,015 7077 224,995.00

UMC-
1000SS 409,676,600 12,000 1016 635 635 5 22.4 122 16.5 30.5 30.5 30.5 14,680 14,680 18,015 7711 229,995.00

UMC-
1000SS-P 409,676,600 12,000 1016 635 635 5 22.4 122 16.5 30.5 30.5 30.5 14,680 14,680 18,015 7711 259,995.00

UMC-1500-
DUO 393,289,536 8100 1524 508 508 5 22.4 122 16.5 22.9 22.9 22.9 12,233 12,233 15,124 9120 219,995.00

VR-8 1,784,177,280 20,000 1626 1016 1080 5 18 21 12.7 15.2 15.2 15.2 15,124 15,124 24,910 11,410 299,995.00
VR-9 2,341,595,520 20,000 2134 1016 1080 5 18 21 12.7 15.2 15.2 15.2 15,124 15,124 24,910 11,410 329,995.00
VR-11 3,344,509,440 20,000 3048 1016 1080 5 18 21 9.1 9.1 15.2 15.2 15,124 15,124 24,910 15,320 369,995.00
VR-14 4,180,636,800 20,000 3810 1016 1080 5 18 21 9.1 9.1 15.2 15.2 15,124 15,124 24,910 15,320 419,995.00

VC-400 115,292,632 8100 559 406 508 3 22.4 122 12.7 20.3 20.3 20.3 15,035 15,035 15,035 7947 119,995.00
Mini Mill 31,452,820 6000 406 305 254 3 5.6 45 12.7 15.2 15.2 15.2 8896 8896 8896 1815 32,995.00

Super Mini
Mill 31,452,820 10,000 406 305 254 3 11.2 23 21.2 30.5 30.5 30.5 8896 8896 8896 1815 43,995.00

Mini Mill 2 73,424,288 6000 508 406 356 3 5.6 45 12.7 15.2 15.2 15.2 8896 8896 8896 2314 39,995.00
Super Mini

Mill2 73,424,288 10,000 508 406 356 3 11.2 23 21.2 30.5 30.5 30.5 8896 8896 8896 2314 49,995.00

VM-2 196,644,768 12,000 762 508 508 3 22.4 122 12.7 18 18 18 15,124 15,124 24,910 4264 86,995.00
VM-3 425,805,600 12,000 1016 660 635 3 22.4 122 12.7 18 18 18 18,238 18,238 18,238 6940 99,995.00
VM-6 1,007,316,756 12,000 1626 813 762 3 22.4 122 12.7 15.2 15.2 15.2 15,124 18,238 24,910 10,887 139,995.00
DT-1 81,261,712 10,000 508 406 394 3 11.2 62 30.5 61 61 61 11,343 11,343 18,683 2336 49,995.00
DT-2 113,734,404 10,000 700 406 394 3 11.2 62 30.5 61 61 61 11,343 11,343 18,683 2427 51,995.00
DM-1 81,261,712 10,000 508 406 394 3 11.2 62 30.5 61 61 61 11,343 11,343 18,683 2336 59,995.00
DM-2 113,734,404 10,000 711 406 394 3 11.2 62 30.5 61 61 61 11,343 11,343 18,683 2427 61,995.00
TM-1 94,358,460 4000 762 305 406 3 5.6 45 5.1 5.1 5.1 5.1 8896 8896 8896 2042 30,995.00

TM-1P 94,358,460 6000 762 305 406 3 5.6 45 10.2 10.2 10.2 10.2 8896 8896 8896 2042 34,995.00
TM-2 167,473,376 4000 1016 406 406 3 5.6 45 5.1 5.1 5.1 5.1 8896 8896 8896 2359 34,995.00

TM-2P 167,473,376 6000 1016 406 406 3 5.6 45 10.2 10.2 10.2 10.2 8896 8896 8896 2359 37,995.00
TM-3 209,547,968 4000 1016 508 406 3 5.6 45 5.1 5.1 5.1 5.1 8896 8896 8896 2813 40,995.00

TM-3P 209,547,968 6000 1016 508 406 3 5.6 45 10.2 10.2 10.2 10.2 8896 8896 8896 2813 43,995.00
CM-1 23,628,350 30,000 305 254 305 3 3.7 11 12.7 19.2 19.2 19.2 5111 5111 5111 917 59,995.00

GR-510 1,328,061,483 8100 3073 1549 279 3 11.2 65 20.3 20.3 53.3 27.9 11,210 4537 9119 8800 125,995.00
GR-712 2,218,495,563 8100 3683 2159 279 3 11.2 65 20.3 20.3 53.3 27.9 11,210 4537 9119 10,887 169,995.00

GM-2-5AX 8,191,809,626 24,000 3683 2223 1000 5 12 15 20.3 20.3 53.3 27.9 20,017 7340 8896 10,000 369,995.00
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Table 2. Simple linear regression models including R2 values for each feature, where the values greater than 0.5 are shaded
(nomenclature shown in the Features column is used in Tables 3 and 4).

Haas Dataset Multi-Company Dataset

Features Intercept Coefficient R2 Intercept Coefficient R2

Mass 1.639 × 105 1.380 × 105 0.6823 2.188 × 105 1.530 × 105 0.7237
Max Cutting Speed (MCS) 1.300 × 105 −6.085 × 104 0.0823

Spindle Power (SP) 1.119 × 105 5.324 × 104 0.1441 1.129 × 105 7.218 × 104 0.2751
Max Thrust x (MTX) 1.326 × 105 1.702 × 105 0.4497
Max Thrust y (MTY) 1.219 × 105 6.808 × 104 0.1627
Max Thrust z (MTZ) 1.155 × 105 8.013 × 104 0.2726
Spindle Torque (ST) 1.545 × 105 2.954 × 104 0.0402 2.151 × 105 1.607 × 105 0.6098

Number of Axes (NA) 1.750 × 105 6.247 × 104 0.3371 1.603 × 105 2.844 × 104 0.0532
Rapid Travel on x (RTX) 1.137 × 105 −7.184 × 104 0.1184 1.388 × 105 2.604 × 104 0.0201
Rapid Travel on y (RTY) 1.341 × 105 −2.821 × 104 0.0211 1.430 × 105 3.243 × 104 0.0407
Rapid Travel on z (RTZ) 1.240 × 105 −5.191 × 104 0.0565 1.436 × 105 3.604 × 104 0.0472

Spindle Speed (SS) 2.058 × 105 1.111 × 105 0.1638 1.383 × 105 −2.936 × 104 0.0307
Volume (Vol) 3.288 × 105 2.380 × 105 0.6129 2.098 × 105 1.062 × 105 0.4063

x-Axis Travel (XAT) 1.830 × 105 1.250 × 105 0.5798 2.336 × 105 1.508 × 105 0.6439
y-Axis Travel (YAT) 2.350 × 105 1.648 × 105 0.4002 1.965 × 105 1.397 × 105 0.5589
z-Axis Travel (ZAT) 1.649 × 105 1.546 × 105 0.6218 1.396 × 105 1.232 × 105 0.5322
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Table 3. Variance–covariance matrix for the Haas data with the variances (across the diagonal) in bold and the significant covariances shaded (see Table 2 for nomenclature).

Vol SS XAT YAT ZAT NA SP ST MCS RTX RTY RTZ MTX MTY MTZ Mass

Vol 1.59 × 1018 2.40 × 1012 1.05 × 1012 3.63 × 1011 1.67 × 1011 2.48 × 108 7.42 × 108 1.10 × 1010 −1.47 × 109 −5.36 × 109 1.64 × 108 −3.03 × 109 1.97 × 1012 5.73 × 1011 2.08 × 1012 3.86 × 1012

SS 2.40 × 1012 1.98 × 107 5.77 × 105 3.92 × 105 3.32 × 105 1.26 × 103 −1.23 × 103 −1.99 × 105 4.68 × 103 8.21 × 103 1.40 × 104 1.00 × 104 1.73 × 106 −2.13 × 106 −6.75 × 105 1.85 × 106

XAT 1.05 × 1012 5.77 × 105 1.00 × 106 2.76 × 105 1.18 × 105 4.07 × 101 1.34 × 103 3.35 × 104 −1.95 × 103 −5.79 × 103 −1.52 × 103 −3.64 × 103 1.45 × 106 9.23 × 105 2.53 × 106 3.88 × 106

YAT 3.63 × 1011 3.92 × 105 2.76 × 105 1.26 × 105 3.43 × 104 4.59 × 101 3.01 × 102 6.02 × 103 −1.68 × 102 −1.26 × 103 7.12 × 102 −6.65 × 102 5.25 × 105 9.11 × 104 4.67 × 105 1.03 × 106

ZAT 1.67 × 1011 3.32 × 105 1.18 × 105 3.43 × 104 3.91 × 104 5.93 × 101 6.79 × 102 7.57 × 103 −3.70 × 102 −8.73 × 102 −8.28 × 102 −7.31 × 102 4.14 × 105 4.79 × 105 8.60 × 105 6.90 × 105

NA 2.48 × 108 1.26 × 103 4.07 × 101 4.59 × 101 5.93 × 101 7.61 × 10−1 1.12 × 100 −1.13 × 101 −1.59 × 10−1 −5.06 × 10−1 −3.16 × 10−1 −4.95 × 10−1 6.68 × 102 4.12 × 102 6.37 × 102 6.24 × 102

SP 7.42 × 108 −1.23 × 103 1.34 × 103 3.01 × 102 6.79 × 102 1.12 × 100 3.91 × 101 4.23 × 102 −1.28 × 100 −2.14 × 100 −9.99 × 100 −2.29 × 100 1.14 × 104 1.74 × 104 2.74 × 104 1.48 × 104

ST 1.10 × 1010 −1.99 × 105 3.35 × 104 6.02 × 103 7.57 × 103 −1.13 × 101 4.23 × 102 2.05 × 104 −1.87 × 102 −3.84 × 102 −4.85 × 102 −3.72 × 102 1.65 × 105 3.56 × 105 4.90 × 105 2.75 × 105

MCS −1.47 × 109 4.68 × 103 −1.95 × 103 −1.68 × 102 −3.70 × 102 −1.59 × 10−1 −1.28 × 100 −1.87 × 102 3.16 × 101 6.75 × 101 7.04 × 101 6.47 × 101 −2.06 × 103 −6.53 × 103 −6.95 × 103 −1.01 × 104

RTZ −5.36 × 109 8.21 × 103 −5.79 × 103 −1.26 × 103 −8.73 × 102 −5.06 × 10−1 −2.14 × 100 −3.84 × 102 6.75 × 101 1.58 × 102 1.47 × 102 1.48 × 102 −6.30 × 103 −1.09 × 104 −1.12 × 104 −2.63 × 104

RTY 1.64 × 108 1.40 × 104 −1.52 × 103 7.12 × 102 −8.28 × 102 −3.16 × 10−1 −9.99 × 100 −4.85 × 102 7.04 × 101 1.47 × 102 1.82 × 102 1.50 × 102 −3.18 × 103 −2.02 × 104 −1.94 × 104 −1.71 × 104

RTZ −3.03 × 109 1.00 × 104 −3.64 × 103 −6.65 × 102 −7.31 × 102 −4.95 × 10−1 −2.29 × 100 −3.72 × 102 6.47 × 101 1.48 × 102 1.50 × 102 1.44 × 102 −4.35 × 103 −1.15 × 104 −9.23 × 103 −1.95 × 104

MTX 1.97 × 1012 1.73 × 106 1.45 × 106 5.25 × 105 4.14 × 105 6.68 × 102 1.14 × 104 1.65 × 105 −2.06 × 103 −6.30 × 103 −3.18 × 103 −4.35 × 103 7.60 × 106 7.47 × 106 1.20 × 107 8.98 × 106

MTY 5.73 × 1011 −2.13 × 106 9.23 × 105 9.11 × 104 4.79 × 105 4.12 × 102 1.74 × 104 3.56 × 105 −6.53 × 103 −1.09 × 104 −2.02 × 104 −1.15 × 104 7.47 × 106 1.45 × 107 1.90 × 107 9.87 × 106

MTZ 2.08 × 1012 −6.75 × 105 2.53 × 106 4.67 × 105 8.60 × 105 6.37 × 102 2.74 × 104 4.90 × 105 −6.95 × 103 −1.12 × 104 −1.94 × 104 −9.23 × 103 1.20 × 107 1.90 × 107 3.66 × 107 1.91 × 107

Mass 3.86 × 1012 1.85 × 106 3.88 × 106 1.03 × 106 6.90 × 105 6.24 × 102 1.48 × 104 2.75 × 105 −1.01 × 104 −2.63 × 104 −1.71× 104 −1.95 × 104 8.98 × 106 9.87 × 106 1.91 × 107 2.01 × 107

Table 4. Variance–covariance matrix for the multi-company data with the variances (across the diagonal) in bold and the significant covariances shaded (see Table 2 for nomenclature).

Vol SS XAT YAT ZAT SP ST NA RAT RAY RAZ Mass

Vol 3.90 × 1020 −6.35 × 1012 7.80 × 1012 1.51 × 1012 1.49 × 1012 6.17 × 109 1.07 × 1012 −2.38 × 109 8.46 × 1010 8.15 × 1010 7.14 × 1010 4.42 × 1013

SS −6.35 × 1012 7.39 × 106 −9.23 × 105 −1.17 × 105 −3.63 × 104 −1.27 × 102 −6.75 × 104 5.39 × 102 1.55 × 104 1.48 × 104 1.40 × 104 −2.55 × 106

XAT 7.80 × 1012 −9.23 × 105 8.40 × 105 1.33 × 105 1.06 × 105 2.49 × 103 8.35 × 104 −1.39 × 102 −1.82 × 103 −9.58 × 102 −8.85 × 102 3.92 × 106

YAT 1.51 × 1012 −1.17 × 105 1.33 × 105 3.71 × 104 2.54 × 104 5.89 × 102 1.39 × 104 5.07 × 100 −2.46 × 102 −1.55 × 102 −1.56 × 102 7.99 × 105

ZAT 1.49 × 1012 −3.63 × 104 1.06 × 105 2.54 × 104 2.32 × 104 5.75 × 102 1.24 × 104 −1.12 × 101 2.59 × 101 1.04 × 102 7.35 × 101 5.37 × 105

SP 6.17 × 109 −1.27 × 102 2.49 × 103 5.89 × 102 5.75 × 102 3.82 × 101 3.32 × 102 1.59 × 100 5.32 × 100 6.85 × 100 8.54 × 100 1.45 × 104

ST 1.07 × 1012 −6.75 × 104 8.35 × 104 1.39 × 104 1.24 × 104 3.32 × 102 1.15 × 104 2.96 × 100 −6.12 × 101 3.87 × 101 1.53 × 101 4.19 × 105

NA −2.38 × 109 5.39 × 102 −1.39 × 102 5.07 × 100 −1.12 × 101 1.59 × 100 2.96 × 100 6.74 × 10−1 7.16 × 10−1 5.89 × 10−1 6.95 × 10−1 5.73 × 102

RTX 8.46 × 1010 1.55 × 104 −1.82 × 103 −2.46 × 102 2.59 × 101 5.32 × 100 −6.12 × 101 7.16 × 10−1 8.26 × 101 7.65 × 101 7.33 × 101 −1.71 × 103

RTY 8.15 × 1010 1.48 × 104 −9.58 × 102 −1.55 × 102 1.04 × 102 6.85 × 100 3.87 × 101 5.89 × 10−1 7.65 × 101 7.23 × 101 6.91 × 101 1.60 × 103

RTZ 7.14 × 1010 1.40 × 104 −8.85 × 102 −1.56 × 102 7.35 × 101 8.54 × 100 1.53 × 101 6.95 × 10−1 7.33 × 101 6.91 × 101 6.78 × 101 1.94 × 103

Mass 4.42 × 1013 −2.55 × 106 3.92 × 106 7.99 × 105 5.37 × 105 1.45 × 104 4.19 × 105 5.73 × 102 −1.71 × 103 1.60 × 103 1.94 × 103 2.59 × 107
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3.1.2. Model Formulation

There are many features of an MT, and the price is not impacted equally by each
feature. With the goal of finding the major price drivers (assuming cost to manufacture
is correlated to the price of the machine), it is important to find which features have the
largest impact on the price of the MT. Specifically, given our interest in lightweighting,
it is important to find out if the mass of an MT significantly impacts its price. Working
with the two datasets (Haas and multi-company), two types of models are built: simple
linear regression models and stepwise regression models. We first explored simple linear
regression to individually assess the relative importance of each feature in describing the
variation in price data. Then, using stepwise regression, we developed empirical models
for the price based on the features, as the features are not independent of each other.

Simple linear regression was used to build models relating each feature individually
to price. The linear regression models provide an initial view as to which features are most
influential to the price of the machine through an R2 value. The R2 value describes how
much of the variation in the price data is described by the feature (independent variable).
These models were built for both the Haas dataset (16 features) and the multi-company
dataset (12 features). These results can be found in Table 2. As is evident from the table, the
features whose models have the highest R2, larger than 50%, are identified (shaded). For
the Haas dataset, these high-impact variables are mass, volume, z-axis travel, and x-axis
travel. For the multi-company dataset, these high-impact variables include mass, x-axis
travel, spindle torque, y-axis travel, and z-axis travel. The significance of mass comes from
the cost of materials. Volume is tied closely to mass and would therefore be significant in
determining price. This is similar for x-, y-, and z-axis travel. The reason for torque being
important in the multi-company dataset but not in the Haas dataset could be due to the
Haas dataset representing a wider range of sizes and types of vertical milling machines.

With some understanding of the relative importance of each variable on price for
the different datasets, attention now shifts to developing a single empirical model for
MT price for each dataset. We might initially consider employing a standard multiple
linear regression model. Such a model envisions that the predicted price is the sum of
terms (one for each independent variable), with each term (or predictor) being the product
of the independent variable and a coefficient. If desired, terms (predictors) may also be
added to consider interactions among features (for an interaction term, the independent
variable is the product of the feature values, e.g., volume x mass). Conventionally, we can
then drop terms from the model that are not important. However, for our datasets, the
variables are not independent of one another. For example, if the x-axis travel distance
increases, this would most likely increase the volume of the machine as well as the mass.
This can be seen in that in a more productive machine, greater power and cutting speeds
will require greater stiffness and moment of inertia. This would potentially mean larger
mass in the structural components. This relationship can be seen in Tables 3 and 4, where
Table 3 shows the variance–covariance matrix for the Haas dataset and Table 4 shows
the variance–covariance matrix for the multi-company dataset. The variance is shown in
bold across the diagonal, and significant covariances (those greater than the respective
variance) are shaded. It can be seen there are a number of interactions between the variables.
Therefore, if building a model through multiple linear regression, dropping a term (or
adding one) may have a dramatic effect on the other terms. To understand which features
are important in determining the price of the machine when the explanatory variables
are not independent, stepwise regression is often employed, and this was the method we
utilized in this case.

The goal of stepwise regression is to iteratively develop a multi-term (multi-predictor)
regression model for the response. The procedure to accomplish this goal includes three
steps and can be seen in Figure 2. The process starts by fitting a simple linear regression
model for each variable (i.e., find a coefficient for each variable). A t-test is performed to
judge the significance of each model coefficient (a p-value is determined). Each p-value
(significance value) is then compared to the significance-to-enter value, αE. If any of the
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significance values are smaller than αE, then the coefficient with the smallest significance
value is chosen. Now that a starting single-variable model is available, the process moves
on to the second step of testing terms not in the model. Similar to the first step, regression
models are fit for each variable not in the model. These regression models include the
variable(s) already in the model plus an additional variable to be tested. A significance test
is then performed for each of the models and the corresponding p-value determined. Each
p-value (significance value) is compared to the αE. If any of the p-values is smaller than αE
then the term with the smallest significance value is added to the model. This second step
is repeated until no more terms can be added to the model. The process then moves on
to the third and final step. In this step, the features in the model are tested to see if their
significance has changed due to the addition of other terms. The significance of the terms
in the most up-to-date regression model are evaluated (corresponding p-values calculated),
and each p-value (significance value) is compared to the significance-to-remove value, αR.
If any terms have a significance greater than αR, then the term with the largest p-value
is removed. The model is then refit and the step is repeated until no more terms can be
removed; then, the process stops.

J. Manuf. Mater. Process. 2021, 5, x FOR PEER REVIEW 16 of 24 
 

 

 
Figure 2. Flow chart of the procedure for stepwise regression. 

3.2. Cost Model Results 
From the data provided by the MT builders, multiple empirical cost (price) models 

were created: simple linear regressions for each feature of both datasets, a stepwise re-
gression for the multi-company dataset, and a stepwise regression for the Haas dataset. 
The simple linear regression model results can be found in Table 2. The coded (standard-
ized) stepwise regression model for the Haas dataset can be found in Equation (2) and the 
uncoded model can be found in Equation (3). The coded (standardized) stepwise regres-
sion model for the multi-company can be found in Equation (4) and the uncoded model 
can be found in Equation (5). The nomenclature and data ranges for the stepwise models 
can be found in Table 5. In the models, a subscript of “C” represents a coded value (stand-
ardized), and a subscript of “U” represents an uncoded value (not standardized). The 
standard error and p-values for the Haas model can be found in Table 6 and the standard 
error and p-values for the multi-company model can be found in Table 7. C = 2.434 × 10 + 6.776 × 10 V + 3.648 × 10 S + 3.477 × 10 X − 3.430× 10 Y + 4.492 × 10 A + 8.309 × 10 m  

(2) 

C = −1.4245 × 10 + 1.659 × 10 V + 2.806S + 19.840X − 34.8400Y+ 4.49 × 10 A + 10.414m  (3) 

C = 2.194 × 10 + 6.190 × 10 V + 3.294 × 10 P + 1.037 × 10 m  (4) C = −2.197 × 10 + 1.904 × 10 V + 3.921 × 10 P + 11.468m  (5) 

Start

Fit initial single 
variable model

Test terms not in 
the model

No

At least one 
satisfies 
αE?

Remove least 
significant term 
and refit model

Yes

No

Test terms in the 
model

At least one 
satisfies 
αR?

End

Add most 
significant term

Yes
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From the stepwise regression, it was found the top three influencers of price for the
multi-company dataset are mass, volume, and spindle power; for the Haas dataset, the top
three influencers of price are number of axes, mass, and spindle speed.

3.2. Cost Model Results

From the data provided by the MT builders, multiple empirical cost (price) models
were created: simple linear regressions for each feature of both datasets, a stepwise regres-
sion for the multi-company dataset, and a stepwise regression for the Haas dataset. The
simple linear regression model results can be found in Table 2. The coded (standardized)
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stepwise regression model for the Haas dataset can be found in Equation (2) and the un-
coded model can be found in Equation (3). The coded (standardized) stepwise regression
model for the multi-company can be found in Equation (4) and the uncoded model can be
found in Equation (5). The nomenclature and data ranges for the stepwise models can be
found in Table 5. In the models, a subscript of “C” represents a coded value (standardized),
and a subscript of “U” represents an uncoded value (not standardized). The standard
error and p-values for the Haas model can be found in Table 6 and the standard error and
p-values for the multi-company model can be found in Table 7.

C = 2.434× 105 + 6.776× 104VC + 3.648× 104SC + 3.477× 104XC − 3.430× 104YC + 4.492× 104AC + 8.309× 104mC (2)

C = −1.4245 × 105 + 1.659 × 10−5VU + 2.806SU + 19.840XU − 34.8400YU + 4.49 × 104AU + 10.414mU (3)

C = 2.194 × 105 + 6.190 × 104VC + 3.294 × 104PC + 1.037 × 105mC (4)

C = −2.197 × 104 + 1.904 × 10−4VU + 3.921 × 103PU + 11.468mU (5)

Table 5. Significant MT features from stepwise regression.

Nomenclature Acquired Data Range

Haas Multi-Company

A Number of axes 3, 5
m Mass (kg) 917–16,874 1815–19,900
P Spindle power (kW) 5.6–22.4
S Spindle speed (rpm) 4000–30,000
V Volume (m3) 0.024–8.19 0.031–65
X x-axis travel 305–3810
Y y-axis travel 254–2223

Table 6. Standard error and p-values for Haas cost (price) model (found in Equation (2)).

Features Standard Error p-Value

Volume (mm3) 1.919 × 104 7.666 × 10−4

Spindle speed (RPM) 8.639 × 103 7.663 × 10−5

x-axis travel (mm) 1.256 × 104 7.324 × 10−3

y-axis travel (mm) 1.181 × 104 5.009 × 10−3

Number of axes 3.038 × 103 1.794 × 10−22

Mass (kg) 8.794 × 103 8.075 × 10−14

Table 7. Standard errors and p-values for multi-company cost (price) model (found in Equation (4)).

Features Standard Error p-Value

Volume (V, mm3) 1.814 × 104 3.570 × 10−3

Spindle Power (P, kW) 1.516 × 104 4.518 × 10−2

Mass (m, kg) 2.205 × 104 2.389 × 10−4

4. Discussion

From the results presented above, a number of conclusions may be drawn as to the
main cost drivers of an MT (price was used to build the models, but it was assumed price
is proportional to cost to manufacture the MT). This section discusses these results and
implications, along with methods to design MTs considering both energy and cost.



J. Manuf. Mater. Process. 2021, 5, 129 16 of 22

4.1. Cost Drivers

From the results in Tables 6 and 7, and Equations (2)–(5), several observations about
cost drivers can be made. The first model, Haas only (results in Table 6), shows that the
complexity of the MT (as represented by the number of axes), machine size (shown by
mass, volume, and x- and y-axis travel), and MT capability (represented by spindle speed
and spindle power) have the most significant impact on the price of the machine. The
number of axes has the largest impact on price, followed by mass, then spindle speed,
volume, and finally x- and y-axis travel. The second model, multi-company (results in
Table 7), shows similar results in that size (represented by mass and volume) and machine
capability (represented by spindle power) significantly affect machine price. The model
shows that mass has the largest impact, followed by volume, with spindle power having
the smallest impact of the three.

These results show that mass is very important in determining the price of the machine;
this is undoubtedly due to the fact that greater mass means larger material costs. Volume
and x- and y-axis travel are also shown to be important. However, these variables also
relate to the mass of the MT and the associated material costs. This is consistent with the
discussion in Section 2.3 regarding how material cost plays a significant role in the cost
of the product (in this case, the cost of an MT). With both models showing mass to be a
significant cost driver, it can be concluded that lightweighting an MT should reduce the
overall machine price. However, since mass and size of the MT are not the only price
drivers, other design elements should still be considered. These include the complexity of
the MT (seen by the number of axes) and the capability of the MT (spindle power, spindle
speed, and x- and y-axis travel). The three price driver categories are summarized below:

1. Size (mass, volume, x- and y-axis travel).
2. Complexity (number of axes).
3. Capability (spindle power spindle speed, x- and y-axis travel).

What is not described though in the model is the design of the technology, e.g.,
material choice, control, and drive selection, which is required for HSM. These may have
a significant impact on cost beyond some of the features described in the model. Further
investigation into the technology and design of the machines may be required. In addition,
these machines may not necessarily be optimized in their design due to many being
modular in order to meet many different requirements. This will also impact the cost
model.

4.2. Case Study: Design of MTs with Consideration of Energy and Cost

With an understanding of how the mass of the MT, more specifically the materials,
affects the price of an MT, strategies may be implemented to consider both energy and
cost while designing a machine. This section explores design methods that consider both
energy and cost based on prior work of the authors.

4.2.1. Lightweighting Design Method

Previous work of the authors [32,33] explored lightweighting the table of a milling
machine to reduce its energy consumption. The table was chosen since it moves throughout
cutting and provides potential for energy reduction during the use of the machine. Other
components within the MT will provide a greater opportunity for mass reduction and,
therefore, price reduction, e.g., the housing and columns, but do not move and will not
provide the energy savings during use. Since the goal of this paper is to examine how
lightweighting with the intent of reducing energy consumption will impact the cost of the
machine, the table was chosen.

Both papers proposed Gas to design the table with reduced mass. Triebe et al. [32]
examined and compared two lightweight sandwich panel designs, i.e., a honeycomb core
and a metal foam core, to a solid table. The GA varied parameters such as honeycomb core
thickness and height to search for designs that minimized mass while minimizing bending.
Triebe et al. [33] also searched for lightweight sandwich panel table designs. These designs
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consisted of a single row of cross-sectional beams that run along the length of the table.
An example with square cross-sections (or cells) is shown in Figure 3. The GA searches
for shapes of cells that minimize the mass of the table while maximizing its resistance to
bending (stiffness); stiffness was assumed to be proportional to the inverse of the moment
of inertia (MoI) and polar moment of inertia (PMoI). The GA found that cells with an
I-shaped cross section were best suited to reduce mass while retaining strength. The final
design was compared to a solid table design using finite element analysis (FEA), and it was
found that the I-shaped cross-section design did deflect more under a load than the solid
table, but the deflection was small.
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GA was chosen to search for table designs due to its ability to find multiple solutions,
allow for multiple objectives, and for its ability to demonstrate tradeoffs between the
objectives. This allowed for the comparison between mass and stiffness. GA also reduces
the chance of convergence at a local optimum through the introduction of mutations
and broad consideration/searching of the entire solution space. The final population
of solutions provides various design options that allow for a choice with an acceptable
stiffness and a small mass.

When lightweighting the table, it is important to consider vibrations since vibrations
contribute to the precision of the machine and quality of the finished part. A lighter-weight
table can increase vibrations due to a potential decrease in the natural frequencies as a result
of the lower mass. Future work will explore the dynamic performance of the lightweight
table. However, for this paper, the reduction in mass with its impact on cost is the focus in
the following subsections.

4.2.2. Including Cost/Price and Energy in the Design

With the cost model built in Section 3 (price was used to build the model but it
was assumed price is proportional to cost to manufacture the MT), MT cost can now be
considered during design. Due to the link found in this paper between the mass of the MT
and its cost, instead of adding MT cost as an objective, mass and cost can be considered
simultaneously as a single objective. This allows for cost to be considered during design
while attempting to reduce energy consumption. To consider MT cost simultaneously, the
mass savings, calculated from comparing the lightweight table design to the original table
design, is plugged into the equation and all other terms are deleted since they are not
considered in the optimization. This will provide a cost (price) savings. For an estimation
of total cost (price), the rest of the machine tool specifications should be included in the
calculation.

Since lightweighting reduces the amount of materials in the MT, as is in the case
of Triebe et al. [32,33], upstream energy consumption and CO2 can also be considered
in the design of the MT. This is similarly accomplished by including the relationship
between materials and energy consumption/CO2 within the GA. However, if switching
between materials, energy and CO2 will change. These relationships between material and
energy/CO2 can be found in Figure 1b.
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4.2.3. Example: Lightweighting Table

Using the lightweighting method outlined in Triebe et al. [33], the cost (price) savings
along with upstream CO2 and energy savings can be calculated. The standard table (shown
in Figure 4a) is considered as a baseline for comparison purposes. This table is assumed to
be made from steel and has dimensions of 889 × 1676 × 122.9 mm with a mass of 1370 kg.
A lightweight table design is shown in Figure 4b and has the same dimensions as the
solid table but has a mass of 687 kg. With a mass savings of 683 kg, the manufacturing
cost savings and the savings from reduced mass in terms of embodied energy and CO2
can be calculated. This is dependent on how the table is manufactured, e.g., if the table
is machined from the same amount of material as the first table, then there will be no
embodied energy savings. Embodied energy and CO2 savings are calculated using the
values in Figure 1b (N.B., there will also be energy and CO2 savings during use of the
reduced mass table, but this issue is not considered here). Changes to the machine tool
that might be possible owing to a table with reduced mass are also not considered here;
for example, a smaller motor may be possible when the table has reduced mass. However,
these other design changes will most likely not increase the overall mass (in fact, it is more
likely that they will reduce the mass even further). Therefore, assuming strictly a reduction
in table mass can provide a lower bound to any savings resulting from the mass reduction.
The cost/price, embodied energy, and embodied CO2 savings can be found in Table 8. The
cost/price savings is about half, but some savings is lost to a greater complexity of design.
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Table 8. Cost/price, embodied energy, and embodied CO2, savings from lightweighting the table.

Savings

Cost/Price USD 7112
Embodied Energy 22,200 (MJ)

Embodied CO2 485 (kg CO2)

Complexity of the MT is considered in the cost/price model through the number of
axes. However, this would be difficult to apply to a change in complexity of other compo-
nents and systems of the MT. To further explore the issue of MT complexity, estimations of
cost for the solid table design and the lightweight table design are compared from Figure 4.

To manufacture the solid table from Figure 4a, first, the table would be cast. Then,
the sides and top and bottom would be machined to the required dimensions. Finally, the
t-slots would be machined. To manufacture the lightweight table from Figure 4b, more
processes are needed. To build the core of the sandwich panel design, the I-shaped beams
are rolled and then cut to length. Then, the beams are arranged horizontally, as shown in
Figure 4b, and joined to the top- and bottom-facing plates. Both the bottom- and top-facing
plates are made from rolled steel. The top plate includes machined t-slots.

The cost of the two tables can be calculated from the cost of each manufacturing step
plus the material cost. It was assumed that the material cost for the solid table is about USD
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4.50/kg. The mass of the cast plate was assumed to be 1620 kg, which is about 18% more
massive than the finished plate; this extra material allowed for cleanup cuts to produce
the final plate. The material cost of the 1620 kg cast plate is USD 7300. The casting and
machining processes add a relatively small amount compared to the material cost. For the
lightweight table, the cost of the I-beams, lower-facing plate, and upper-facing plate are
about USD 1200, USD 800, and USD 2700, respectively. The cost to purchase the I-beams
and plates is about USD 4700 (this includes the material and manufacturing costs) [52].
The joining and machining would add a relatively small amount compared to the material
price. The cost to join and machine the lightweight table should be similar to the cost to cast
and machine the solid table. As a result, there would be a cost savings of about USD 2600.
While the savings is not as high as predicted (see Table 8), there is still a cost reduction
due to lightweighting. Part of this difference may also be due to the fact that the models
built in this paper were built from price data instead of cost data. This savings, though, is
calculated from manufacturing cost data.

5. Conclusions

This paper has developed an empirical cost model for (or cost of an individual/company
to purchase) an MT that may be used to estimate the economic benefits of lightweighting
(reducing MT mass). Price data was used to build the model as MT builders are hesitant to
provide cost data. Per personal communications [10], MT builders price their machines
close to the manufacturing cost since the MT industry is extremely competitive. Therefore, it
was assumed that price is proportionally related to cost; there is a consistent markup among
the machines. This development effort was motivated by the concern that lightweighting
to reduce energy consumption may increase the cost of the machine due to a more complex
design. This model, though it was built from price data, provides the desired insight
into how lightweighting affects MT cost. From building the cost model, it was found
that the mass of the MT is a cost driver. This means that reducing the mass through
lightweighting will reduce the MT cost due to less materials being used. However, the
method of lightweighting must still be considered due to the potential for increasing the
design complexity and, therefore, cost.

This cost model was built considering various features of the MT including mass,
spindle power, and number of axes. Two datasets were developed from which empirical
models for MT purchase price were created. The first dataset reflected information obtained
from a single company (Haas), and the second dataset contained data from multiple
companies (Haas, Hurco, and Mazak). Simple linear regression models were made for each
feature considered from both datasets, and a stepwise regression model was built for both
datasets. The simple linear regression models provided some understanding of the relative
importance of each variable on price, but due to the variables not being independent of
each other, the simple linear regression models may not be completely accurate. Therefore,
stepwise regression models were built.

From the stepwise regression model built from the Haas-only data, it was found that
the number of axes was the most significant cost driver, followed by mass. The following
were also important, but the results show they were not as significant: spindle speed,
volume, and x- and y-axis travel. Results from the multi-company dataset showed that
mass was the most significant, followed by volume and spindle power. From these results,
it is seen that lightweighting of an MT will not increase the cost of a machine; rather, it will
decrease it. What is not described, though, in the model is the fine-tuning of the design or
the modularity of the machines to meet various requirements. Further investigation may
be required to describe these.

Using the slide table of a milling machine as an example, it was shown how cost,
energy, and CO2 can be considered during the design of the MT. The table was chosen
since it moves throughout cutting and provides a potential for energy reduction during the
use of the machine. Other components within the MT will provide a greater opportunity
for mass reduction and, therefore, price reduction, e.g., the housing and columns, but
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do not move and will not provide the energy savings during use. Since the goal of this
paper is to examine how lightweighting with the intent of reducing energy consumption
will impact the cost of the machine, the table was chosen. Previous work by the authors,
Triebe et al. [32,33], showed how to reduce the mass of the table through a sandwich panel
design. In these papers, the table design was optimized by a multi-objective GA. Using
this approach, it was found that cost, energy, and CO2 could be included in the GA as an
objective. In this manner, the MT slide table could be designed to reduce its mass and the
MT cost, energy, and CO2 emissions while preserving the strength of the table.

This paper has made a number of key contributions and observations related to the
cost modeling and the design of MTs for energy savings:

1. This paper created a cost model of CNC vertical milling machines, assuming price of
the machines is proportional to the cost to manufacture, based on various features of
the MTs to find the cost drivers.

2. Mass was found to be a significant driver for MT cost, and therefore lightweighting
has the potential to decrease the cost of an MT, but complexity of design can reduce
or even eliminate the cost savings, depending on the manufacturing processes and
cost of material (if material is changed).

3. This paper provides an example illustrating the potential cost, embodied energy, and
embodied CO2 savings through the design of a vertical milling machine slide table.

It is suggested that future work should explore the application of lightweighting to
other components and systems to further improve the energy efficiency of MTs.
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