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Abstract: Tools are of strategic importance for industrial manufacturing processes. Their behaviour
has a great influence on the productivity of the process and the quality of the product. A material
saving and efficient technique for processing metallic workpieces is cold forging. One major challenge
of this production method is the handling of high contact normal stresses in the tool contact, which
can lead to severe tool wear. To investigate promising approaches for understanding wear modelling
and wear reduction a demonstrator process based on the first stage of a total five-staged cold forging
process for the manufacturing of a bolt anchor is considered in the scope of this research. This work
aims at the further development of a numerical wear calculation based on an adapted Archard model
in order to be able to realistically predict the tool wear in cold forging processes. Therefore, the
material characterization of the used workpiece material as well as an investigation of the worn
tool dies takes place to validate a numerical wear calculation model. Furthermore, this research
addresses a reduction in wear by identifying critical areas and changing the inlet geometry of the
investigated demonstrator tool die. This way, conclusions can be drawn about the wear sensitivity
during numerical process design, and particularly critical areas can be geometrically modified in
terms of the design.

Keywords: cold forging; tool geometry; parametric investigation; wear; finite element method

1. Introduction and Motivation

Cold forming is an economical process for manufacturing workpieces with good
surface qualities, manufacturing accuracies and material properties in large quantities [1,2].
Compared to other manufacturing processes, cold forming requires less material, fewer
manufacturing steps and thus less energy for the production of a finished part [2]. However,
the tools used in cold forming are subjected to high mechanical and tribological loads [3].
Cold forging metal creates a high yield stress, which does not decrease significantly even
with the increasing temperatures occurring due to the applied forming energy [4]. The
stresses in the tool during the process are several times higher than the yield stress of the
workpiece material. Thus, the tool materials must have high strengths in order to not suffer
plastic deformation under these operating conditions [5]. The plastic deformation of the
tools would reduce the dimensional accuracy of the produced workpieces [6] and could
lead to total tool failure [7]. The tool life required for an economic production can only
be achieved if tool wear is reduced accordingly. The components to be produced should
not have any critical corners, in order to avoid premature wear of the forming tools [7].
The tool contour in the area of convex radii is particularly sensitive to wear because large
quantities of material slide over the tool surface at high relative speeds under high surface
pressures [8]. The design of these areas is therefore of considerable importance. On the one
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hand, FE-based process designs can be used to locally calculate the heat transfer from the
component to the environment and to the tools during the forming process [6], as well as
the expected tool wear under the applied tool stresses [7].

The FE calculation method is very well-suited for calculating forming processes and
for performing a comprehensive tool-stress analysis [9]. Thus, in addition to determining
the required workpiece mass, the entire process chain can be mapped virtually and, for
example, the expected tool wear can be calculated. This is a major advantage compared
to a purely experimental investigation approach, since no time-consuming and material-
intensive tests are necessary. Different models are available for the calculation of abrasive
wear and plastic deformation. Abrasive wear models can be classified into mechanical and
phenomenological models. Mechanical models are based on material failure mechanisms,
whereas phenomenological models use calculated process variables based on the laws of
contact mechanics [10]. Approaches to mechanical wear models using material failure
mechanisms to calculate material removal were presented by Kapoor [11]. Due to the high
number of influencing factors in tool life determination, a characterisation of materials
under mechanical wear and failure models is quite complex and thus it is difficult to
conceive an accurate representation [12]. Therefore, a variety of phenomenological models
for the calculation of tool wear have been proposed and discussed. Holm defined the wear
mechanism of two contact bodies as the evacuation of atoms on the material surface and
formulated the relationship between material removal, mechanical load, sliding distance
and hardness [13]. Based on this, Archard described wear as a failure of the microroughness
peaks of bodies in contact and moving relative to each other [14]. Therefore, this approach
is often assigned to Archard and will be referred to as the Archard model in the following.
The Archard approach is of great importance for the numerical calculation of tool wear
and is commonly used for this purpose in the original version or in further developed
versions [15].

The Archard wear model is generally applicable for processes in which friction mod-
elling can be described based on the Coulomb friction approach (low contact normal
stresses) [16]. Wear prediction is less realistic in processes with high contact normal stresses
like cold extrusion, in which the friction shear stresses calculated with the Coulomb model
are significantly overestimated. This is due to the proportionality between wear w and
contact normal stress σN , which, according to Coulomb’s friction approach, is in turn
proportional to the frictional shear stress τR. Furthermore, H is the surface hardness and
vrel is the relative velocity in the following equations.

w = k·
n

∑
inc=1

σN
H

·vrel∆t (1)

Due to the very high tool load in cold forming, the wear model according to Archard
(cf. Equation (1), [17]) was modified in such a way that not the contact normal stress σN
but the frictional shear stress τR is included in the calculation of the wear for a time step
∆t, as in Equation (2). The wear factor k is necessary to calibrate the model on the basis of
process-specific parameters, such as the material properties.

w =
k
H
·

n

∑
inc=1

τR·vrel∆t (2)

By using the combined friction model, the frictional shear stress and thus the tool
wear is not overestimated at high contact normal stresses. In [18] the first results for the
extended friction model according to Archard, based on the frictional shear stress, were
shown. Thereby, an improved wear calculation could be achieved with the friction model.

Cold forging is presented in this study using the example of a bolt anchor production
of the company Fischer. In order to meet high performance requirements for economical
anchoring solutions in cracked and noncracked concrete, as well as under seismic loads,
the forming production of bolt anchors is carried out from a cylindrical semifinished
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product. The entire production of a tapered bolt, which is considered as a template for a
demonstrator component, follows the five-stage process sequence shown in Figure 1 [19].
In the first stage, the manufactured semifinished product is tapered at one end of the
cylinder with the aid of a cold extrusion. Similarly to the first stage, further tapering of the
workpiece takes place in the second stage. In the third stage, material is accumulated by
upsetting the balance between the tapered and untapered workpiece areas, creating the
first end stop for the expansion clip. In stage four, further upsetting of the tapered area at
the end of the workpiece takes place, which as a result causes the second stop to be formed.
In the final process stage, a label is applied to the bolt surface by embossing.
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Figure 1. Process-chain of the bolt anchor [19].

Practical experience has shown that, in the first and second stage, the extrusion process
results in increased abrasive wear in the die due to the very high contact normal stresses.
The die is made of a carbide steel HM CTM30 and is coated with CVD (Chemical Vapour
Deposition) Titanium Nitride (TiN). However, this coating steadily degrades through wear
during the manufacturing process and breakouts occur at the corners of the die. By means
of wear investigation through numerical calculations, particularly highly stressed die
areas can be identified. Current wear models do not provide a good match with practical
experience, thus further research in the field of wear calculation is required.

Based on this, the next objectives are defined, which will be addressed within the
scope of this publication. In order to be able to realistically predict the tool wear of the
first forming stage, the numerical wear calculation from [18] is to be developed further and
implemented within the scope of this project. Instead of the contact normal stress, wear
modelling is to be carried out by means of the friction law according to Shaw and thus
based on frictional shear stress. The intention behind this is to enable more realistic wear
modelling than is possible with current modelling. In this research, this modelling will be
used to make design modifications for an industrial demonstrator tool die, in order to be
able to carry out a reduction in tool wear. This is intended to exceed the current state of the
art of wear optimizing design possibilities.

The results from the industrial process will serve to validate the wear model. By means
of the wear model modified for cold forming, it is possible to investigate the effectiveness
of the design changes. Thus, conclusions can be reached about wear sensitivity during
numerical process design, and in particular the design of critical areas can be modified.

2. Development of the Modified Wear Model According to Archard

Within the framework of this study, friction modelling was carried out based on
the combined friction model, which is a combination of the friction coefficient model
and the friction factor model. The friction coefficient model, Figure 2a is based on the
Coulomb-Amontons approach and describes a linear relationship between the frictional
shear stress τR and the contact normal stress σN with a constant friction coefficient µ
(friction coefficient), cf. Equation (3) [20].

τR = u·σN (3)
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The main disadvantage of this model is that the frictional shear stress is overestimated
as soon as the material shear strength k is exceeded. Therefore, the friction factor model is
used for processes with high contact pressures. This describes the frictional shear stress as
a product of the shear yield stress k of the formed material with a constant friction factor m
(Equation (4)), where m = 0 describes the friction-free state and m = 1 the state of sticking,
cf. Figure 2b. [21]

τR = m·k (4)

The friction factor model is usually used for high contact normal stresses, because at
low contact normal pressures this model may inaccurately represent the frictional resistance.
For this reason, the definition of the combined friction model proposes a combination of the
friction coefficient model and friction factor model, as shown in Figure 2c. A disadvantage
of this model is, however, the existing discontinuity point in the transition between the
friction coefficient and the friction factor model.
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Shaw proposed a transition model to avoid the discontinuity in the combined friction
model. Figure 2c shows the course of this model [22]. The model is based on the relationship
of frictional shear stress τR, the shear yield stress k, the normal stress σN and the constant
friction coefficient µ shown in Equation (5). Here, n is a natural number describing the
transition from the friction coefficient model to the friction factor model. This improves the
friction description in the transition from friction coefficient to friction factor model [22].

τR
k

= n

√
tanh

(µ ∗ σN
k

)n
(5)

In this publication the numerical wear model (cf. Equation (6)) is to be further
developed for cold forming. By calculating tool wear based on the frictional shear stress
according to Shaw’s law, (cf. Figure 2c), the transition area can also be represented in more
detail in addition to the areas of low and high contact normal stresses.

In addition, the influence of the forming temperature occurring during the process
on the hardness of the tools is taken into account in the wear calculation. Due to the
high pressure in the tool-workpiece contact, in combination with high tribological stresses,
the tool surface temperature of the tools increases. Thus, the temperature of the tools
has an influence on the forming properties, component quality and tool hardness H(T),
influencing the wear behaviour. The further development of the wear model can be
illustrated as follows:

w = k·
n

∑
inc=1

τR
H(T)

·vrel∆t (6)

This wear model is subsequently implemented in the FE-software simufact. forming
16.0 via a user subroutine. Through this subroutine, tool wear can be numerically calculated
using the further developed model, taking into consideration the influencing factors in
the software.
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3. Material Characterisation and Experimental Wear Analysis
3.1. Characterisiation of Deformation Behaviour

For simulating the forming process, the flow curve is one of the most important
input data. For the numerical simulations of cold extrusion, the required strain-rate and
temperature-dependent flow curves of the material 1.4062 (UNS S32202) were determined
experimentally. For this purpose, cylinder compression tests with a specimen geometry of
Ø10 mm × 15 mm are used. The compression tests to characterise the workpiece material
were carried out on the Gleeble 3800-GTC testing machine from Dynamic Systems Inc. The
flow curves used to model the thermomechanical material behaviour of the steel alloy were
determined at relevant temperatures T between room temperature (RT), 150 ◦C and 250 ◦C
with constant strain rates

.
ϕ of 0.1, 1, and 10 s−1. Using previous forming simulations of

the extrusion process with material data from the database, it was possible to determine
the maximum component temperature (<200 ◦C) due to the dissipated forming energy
during forming.

The resulting data from the testing machine were used to calculate the coefficients
for the analytical flow curve approach called Hensel-Spittel-10 (see Table 1). For the
determination of the material-specific coefficients A, m1, m2, m3, m4, m5, m6, m7 and m8,
the algorithm of generalised, nonlinear optimisation with reduced gradient (GRG) was
used [23]. Figure 3a shows the calculated temperature and strain rate dependent flow
curves between RT and 250 ◦C. The temperature and strain rate dependent flow curves
were validated by numerical simulation of the cylinder compression tests. The force–time
curves and the geometry of the workpieces after the cylinder compression test served as
validation criteria. As an example, Figure 3b shows a comparison of the experimental and
numerical force–time curves for the cylinder compression test at T = 150 ◦C and a strain
rate of 10 s−1 [24]. The force–time curves are in good agreement.

Table 1. Material-specific coefficients for X2CrNiN22-2 (UNS S32202).

Coefficients A m1 m2 m3 m4 m5 m6 m7 m8

Value 921.908 −0.000516 −0.081156 0.0182971 −0.008566 −0.001384 0.722791 −8.29318 × 10−5 0.0580008
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Further mechanical and thermal parameters to be specified are the Young’s modulus
E, the Poisson’s ratio v, the coefficient of thermal expansion α, the thermal conductivity
λ and the heat capacity cp in relation to the volume. The characteristic values for the
stainless steel X2CrNiN22-2 shown in Table 2 are the basis for the following simulations.
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Table 2. Material data for X2CrNiN22-2 (UNS S32202) [25].

T in ◦C E in MPa v α in 1/K λ in W/(m·K) cp in J/(g·K)

20 196,000 0.276 - 14.5 0.472
100 190,000 0.276 1.67 × 10−5 16 0.501
150 186,000 0.276 1.70 × 10−5 17 0.515
200 182,000 0.276 1.72 × 10−5 17.6 0.525
250 178,000 0.276 1.75 × 10−5 18.4 0.530

3.2. Characterisiation of the CVD-TiN Coating

In addition to the flow curves, the friction also has a major influence on the calculated
results [26,27]. For this reason, the friction values of the die are also determined for the fol-
lowing simulations. The die is made of a carbide HM CTM30 and is coated with CVD-TiN.
The microtribological properties of this coating were investigated using a TriboIndenter TI
950 of Hysitron. In order to determine friction and mechanical surface properties, nano-
scratch tests were performed according to [28]. With the help of this method it is possible
on the one hand to identify the elastic and plastic deformation of the coating, and on the
other to calculate the coefficient of friction. The findings of these tests were published
in [24]. Here, a friction value of 0.15 was determined, which is a typical friction coefficient
for a cold-forming extrusion process [29].

In addition, the nanohardness of the CVD-TiN layer was determined at elevated
temperatures using the TriboIndenter with the heating unit xSol 800. The maximum
temperature that occurs has previously been determined by numerical simulation of the
extrusion process, taking into account the determined material data. Figure 4a shows the
FE model with the resulting die temperature at the end of the forming process, as well as
a hardness mapping of the CVD-TiN layer and the carbide HM CTM30 as a 20 × 20 µm
array at the numerically determined test temperature of approx. 150 ◦C. For this purpose, a
hardness value was recorded every 1 µm with a test load of 10 mN. The average hardness
value of the coating is ~32 ± 2.3 GPa [24].

J. Manuf. Mater. Process. 2021, 5, x FOR PEER REVIEW 8 of 14 
 

 

 

 

 
(a) (b) 

Figure 4. (a) Numerical estimation of the die temperature (b) light microscopy image to determine the thickness of the 

CVD TiN coating and hardness mapping of the coating by nanoindentation. 

3.3. Experimental Wear Analysis of Industrial Dies 

To validate the further developed wear model, worn and unworn demonstrator tools 

were provided by the Fischer company and analysed comprehensively. Based on the anal-

ysis and the numerical mapping of the process, it is possible to determine the wear sensi-

tivity of the tool geometry currently in use and to identify the tool areas susceptible to 

wear. With this knowledge, design changes can be achieved to reduce tool wear. For this 

purpose, the analyses are carried out on dies in their initial condition and on worn dies 

that have been used for a known number of forming strokes. The dies are wire-cut into 

two halves and subsequently measured using a VR-3200 optical measuring macroscope 

of Keyence to scan the respective surface profiles in the taper. The measurement data of 

the surface profiles from the initial state and, in this case, after 189,000 forming strokes are 

afterwards mapped on top of each other and compared. Using this method, it is possible 

to identify the wear-related removal and the critical wear areas as shown in Figure 5. 

 

Figure 5. Measurements of the wear depth on the Fischer demonstrator process die. 

A number of 189,000 forming strokes was selected to ensure an examination of the 

dies at a point at which significant wear unequivocally occurs, but not total tool failure. 

After 189,000 forming strokes, a maximum wear removal in the area of the shoulder 

runout radius of approx. 12 µm was determined. 

  

Figure 4. (a) Numerical estimation of the die temperature (b) light microscopy image to determine the thickness of the CVD
TiN coating and hardness mapping of the coating by nanoindentation.

3.3. Experimental Wear Analysis of Industrial Dies

To validate the further developed wear model, worn and unworn demonstrator tools
were provided by the Fischer company and analysed comprehensively. Based on the
analysis and the numerical mapping of the process, it is possible to determine the wear
sensitivity of the tool geometry currently in use and to identify the tool areas susceptible to
wear. With this knowledge, design changes can be achieved to reduce tool wear. For this
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purpose, the analyses are carried out on dies in their initial condition and on worn dies
that have been used for a known number of forming strokes. The dies are wire-cut into
two halves and subsequently measured using a VR-3200 optical measuring macroscope
of Keyence to scan the respective surface profiles in the taper. The measurement data of
the surface profiles from the initial state and, in this case, after 189,000 forming strokes are
afterwards mapped on top of each other and compared. Using this method, it is possible to
identify the wear-related removal and the critical wear areas as shown in Figure 5.
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Figure 5. Measurements of the wear depth on the Fischer demonstrator process die.

A number of 189,000 forming strokes was selected to ensure an examination of the
dies at a point at which significant wear unequivocally occurs, but not total tool failure.
After 189,000 forming strokes, a maximum wear removal in the area of the shoulder runout
radius of approx. 12 µm was determined.

4. Numerical Wear Analysis and Design Improvements for Wear Reduction
4.1. Numerical Wear Analysis of Industrial Dies

The semifinished product and tool geometry are axially symmetrical, the simulation
was performed in 2D (element type Quad10). The semifinished product and the dies were
modelled with about 24,000 elements (semifinished product) and 26,000 elements (the
different dies). The number of nodes was 25,500. For die design, an automatic time step
value was used to record the forming results for every 0.5 mm forming stroke, resulting in
1979 increments. The total forming stroke was 30 mm.

With the help of the number of forming strokes until the beginning of detectable wear
and the material data determined in Section 3.2, it is possible to validate the extended wear
model. The calibration of the wear factor k was performed using the extended wear model.
To demonstrate the advantages of the modified wear model, the wear factor k described
above was also used for the conventional wear model according to Archard. The respective
simulation results are shown in Figure 6.

The conventional Archard model predicts much more pronounced tool wear than the
modified wear model. Furthermore, the wear-critical tool areas cannot clearly be identified
using the conventional wear model, see Figure 6. This can be explained by the fact that
high contact stresses occur during the entire forming process and the shear component of
the combined friction law becomes a more important factor. The results of the modified
wear model agree with the real die wear with respect to the wear-critical areas. Thus,
the contact normal stress is no longer related to the shear friction stress, which allows
better wear prediction in cold forming. Thus, the wear model is valid and can be used in
the following to investigate the effectiveness of design changes for wear reduction in the
established process.
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Figure 6. Numerical die wear estimation based on Archard’s model and based on modified model.

In addition, with the developed wear implementation, it is possible to model not only
the calculation of tool wear, but also improve the modelling of the transition from the
friction coefficient model to the friction factor model, see Figure 7. Thus, it is possible to
clearly assign the instable region between low and high contact normal stresses. For this
visualisation, the natural number n = 1 was used for the Shaw transition modelling to
assume the lowest transition zone.
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4.2. Design Improvements in the Die Geometry for Wear Reduction

Die geometries can be fully described by the shoulder-opening angle, cross-section
decrease, and shoulder inlet and outlet radii. Figure 8 shows the geometric dimensions of
the rotationally symmetrical extrusion die currently in use.
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The highest wear was determined after 189,000 forming strokes in the area of the
shoulder-runout radius. This shoulder-runout radius is set as R = 0.2 mm for the current
die. It is known from [30] that an increase in the shoulder runout radius can lead to a
reduction in the tool load and thus to a reduction in wear. Therefore, in this study, the
shoulder runout radius should be iteratively increased after each simulation until almost
no reduction in wear can be observed. This parameter will be investigated in combination
with different shoulder-opening angles. Due to the dependency within the process chain
for the manufacturing of the bolt anchor, the dimension of the cross-section decrease cannot
be changed. To analyse the influence of the shoulder angle, it was increased and decreased
by 3◦ from the initial value of 13◦ for the simulation.

Table 3 shows the numerical test plan for the numerical identification of the optimum
shoulder-opening angle and shoulder-runout radius. A similar step size for determining
the optimal shoulder runout radius was also used in [30]. Based on this, a full-factorial test
plan results in 15 forming simulations. The impact of the design changes is subsequently
evaluated using the validated modified wear model compared with the conventional
wear model according to Archard and the resulting tool loads. The FE-models differ only
in the die geometry used. All previous boundary conditions were used for numerical
identification. The shaft length after rejuvenation is 33 mm for all parameter combinations.

Table 3. The numerical experimental test plan for the numerical identification of the optimum
shoulder-opening angle and shoulder-runout radius.

Shoulder-Opening Angle in ◦ Shoulder-Runout Radius in mm

10, 13, 16 0.2, 0.5, 1, 2, 5

The following Figures show the influence of the design die changes with respect to the
different shoulder-runout radii and shoulder-opening angles. The following Figure shows
the influences of the design die changes regarding the resulting die wear. Figure 9a shows
the wear predictions of the conventional wear model and Figure 9b the wear predictions of
the modified wear model.
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The respective maximum values of the simulations were determined analogously
to Figure 6 and are shown as a bar chart in Figure 9. Regarding the initial geometry of
the die, the conventional wear model according to Archard predicted the lowest wear at
the currently used shoulder-opening angle of 13◦. Using the modified wear model, this
shoulder-opening angle shows the highest wear. Examining the influences for the further
variations, both models show a similar trend. With increasing shoulder-runout radii, the
predicted wear removal decreases. For the shoulder-runout radius R2 mm, wear can be
halved with the Archard wear model. Taking into account the modified wear model, a
reduction of 70% in wear removal is to be expected.
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5. Results and Discussion

By calculating the tool wear based on the frictional shear stress according to Shaw’s
law, it was possible to model the transition area in more detail, as well as the areas of low
and high contact normal stresses, cf. Figure 7. This allows the assignment of exact stress
values to the area of the shoulder-runout, creating a more stable wear calculation. For this
visualisation, the natural number n = 1 was used for the modelling of the Shaw transition
to assume the lowest transition area. However, according to Figure 2c, this transition zone
has the lowest influence. The reason for the good mapping of this transition area is due to
the very low friction value of 0.15 in the process. It is assumed that in the area of closed-die
forging, where significantly higher and also different friction values are present within
the die, for example caused by lower lubrication, the advantages of the Shaw model are
more effective.

Furthermore, the influence of the forming temperature on the hardness of the tools was
taken into account in the wear calculation. The newly developed wear model was validated
using the experimental results from the Fischer demonstrator process. The resulting tool
wear after 189,000 forming strokes was significantly more accurately modelled through
further development of the wear model. Both the wear-critical areas as well as the absolute
wear were better predicted.

Using the validated wear model, it was possible to verify the effectiveness of the
design changes to the die in reducing die wear, based on the numerical wear calculation.
By increasing the shoulder radius by a factor of 10, the expected die wear can be reduced
by 70%. In addition to the considered abrasive wear, crack formation is to be regarded as
a major cause of failure, limiting the service life of the die. Following the fatigue/crack
models of Basquin [31] or Goodman [32], the main influencing factors for crack initiation
are to be found in the cyclic strain and mean stress loading.

Figure 10 shows the resulting die stresses of the initial die (13◦ with R0.2 mm) com-
pared to the die with the lowest expected wear removal (13◦ with R2 mm). The stress
states shows the time at the maximum forming force required during extrusion. The
results show that the differences between the forming forces are negligible (1%). It can be
seen that the peak stresses at the shoulder-runout radius were reduced by increasing the
shoulder-runout radius.
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Figure 10. Results of die stress analysis of the forging process for the upper die with different
shoulder runout radii.

To compare the numerical results, a worn die after a tool change is shown in Figure 11.
In addition to the known wear pattern, delamination of the coating at the shoulder outlet
radius can be observed, which is due to the high stress peaks at the shoulder outlet radius.
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6. Conclusions

In the process used by the Fischer company, very high contact normal stresses lead
to high tool wear and thus also to high failure rates due to tool changes. To investigate
this kind of wear, a demonstrator process based on the Fischer process was considered
in this research. In order to be able to realistically predict tool wear in cold forming, the
wear model according to Archard was further developed for numerical wear calculation
within the scope of this work. Instead of the contact normal stress, the wear modelling was
performed by means of Shaw’s friction law and thus on the basis of the frictional shear
stress. In comparison to the conventional wear model according to Archard, the wear-
critical tool area can be predicted more accurately. Subsequently, the effectiveness of design
changes was investigated with the aid of the validated wear model. A wear reduction of
about 70% was predicted by the die adjustment. The results of this research show that,
based on the optimised wear simulation, it is possible to make design modifications to wear-
critical tool areas in such a way that wear can be reduced efficiently. Therefore, this wear
simulation can be applied to other processes for future investigations in order to design
tools in a more targeted way and thus increase their operating lifetime. An evaluation
of the model for other applications, including a comparison with an experimental wear
investigation, could be the object of future investigations.
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