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Abstract: Drag finishing is a widely used superfinishing technique in the industry to polish parts
under the action of abrasive media combined with an active surrounding liquid. However, the
understanding of this process is not complete. It is known that pyramidal abrasive media are more
prone to rapidly improving the surface roughness compared to spherical ones. Thus, this paper
aims to model how the shape of abrasive media (spherical vs. pyramidal) influences the material
removal mechanisms at the interface. An Arbitrary Lagrangian–Eulerian model of drag finishing
is proposed with the purpose of estimating the mechanical loadings (normal stress, shear stress)
induced by both abrasive media at the interface. The rheological behavior of both abrasive slurries
(media and liquid) has been characterized by means of a Casagrande direct shear test. In parallel,
experimental drag finishing tests were carried out with both media to quantify the drag forces. The
correlation between the numerical and experimental drag forces highlights that the abrasive media
with a pyramidal shape exhibits a higher shear resistance, and this is responsible for inducing higher
mechanical loadings on the surfaces and, through this, for a faster decrease of the surface roughness.

Keywords: drag finishing; numerical modeling; arbitrary Lagrangian–Eulerian (ALE) formulation;
abrasive media shape; rheological behavior

1. Introduction

Drag finishing is a superfinishing process leading to great improvements of surface
roughness. Parts are dragged through a slurry composed of a high number of ceramic
particles (called ‘media’) that contain abrasive grains and of an active liquid surrounding
them. The interaction between the media and the surface to polish induce either the plastic
deformation of roughness peaks or generates microchips [1]. The efficiency of the process
depends on several parameters like the drag velocity, which is related to the kinetic energy
involved in the contact [2]. A higher velocity is supposed to induce higher contact forces
and thus faster surface roughness reduction rates. The type of liquid (water, lubricant,
chemical accelerators . . . ) is also known to influence the surface finish [2–4], since it
changes the tribological conditions in the contacts, evacuates media and part debris, and
can even accelerate the process thanks to a chemical reaction. However, the dominant
factor influencing the final signature of the process is the composition and the geometry of
media [5]. Large media are well known as being able to increase contact forces, leading to
a faster decrease of surface roughness [6]. It was shown by [7] that the abrasive capacity
of media influences material removal rates. However, the drag forces that media induce
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when the part is moved through them may also play an important role: higher stresses will
result in more material removal and plastic deformation. Up to now, nobody investigated
this parameter.

Regarding the effect of the abrasive media shape, two hypotheses are proposed:

• The geometrical contact between media and the surface to polish will define the
efficiency of the process. For instance, spherical media are more prone to induce the
plastic deformation of roughness peaks, whereas pyramidal media are more likely to
generate microchips due to their sharp edges. The material removal rate with this last
will be higher.

• The mechanical behavior of the slurry composed by the media and liquid will influence
the efficiency of the process. The slurry behaves like a viscous dense liquid at a
macroscopic scale. This viscosity, linked to the shear resistance of the slurry, may
change with the shape of the particles due to the interlocking between particles [8].
Thus, triangular media may exhibit a higher flow stress, and thus a higher mechanical
loading in the contacts and, as a consequence, a higher surface modification.

Experimental investigations are not sufficient to prove these hypotheses. Thus, some
researchers have proposed numerical models to bring some scientific explanations. On
the one hand, Discrete Elements Methods (DEM) model the interaction between a large
number of particles and a solid. Their application in drag finishing by [9,10] exhibits strong
limitations, not only in terms of its high computational costs but also the complexity of
modeling nonspherical media [11]. On the other hand, some researchers proposed to model
a volume of abrasive media as a continuum material. Based on this assumption, Eulerian
and ALE (Arbitrary Lagrangian–Eulerian) formulations are employed to model the flow of
media [12]. With this type of formulation, computational costs become reasonable [13–16].
However, the identification of the corresponding shear strength for each media remains an
issue.

This paper aims to understand the influence of the media shape (sphere and pyramid)
on the induced drag forces and the mechanical loading at the interface between abrasive
media and the part surface, in order to explain why pyramidal media are more efficient
in decreasing surface roughness. To that aim, a 2D ALE (Arbitrary Lagrangian–Eulerian)
numerical model is proposed to simulate the flow of media around a cylindrical part
surface. The shear resistance of both media is identified thanks to a Casagrande direct
shear cell, commonly used in the field of soil mechanics. In parallel, experimental drag
finishing tests are performed to estimate drag forces and to follow the evolution of the
surface roughness (Sa) over time.

2. Experimental Tests
2.1. Materials and Methods

Drag finishing tests have been performed on cylindrical samples made of Inconel 718
(See composition in Table 1 [17]). Two different abrasive media (Figure 1b) were involved:
a spherical media of 1 mm in diameter and a pyramidal media of 2 × 2 mm. Regarding the
size of the media, the ones that were most similar were chosen. Their size differs by ≈1
mm, and even if it is known that the size of media plays an important role in the efficiency
of the process, the influence of the shape is much higher [8]. Both media were composed
by abrasive grains and a ceramic bonder.

Table 1. Chemical composition of Inconel 718 (% wt) [17].

Ni Cr Fe Mo Nb Ti Al

53.17 18.41 18.45 2.91 5.51 0.99 0.56

The experimental setup presented by Malkorra et al. [18] has been employed for the
tests (Figure 1a). It consists in a modified drag finishing machine. The rotation of the part
around its axis was suppressed by equaling the rotation speed of the machine and the one
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of the part. Thus, the media flow remains in contact with the same area during the test
(Figure 1c). For example, the surface that is referenced as ‘0◦’ is submitted to a permanent
orthogonal flow of media (at v =1 m/s), whereas the surface referenced as ‘90◦’ is submitted
to a tangential flow of media. Salvatore et al. [9] showed that the evolution of surface
roughness varies for each position around the cylindrical part as the corresponding normal
and tangential stresses varies. This configuration, patented by Grange et al. [19], enables
one to cover a range of normal stresses and velocities. Indeed, in the frontal area (0◦), the
normal stress is at a maximum and the sliding velocity is limited. On the contrary, in the
lateral area (90◦), the normal stress is limited and the sliding velocity is at a maximum. In
addition to this, the intensity of the normal and shear stresses at the interface depends
strongly on the shear resistance of the slurry.
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Figure 1. (a) Experimental setup, (b) abrasive media, (c) media flow around the sample and (d)
surface topography before drag finishing.

During the tests, four areas were analyzed, starting from the frontal zone at 0◦, and
then at 30◦, 60◦ and 90◦ degrees (Figure 1c). All initial surfaces presented a periodical
topography with a surface roughness of Sa = 14 ± 0.5 µm (Figure 1d) coming from the
same manufacturing process developed in [18]. The actual research was carried out in the
context of a project dealing with the post-processing of additive manufacturing (AM) parts.
For this reason, very rough surfaces are used in the actual work.

The surface roughness evolution was followed up during the tests by means of a focus
variation microscope “ALICONA Infinite Focus” with a magnification of 20×, a vertical
resolution of 0.1 µm and a lateral resolution of 2.5 µm. The analysis of the measured
surfaces (1.5 × 1.5 mm) has been conducted thanks to the Mountain Maps® software. No
Gaussian filters were applied in the calculation of the Sa parameter [20].

During the drag finishing tests, the drag forces have been measured in the experimen-
tal setup shown in Figure 2a. The workpiece was dragged through the media that were
placed in a large box, the black arrows show (1) the forward and (2) return directions). The
resultant force (Fy (exp.)) applied on the workpiece was tracked, as shown in Figure 2b.
Only the forces measured in the first direction (1) in Figure 2b were taken into account.
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Figure 2. (a) The experimental setup for measuring the drag forces (Fy (exp.)) and (b) the resultant
force signal.

2.2. Results

Figure 3 shows the evolution of the Sa parameter corresponding to the four areas. It
can be observed that:

• The Sa reduction is faster with the pyramidal media than with the spherical ones. For
example, at 0◦, after 120 min, the Sa reductions for the pyramidal and spherical media
are respectively 93% and 26%.

• The Sa reduction is greater at 0◦ than at 90◦ in the case of the pyramidal media, with
93% and 40%, respectively. However, the roughness evolution is similar for all the
surface angles for the spherical ones, with an Sa reduction between 23–35%.

• Regarding the measured drag forces (Fy (exp.)), the pyramidal media lead to a higher
force compared to the spherical ones (71 N and 37 N, respectively).
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3. The Numerical Model

In order to reach a better understanding of the experimental results, a numerical model
that simulated the flow of abrasive media around the cylindrical part was developed.



J. Manuf. Mater. Process. 2021, 5, 41 5 of 11

A 2D model based on an Arbitrary Lagrangian–Eulerian (ALE) [12] formulation was
employed in order to simulate the media flow around the part thanks to the commercial
code Abaqus/Explicit©. The model has two parts (Figure 4):

• The “Workpiece”: defined as a rigid body and fixed in its axis. It is considered that the
deformations in the workpiece are negligible in comparison to those in the abrasive
media flow.

• The abrasive “Media”: defined as a deformable body, the mesh is fixed and the material
flows through it thanks to an ALE formulation. The entrance and exit surfaces of the
material are defined as Eulerian surfaces (Figure 4).

J. Manuf. Mater. Process. 2021, 5, x FOR PEER REVIEW 5 of 11 
 

 

Figure 3. Drag finishing experimental results: Sa evolution according to the orientation angle (α) 

(a–d) of the surface and the abrasive media (BALL 1 and SCT 2 × 2). 

3. The Numerical Model 

In order to reach a better understanding of the experimental results, a numerical 

model that simulated the flow of abrasive media around the cylindrical part was devel-

oped. A 2D model based on an Arbitrary Lagrangian–Eulerian (ALE) [12] formulation 

was employed in order to simulate the media flow around the part thanks to the commer-

cial code Abaqus/Explicit©. The model has two parts (Figure 4):  

• The “Workpiece”: defined as a rigid body and fixed in its axis. It is considered that 

the deformations in the workpiece are negligible in comparison to those in the abra-

sive media flow.  

• The abrasive “Media”: defined as a deformable body, the mesh is fixed and the ma-

terial flows through it thanks to an ALE formulation. The entrance and exit surfaces 

of the material are defined as Eulerian surfaces (Figure 4). 

At the interface between the two parts, a constant Coulomb friction coefficient (µ) of 

0.25 was applied [21]. The friction coefficient is the proportionality coefficient between 

normal and tangential forces between two solids in contact. A kinematic contact algorithm 

was employed with a finite sliding formulation. Both parts were meshed uniformly with 

4-node plane strain elements (CPE4R) having a size of around 0.98 mm. 

 

Figure 4. Schematic figure of the numerical model. 

3.1. Flow Stress Model of Media 

A volume with a high number of media can be considered as granular material and 

can be modeled as a continuum material based on the techniques and theories commonly 

used to model soils [8]. 

The density of the volume of the media was measured, and the elastic properties 

were extracted from the literature [13] ( = 1587 kg/m3, E = 200 kPa, ν = 0.3). The flow stress 

or the shear resistance of both slurries was identified thanks to a direct shear cell by Casa-

grande [8] (Figure 5a). This test relates the normal and tangential stress applied to the cell 

and gives the internal friction angle of the material. This friction angle is composed of the 

local friction between particle surfaces (µ) and the contribution of the interlocking (β) be-

tween particles due to their shape (Equation (1)). 

Figure 4. Schematic figure of the numerical model.

At the interface between the two parts, a constant Coulomb friction coefficient (µ) of
0.25 was applied [21]. The friction coefficient is the proportionality coefficient between
normal and tangential forces between two solids in contact. A kinematic contact algorithm
was employed with a finite sliding formulation. Both parts were meshed uniformly with
4-node plane strain elements (CPE4R) having a size of around 0.98 mm.

3.1. Flow Stress Model of Media

A volume with a high number of media can be considered as granular material and
can be modeled as a continuum material based on the techniques and theories commonly
used to model soils [8].

The density of the volume of the media was measured, and the elastic properties
were extracted from the literature [13] (ρ = 1587 kg/m3, E = 200 kPa, ν = 0.3). The flow
stress or the shear resistance of both slurries was identified thanks to a direct shear cell by
Casagrande [8] (Figure 5a). This test relates the normal and tangential stress applied to the
cell and gives the internal friction angle of the material. This friction angle is composed of
the local friction between particle surfaces (µ) and the contribution of the interlocking (β)
between particles due to their shape (Equation (1)).

ϕ = µ+ β (1)

The cell (60 × 60 × 15 mm) was filled by a volume of the slurry, and a uniaxial vertical
force was applied (Fy). Then, a velocity (v = 1.27 mm/min) is imposed to the upper part of
the cell in order to shear the material (Figure 5b). During the test, the shear stresses (τ) and
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the displacement (εx) of the cell are followed. As shown in Figure 5c, for each media, three
tests with three different uniaxial forces (Fy) were carried out (500, 1000 and 1500 N).
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The maximum shear stress of each curve is chosen (Figure 5c) and plotted in the
Mohr’s circle (Figure 5d). The slope (M) of the line that links the three points defines the
angle of internal friction of the material (ϕ) (Equation (2)). Figure 6 plots the two lines for
both media. It appears that the spherical media presents an angle ofϕBALL-1 = 30◦, whereas
the pyramidal media leads to ϕSCT-2×2 = 49◦. It was assumed that the local friction angle
(µ) was the same for both media, so the difference between the friction angles was due to
high interlocking (β) forces between pyramidal particles. In other words, sliding between
particles is more difficult due to their pyramidal shape, whereas spherical particles slide
easily and present a lower shear resistance.

M = tan(ϕ) (2)

A linear Drucker–Prager plasticity model [22,23] was employed to define the material
plastic behavior, which is typically used for soil modeling. This yield criterion is written
in terms of stress invariants (Equation (3)), where ttriax is expressed as in (Equation (4))
and enables one to have different yield values in triaxial tension and compression. p is
the equivalent pressure stress, ϕ is the internal friction angle, and d is the cohesion of the
material. The employed granular material is considered as cohesionless, so d was 0. For
Equation (4), q was the Mises equivalent stress, K the ratio of the yield stress in triaxial
tension to triaxial compression (K = 0.8), and r was the third invariant of the deviatoric
stress [22].

F = ttriax − p tanϕ− d (3)

ttriax =
1
2

q

[
1 +

1
K

−
(

1 − 1
K

)(
r
q

)3
]

(4)
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3.2. Results

The numerical model provides the drag force (Fy (num.) in Figure 7c). Its value
is plotted in Figure 7b together with the experimentally measured values (Fy (exp.)) in
Section 2.2.

J. Manuf. Mater. Process. 2021, 5, x FOR PEER REVIEW 8 of 11 
 

 

 

Figure 7. (a) The numerical force calculation and (b) the comparison between numerical and ex-

perimental forces for each media. 

4. Discussion 

The experimental tests demonstrated the efficiency of the pyramidal media to rapidly 

decrease the surface roughness of parts. This can be correlated with the high shear re-

sistance and the high friction angle (due to the interlocking between individual particles) 

exhibited by the pyramidal media. This physical parameter of the material induces higher 

drag forces in the part, as well as higher normal and shear stresses around its surface. As 

a consequence, the roughness reduction is faster than with the spherical media.  

Due to the variation of both the normal and shear stresses along the workpiece sur-

face, the roughness reduction in each area will also vary. This was reflected in the experi-

mental tests: a different roughness evolution was observed for each surface orientation 

angle in the case of the pyramidal media. 

However, it is remarkable that the evolution of the surface roughness in the case of 

the spherical media is not strongly influenced by the surface orientation angle. At α = 30°, 

the Sa reduction at t = 120 min is slightly higher than for the other angles. This matches 

with the strongest shear stress value calculated numerically at the same orientation angle. 

Figure 7. (a) The numerical force calculation and (b) the comparison between numerical and experi-
mental forces for each media.



J. Manuf. Mater. Process. 2021, 5, 41 8 of 11

The drag forces predicted by the numerical model and the drag forces measured
experimentally reveal that the pyramidal media lead to a higher drag force than the
spherical ones. There is a big difference between the experimental and numerical values for
both media, which means that improvements of the model are necessary to predict more
accurate values. However, the trend is similar, and it can be concluded that the model is
very sensitive to the flow stress of the granular material.

As a consequence, this enables one to make a qualitative comparison of the stresses
induced by each media on the surface of the part, so as to understand why a better and
faster surface finish is obtained with the pyramidal media. Figure 8 shows the distribution
for each node of the normal stress σn and shear stress τ induced around the cylindrical
workpiece surface in the case of both abrasive media. In addition, a trend line is also
plotted for each cloud. It can be observed that:

• Both the normal stress σn and shear stress τ are higher with the pyramidal media.
This observation is the direct consequence of the flow stress through the difference of
the internal friction angle (ϕSCT-2×2 = 49◦ and ϕBALL-1 = 30◦).

• The stress distribution depends on the orientation angle of the surface. At 0◦, there is
a stagnation point of the media flow, where the normal stresses reach the maximum
value. On the contrary, the shear stress is rather high, but somewhat under the values
some degrees further. Outside of this stagnation area, the shear stress exhibits a peak
of intensity. This peak is wide for the spherical media (between 5–30◦), whereas it is
narrower for the pyramidal one (between 5–10◦). Then, both stresses decrease when
increasing the orientation angle until reaching 90◦, where their values are minimum.
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4. Discussion

The experimental tests demonstrated the efficiency of the pyramidal media to rapidly
decrease the surface roughness of parts. This can be correlated with the high shear resis-
tance and the high friction angle (due to the interlocking between individual particles)
exhibited by the pyramidal media. This physical parameter of the material induces higher
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drag forces in the part, as well as higher normal and shear stresses around its surface. As a
consequence, the roughness reduction is faster than with the spherical media.

Due to the variation of both the normal and shear stresses along the workpiece surface,
the roughness reduction in each area will also vary. This was reflected in the experimental
tests: a different roughness evolution was observed for each surface orientation angle in
the case of the pyramidal media.

However, it is remarkable that the evolution of the surface roughness in the case of
the spherical media is not strongly influenced by the surface orientation angle. At α = 30◦,
the Sa reduction at t = 120 min is slightly higher than for the other angles. This matches
with the strongest shear stress value calculated numerically at the same orientation angle.

5. Conclusions

In this paper, experimental drag finishing tests were performed in order to investigate
the efficiency of pyramidal and spherical media in reducing the surface roughness on
Inconel 718 parts.

It was observed that the pyramidal media was more efficient than the spherical one.
In addition, it was stated that the roughness reduction was not uniform all along the part
surface. This uniformity is related to the angle of orientation of the surface regarding the
media flow. The polishing with the pyramidal media is more sensitive to the orientation
angle than with the spherical ones.

With the purpose of understanding the previous experimental observations, a 2D
ALE numerical model was developed. This model simulates the flow of media around
the cylindrical part. The characterization of the shear strength of each media was done
with the Casagrande shear test method, commonly used in civil engineering. Each media
presented a different internal friction angle: pyramidal ones presented a higher value due
to the contribution of the interlocking between particles.

The model provided a qualitative understanding of the drag finishing process. It
was demonstrated that the internal friction angle of the material was directly related to
the induced mechanical loadings in the interface and thus to the effectivity of the process.
Pyramidal media induce a higher mechanical loading. On the contrary, spherical media
induce lower loadings, and the roughness improvement is therefore slower.
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Abbreviations

Symbol Definition
v Velocity of the abrasive media [m/s]
α Surface orientation regarding the media flow [◦]
Sa Surface roughness [µm]
t Time [min]
Fy (exp.) Experimental drag force [N]
µ Friction coefficient [-]
ρ Media density [kg/m3]
E Young Modulus [Pa]
ν Poisson’s ratio [-]
β Interlocking between particles [-]
Fy Uniaxial vertical force [N]
σy Uniaxial vertical stress [Pa]
τ Shear stress [Pa]
εx Displacement in x [%]
M Slope of the yield limit [◦]
ϕ Internal friction angle [◦]
ttriax Term that provides a noncircular yield surface [Pa]
p Equivalent pressure [Pa]
d Cohesion [-]
q Mises equivalent stress [Pa]
K Ratio between the yield stress in triaxial tension to triaxial compression [-]
r Third stress invariant [Pa]
Fy (num.) Numerical drag force [N]
σn Normal stress [Pa]
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