
Manufacturing and
Materials Processing

Journal of

Article

An Agent-Based System for Automated Configuration
and Coordination of Robotic Operations in Real
Time—A Case Study on a Car Floor Welding Process

Sotiris Makris * , Kosmas Alexopoulos, George Michalos and Andreas Sardelis
Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering
and Aeronautics, University of Patras, 26500 Patras, Greece; alexokos@lms.mech.upatras.gr (K.A.);
michalos@lms.mech.upatras.gr (G.M.); asardelis@lms.mech.upatras.gr (A.S.)
* Correspondence: makris@lms.mech.upatras.gr; Tel.: +30-2610-997262; Fax: +30-2610-997744

Received: 31 July 2020; Accepted: 15 September 2020; Published: 18 September 2020
����������
�������

Abstract: This paper investigates the feasibility of using an agent-based framework to configure,
control and coordinate dynamic, real-time robotic operations with the use of ontology manufacturing
principles. Production automation agents use ontology models that represent the knowledge in a
manufacturing environment for control and configuration purposes. The ontological representation
of the production environment is discussed. Using this framework, the manufacturing resources are
capable of autonomously embedding themselves into the existing manufacturing enterprise with
minimal human intervention, while, at the same time, the coordination of manufacturing operations
is achieved without extensive human involvement. The specific framework was implemented, tested
and validated in a feasibility study upon a laboratory robotic assembly cell with typical industrial
components, using real data derived from a car-floor welding process.

Keywords: autonomous manufacturing systems; agent-based systems; ontology

1. Introduction

Shorter product lifecycles along with the need for more products and product variants put
a lot of pressure on manufacturing companies to reduce their product development phase and
decrease production costs while keeping high quality standards and sufficient production quantities.
The consequences of these trends make flexibility, re-configurability and robustness key attributes in
today’s global manufacturing environment [1].

The research work regarding the efficient reconfiguration, control and coordination of production
equipment in manufacturing environments has evolved very rapidly in the recent past. However,
in order to reach the goal of resilient, self-configured and self-optimized Cyber Physical Systems (CPS)
being realized in industrial practice, further study is required. According to [2], the following
areas need to be addressed in order to achieve a higher degree of intelligent self-reconfiguration in
manufacturing systems:

• Intelligent components and architectures that support the vertical integration of the component-level
agents with higher-level systems.

• Reconfiguration services that will enable more autonomy in the (re)configuration process.
• Fault diagnosis and recovery.
• Safety.

In this context, ontology-based knowledge acquisition and factual inference as well as multi-agent
technology are well perceived as key enablers for the autonomous control of highly fault tolerant and
reconfigurable manufacturing systems.

J. Manuf. Mater. Process. 2020, 4, 95; doi:10.3390/jmmp4030095 www.mdpi.com/journal/jmmp

http://www.mdpi.com/journal/jmmp
http://www.mdpi.com
https://orcid.org/0000-0001-9687-5925
https://orcid.org/0000-0001-7720-2338
http://www.mdpi.com/2504-4494/4/3/95?type=check_update&version=1
http://dx.doi.org/10.3390/jmmp4030095
http://www.mdpi.com/journal/jmmp

J. Manuf. Mater. Process. 2020, 4, 95 2 of 22

The approach utilizes ontology as a formal means of expressing the system’s possible valid states.
Through such an approach, the significance of the discussed approach can be summarized as:

• The combination of ontology for representing knowledge in manufacturing automation
systems—together with the multi-agent approach to enable, in real time, the automated
configuration/reconfiguration, control and coordination of manufacturing operations.

• The reduction of the programming complexity required to coordinate heterogenous systems and
the lower expertise required by the technical personnel.

• The ability of production systems to reconfigure their operation with minimal intervention,
reducing downtime and associated costs significantly.

The remaining part of Section 1 has to do with the relevant literature and presents an overview
of the selected case study. Section 2 describes the architecture and the details of the multi-agent
system as well as the ontology-based mechanism for the coordination of executing robotic operations.
The method suggested is applied to a pilot implementation in Section 3. Finally, Section 4 provides
some conclusions on the work presented in this paper as well as the outlook for future research work.

1.1. Literature Review

The literature survey revealed three streams that are highly relevant to the work discussed in the
paper. These are agent-based manufacturing, service-oriented architecture and ontology.

The work in [3] has defined Multi Agent System (MAS) as a set of agents that are able to represent
the objects within a system that can interact with each other, with the aim of achieving their individual
goals, especially in cases where they possess little knowledge and/or skills. For a long time, software
agents have been considered as a key technology for manufacturing-control applications, thanks to
their operating principle, which relies on distributed architectures. This allows them to be designed
in a way that decentralizes the control of the manufacturing systems, promoting the reduction of
complexity along with enhanced flexibility. In the scope of MAS, heuristic approaches are used for
planning and optimization, including, but not limited to, genetic algorithms, neural networks and
fuzzy logic [4]. Algorithms implementing agent-based control and MAS exhibit major benefits such
as robustness, application feasibility flexibility and redeployability [5,6]. Nevertheless, the adoption
of the agent-based approach in industrial applications has been held back by issues related to the
interfacing, synchronization and data consistency with existing information systems. To a certain
extent, agents have been applied to address challenges related to the real-time control of customized
mass production [7].

In [8], there is a description of a scheduling method in which a negotiation process for decision-making,
among multiple agents, is used instead of pre-planned processes. In [9], a negotiation-based control approach
is proposed to address variability within a production system, where the involved agents are able to perform
their operation in direct communication and interaction with each other. A self-reactive, cloud-based,
multi-agent architecture is presented in [10] to enable the subscribed agents, clients and production entities
to exchange information in real time. In [11], they presented an agent-based method for dealing with
decision-making tasks in a decentralized manufacturing environment; their method was implemented into
software, which was deployed within the premises of a textile production plant. The PRIME framework
presented in [12] adopts a MAS approach that can implement the reconfiguration of a production system
by supporting plug and produce, and inherent monitoring capabilities for heterogeneous systems. In [13],
a large number of MAS patterns were compared, leading to the conclusion that they could greatly benefit
the Cyber-Physical-Production-System (CPPS) design. In the same work, it was discussed that production
that is based on MAS is an efficient approach to handling the complexity of CPPS development.

Service Oriented Architecture (SOA) concepts are used for facing the problems of interoperability
in autonomous multi-agent systems. The SOA approach utilizes services as fundamental elements,
enabling platform-independent implementation. When using the SOA approach, the controller of each
smart device, such as a robot, vision element or material-handling element, encapsulates the functions

J. Manuf. Mater. Process. 2020, 4, 95 3 of 22

that the actual device can carry out, also including the services that it can provide (e.g., moving the
robot along a trajectory). Such services can be updated, added or deleted and are available to be
called by the controllers of other smart devices. A Service-Oriented integration architecture relying on
agents was introduced by [14] to provide scheduling services for virtual enterprises operating under a
common network. In [15], they proposed agent-based smart manufacturing objects, at that time being
managed through Universal Description, Discovery and Integration (UDDI), which is able to provide
capabilities including registering, publishing, binding and invoking. Service Oriented Architecture
(SOA), in the field of industrial automation devices, is mainly implemented by OASIS’s Devices Profile
for Web Services (DPWS) as well as the OPC Unified Architecture (OPC UA) [16]. DPWS is a set
of specification constraints for secure Web Service messaging, discovery, description and “eventing”
on resource-constrained devices. OPC-UA is probably the dominant communication technology for
the factory-floor era, as it provides unified communication and interaction, especially when it comes
to linking Programmable Logic Controller (PLC) and sensor data with existing Supervisory Control
and Data Acquisition (SCADA) and Manufacturing Execution Systems (MES). In the field of robotics
applications, the Robot Operating System (ROS) is another implementation option to be considered for
implementing SOA. As in the case of web services and their “request” and “response” documents,
which are defined by Universal Resource Locators (URIs), a ROS service is also defined by its name
and the relevant request/response messages.

As far as knowledge management and exchange is concerned, typical multi-agent architectures
may be considered to be implicit and stiff (e.g., [17]). A critical deficiency is that the interpretation
of the messages received is not explicit but is strongly encapsulated in the core code of each agent.
This further complicates the system’s expansion and the incorporation of additional agents, since it
would dictate that existing agents are reprogrammed to acknowledge and handle the new entities
and states. To address these problems and to allow MAS to process knowledge in an automatic way
so that inference of facts can be enabled, it has been proposed that multi-agent systems be extended
with semantics. The semantics are often captured by an ontology. An extensive presentation of how
ontologies have been applied in agent-based control applications is presented in [18] along with a
discussion on the commonalities between the different integration approaches. The reason for the
ontology’s integration with multi-agent systems is that the explicit expression of agent semantics
will enable them to operate differently when the knowledge base changes, apart from enabling the
integration of new agents without the need to modify the code of the existing ones. Several studies have
been conducted on the issue of representing the manufacturing systems using a modelling language
along with the tasks that are performed by this system. One approach reported in [19] is using the
Unified Modeling Language (UML) to describe the manufacturing system.

Another approach presented in [20], suggests the automatic initialization of each agent with
a pre-created knowledge-base relying on semantic web technologies. Such an approach allows
specification consistency checks and more efficient communication that is focused on aspects requiring
real-time handling. In [21], they present scalable and flexible agent-based manufacturing systems whose
production plan is created by autonomous agents that exploit a semantic description of web-based
artifacts. Reinhart and Krug [22] proposed an approach that transfers the robots’ configuration and
control information to a Configuration Manager, where a state model is synthesized. In [23,24],
a manufacturing ontology structure is proposed and includes four different aspects of automation
systems: the (i) resource structure, (ii) process structure, (iii) product structure and (iv) production-order
structure. In [25], they presented an interesting approach to an automated configuration/reconfiguration
of control software. In this work, the knowledge base is used to represent equipment-related information,
including low-level functions as well as the relations to other entities. However, it does not support
information regarding any other important manufacturing parameters, such as production requirements
and process-monitoring data, required in order for coherent situation awareness, concerning all the
manufacturing components operating in the region of interest being maintained. In [26], an approach
to designing modular assembly systems using ontologies is described and presented as a key enabling

J. Manuf. Mater. Process. 2020, 4, 95 4 of 22

technology, Evolvable Assembly Systems (EAS). In a similar manner, an ontology-based agent with
intelligent reasoning capabilities was used to enable the adaptive behavior of the production system
against dynamic changes in the manufacturing requirements [27]. However, in their approach,
the reconfiguration agent was not integrated with the embedded controllers. In [28], they presented
an ontology-based model for the abstraction of equipment and components as a way of enabling
interaction between them and achieving a “plug and produce” functionality.

1.2. Case Study Overview and Technology Selection

The approach proposed in this work is applied in a case study that involves the automated
configuration and real-time coordination of robotic operations for the welding of a car floor. A laboratory
robotic assembly cell with typical industrial components and the use of real process data from the
automotive industry is considered. This robotic assembly cell consists of two commercial robots, which
are used to perform spot welding on passenger-vehicle floor parts. The layout of the assembly cell is
depicted in Figure 1. The cell comprises the following robots:

• A Comau Smart NJ 130, which is equipped with a spot-welding gun (robot depicted on the
left-hand side of Figure 1b).

• A Comau Smart NJ 370, which uses a semi-flexible gripper that can hold both parts simultaneously
(robot depicted on the right-hand side of Figure 1b). The gripper is able to accommodate two
variants of the vehicle floor, which differ in geometry but have common grasping points. The use
of sensors to identify the grasped parts allows the gripper to adjust its behavior by actuating
specific clamping units each time.

Moreover, a loading table is included in the cell (as shown at the bottom of Figure 1b) for assisting
the loading and unloading of parts.

The following process scenario is executed in the cell, and it is supported by the multi-agent
framework proposed in this study. The scenario involves the welding of a car floor as follows:

1. The operator loads the parts of the floor on a loading table, which is located in the working area
of the robots. The table is designed to provide adequate tolerance with respect to the positioning
of the accommodated parts.

2. The handling Robot simultaneously picks up all the parts from the loading table by using
a geo-gripper that can guarantee relative positioning accuracy and adequate grasping forces
through simple pneumatic clamps that are controlled through an Input/Output (I/O) module.
It allows the final product’s correct geometry to be achieved.

3. Inductive sensors mounted onto the gripper perform presence detection for the part throughout
the execution of the welding operation.

4. The operation of the robots is cooperative in the sense that:

a. The handling robot manipulates the part in midair in order to achieve orientations that
maximize the accessibility of the welding gun to all spot0weld locations.

b. The proposed framework is used to orchestrate the communication between the two robots,
which are able to exchange content-rich messages to declare the start/end/progress of each
task that they are executing.

5. This scenario considers four tasks, namely, two welding and two handling operations.
More specifically, tasks “Weld1-1” and “Weld1-2” represent the Geo and spot-welding tasks
on the part. Similarly, tasks “Grip1-1” and “Grip1-2” represent the parts’ movement in space
(for accessibility purposes) and the placing of the part on the table. The sequence constraints that
have been introduced in the system involve:

a. Task “Weld1-1” having to be carried out before “Weld1-2”.

J. Manuf. Mater. Process. 2020, 4, 95 5 of 22

b. Task “Grip1-1” being a prerequisite for the task “Weld1-2”.
c. Task “Weld1-2” needing to precede the task “Grip1-2”.

J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 5 of 23

(a)

(b)

Figure 1. Robotic assembly cell (a) photo and (b) top-view layout.

Figure 1. Robotic assembly cell (a) photo and (b) top-view layout.

J. Manuf. Mater. Process. 2020, 4, 95 6 of 22

For the control and orchestration of activities among the entities of the case study, the MAS
approach was selected. The development of multi-agent frameworks is often based upon frameworks
that implement common standards. An approach is to use a framework that adheres to the Foundation
for Intelligent Physical Agents (FIPA) standard, namely, the Jade and JACK Intelligent Agents. In our
case, the MAS implementation relies on the open-source Robot Operating System (ROS) platform [29],
aimed at the development of robotics-related applications. In ROS, the framework agents may
be represented as nodes, which are self-contained software modules that run independently and
communicate with each other by passing messages over TCP/IP using the publish–subscribe pattern.
In the context of this study, some initial experiments were executed to help the authors to identify
the technology that would better suit their needs, especially with regards to the implementation
environment. During these tests, the DPWS implementation provided by https://forge.soa4d.org/ was
outperformed by the ROS service implementation, in terms of real-time performance. The average
response time through the DPWS was approximately 50 ms, while with the ROS, the time dropped to a
5 ms average. Thus, the ROS Services mechanism was selected in support of SOA’s implementation
along with MAS in this study.

In summary, the main reasons for selecting ROS in our implementation were:

• It is oriented towards real-time or soft real-time applications.
• It provides mechanisms for the implementation of services and a service-oriented architecture.
• It facilitates the requirements of the case study since it provides the necessary libraries and drivers

for the selected hardware.

The knowledge management and exchange among agents in the multi-agent system is supported
by an ontology that is implemented on top of the Apache Jena Semantic Repository [30], which serves
the functionality of storing semantic data and performing semantic queries upon them.

2. Approach for Multi-Agent Service-Oriented Integration

This research study aims to propose a multi-agent service-oriented framework, which is designed
to support intelligent collaboration in a dynamic manufacturing environment. The following types of
agents have been defined and implemented:

• Robot.
• Gripper.
• Ontology.
• Vision.

Their interactions and relationship diagrams are illustrated in Figure 2. Except for the gripper
agent, which resides totally in an embedded device, the other types of agents reside in a local control
PC. The agents exchange information with each other over the ROS Communication Framework,
passing messages in the XML-RPC (eXtensible Markup Language-Remote Procedure Call) format.
The agents may communicate with each other by using two different modes:

• Asynchronously, by broadcasting XML-RPC messages to a topic. All agents that have subscribed
to the topic receive certain data.

• Synchronously, via the ROS Services mechanism. Each agent exposes its own services in certain
names. Therefore, when another agent needs to communicate, it calls the right service and
provides the appropriate input message.

https://forge.soa4d.org/

J. Manuf. Mater. Process. 2020, 4, 95 7 of 22

J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 7 of 23

The knowledge management and exchange among agents in the multi-agent system is

supported by an ontology that is implemented on top of the Apache Jena Semantic Repository

[30], which serves the functionality of storing semantic data and performing semantic queries

upon them.

2. Approach for Multi-Agent Service-Oriented Integration

This research study aims to propose a multi-agent service-oriented framework, which is

designed to support intelligent collaboration in a dynamic manufacturing environment. The

following types of agents have been defined and implemented:

 Robot.

 Gripper.

 Ontology.

 Vision.

Their interactions and relationship diagrams are illustrated in Figure 2. Except for the

gripper agent, which resides totally in an embedded device, the other types of agents reside in a

local control PC. The agents exchange information with each other over the ROS Communication

Framework, passing messages in the XML-RPC (eXtensible Markup Language-Remote

Procedure Call) format. The agents may communicate with each other by using two different

modes:

 Asynchronously, by broadcasting XML-RPC messages to a topic. All agents that have

subscribed to the topic receive certain data.

 Synchronously, via the ROS Services mechanism. Each agent exposes its own services in

certain names. Therefore, when another agent needs to communicate, it calls the right service

and provides the appropriate input message.

Figure 2. Agent relationship and interaction diagram for the multi-agent framework. User

Datagram Protocol (UDP), Transmission Control Protocol (TCP), Internet Protocol (IP),

eXtensible Markup Remote Procedure Call (XML-RPC), Hypertext Transfer Protocol (HTTP),

Robot Operating Systems (ROS).

Figure 2. Agent relationship and interaction diagram for the multi-agent framework. User Datagram
Protocol (UDP), Transmission Control Protocol (TCP), Internet Protocol (IP), eXtensible Markup Remote
Procedure Call (XML-RPC), Hypertext Transfer Protocol (HTTP), Robot Operating Systems (ROS).

2.1. Robot

The proposed robot agent is a smart software agent that is able to carry out the following tasks:
(i) control the robot, (ii) communicate with other manufacturing agents and (iii) formulate alternative
schedules depending on the status of the cell and the task’s execution progress. The architecture of
the Robot agent is visualized in Figure 3, where the hardware and software modules of the robotic
manufacturing unit are shown. Most modules are hosted by an external computer, whilst one module
is hosted by the robot controller.

J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 8 of 23

2.1. Robot

The proposed robot agent is a smart software agent that is able to carry out the following

tasks: (i) control the robot, (ii) communicate with other manufacturing agents and (iii) formulate

alternative schedules depending on the status of the cell and the task’s execution progress. The

architecture of the Robot agent is visualized in Figure 3, where the hardware and software

modules of the robotic manufacturing unit are shown. Most modules are hosted by an external

computer, whilst one module is hosted by the robot controller.

Figure 3. Robot agent architecture.

The robot agent has a two-layer architecture:

 Low-level—written in robot programming language. The layer undertakes the real-time

control functionalities to ensure adequate response times for the control system. It is also

able to generate events aimed at the higher-level layer of the agent in order to create

awareness of a new condition or state that needs to be acknowledged. The low-level part of

the agent is hosted by the robot’s controller, which runs on a firmware that is able to execute

low-level programs. This firmware communicates with the “Robot Coordinator” module

through a typical TCP/IP interface. Sockets are defined over the TCP channel and are used

in order to pass parameters to the low-level program that finally controls the robot’s

movements.

 High-level—written in a programming language such as C++ or Java. The high-level part

controls the agent’s global behavior towards achieving its individual goal as well as

coordinating its actions with other agents acting in the same system. The latter is the core of

the agent, which is able to generate and implement alternative operation sequences and is

hosted by a typical PC. The “Robot Coordinator” is a software module, whose role is to

coordinate the tasks executed by the robotic unit and is connected to the low-level robot

controller. It monitors the robotic unit and feeds it with information received from the rest

of the platform (i.e., information about the welding spots of a subassembly). The “Data

Access” module implements the communication mechanism. It is further responsible for

composing valid messages from the “Robot Coordinator” data and feeding them to the

platform upon request. It extracts the data contained in these messages and feeds them to

the “Robot Coordinator”. Following the service-oriented paradigm, the “Data Access”

module implements a set of services and advertises them to the platform. This set of services

forms the “Robot Services”, and when any other resource or service consumes them,

information can be retrieved from the “Robot Coordinator” about the robotic unit or feed

information to it. For the implementation of these services, the ROS framework was used.

Moreover, the robot agent contains the “Alternatives Generation and Evaluation” module,

which can perform the scheduling and rescheduling of the shop floor’s pending tasks

whenever requested.

The “Robot Services” interface consists of the following methods:

Alternatives
Generation &

Evaluation

Data
Access

Robot
Coordinator

Robot
Controller

Sensing (PDL)

Robot Controller External PC

TCP/IP

ROS Interface
Ontology
Service

Gripper
Service

ROS In
te

rfa
ce

Sensing

Control

Networking

Robot
Controller

Control (PDL)
TCP/IP

Figure 3. Robot agent architecture.

The robot agent has a two-layer architecture:

• Low-level—written in robot programming language. The layer undertakes the real-time control
functionalities to ensure adequate response times for the control system. It is also able to generate
events aimed at the higher-level layer of the agent in order to create awareness of a new condition
or state that needs to be acknowledged. The low-level part of the agent is hosted by the robot’s
controller, which runs on a firmware that is able to execute low-level programs. This firmware

J. Manuf. Mater. Process. 2020, 4, 95 8 of 22

communicates with the “Robot Coordinator” module through a typical TCP/IP interface. Sockets
are defined over the TCP channel and are used in order to pass parameters to the low-level
program that finally controls the robot’s movements.

• High-level—written in a programming language such as C++ or Java. The high-level part controls
the agent’s global behavior towards achieving its individual goal as well as coordinating its actions
with other agents acting in the same system. The latter is the core of the agent, which is able to
generate and implement alternative operation sequences and is hosted by a typical PC. The “Robot
Coordinator” is a software module, whose role is to coordinate the tasks executed by the robotic
unit and is connected to the low-level robot controller. It monitors the robotic unit and feeds it
with information received from the rest of the platform (i.e., information about the welding spots
of a subassembly). The “Data Access” module implements the communication mechanism. It is
further responsible for composing valid messages from the “Robot Coordinator” data and feeding
them to the platform upon request. It extracts the data contained in these messages and feeds
them to the “Robot Coordinator”. Following the service-oriented paradigm, the “Data Access”
module implements a set of services and advertises them to the platform. This set of services
forms the “Robot Services”, and when any other resource or service consumes them, information
can be retrieved from the “Robot Coordinator” about the robotic unit or feed information to it.
For the implementation of these services, the ROS framework was used. Moreover, the robot
agent contains the “Alternatives Generation and Evaluation” module, which can perform the
scheduling and rescheduling of the shop floor’s pending tasks whenever requested.

The “Robot Services” interface consists of the following methods:

• getPosition: When called, the robot service demands the robot arm coordinates from the Robot
Controller by sending a message. Afterwards, the service returns these coordinates as a response
to the client that asked for them.

• continueTask: It is used to inform the robot resource that it should continue executing its next
pending task. This method is useful when a manufacturing job comprises more than one task,
which has pre- and post-conditions. If, for example, a manufacturing job is composed of two tasks,
Task A and Task B—with Task B having, as a pre-condition, Task A—the following sequence of
actions happens: the robot, which is assigned to perform Task B, suspends this task’s execution
until Task A has been completed. When the resource assigned to perform Task A finishes it, it is
informed by calling the proper “Ontology Service” of the resource assigned to Task B, and it calls
upon this resource’s continueTask method. When this method has been called upon, the resource is
informed of the pre-condition task’s completion and it resumes the execution of its assigned task.

2.2. Gripper

The architecture of the Gripper agent is diagrammatically depicted in Figure 4. The gripper
architecture includes the Gripper hardware unit, its firmware and the “Data Access” software module,
which is hosted on an external computer connected with the gripper.

The Gripper hardware unit is controlled by the firmware running on the on-board controller
(which is an embedded PC that is integrated within the mechanical and electrical parts of the gripper)
of the hardware unit. This controller is an I/O module, supporting the ethernet/IP protocol. The I/O
ports of this module control the clams of the Gripper and receive input and send input from the
module’s ethernet/IP interface. Through this interface, the gripper firmware communicates with the
“Data Access” software module. The “Data Access” module, similar to the robot architecture, forms
the platform’s “Gripper Service”. It implements a set of services through which the other resources of
the platform can both communicate and control the Gripper.

The “Gripper Service” interface comprises the following methods:

• reconfigure: The Data Access module of the Gripper agent takes as input the ID of the target work
piece. Then, it calls for the appropriate function of the Gripper Firmware Interface and passes

J. Manuf. Mater. Process. 2020, 4, 95 9 of 22

from any current status to that with the arm configuration assigned to it. All arms and sliders
are operated.

• closeClamps: This service is called; the gripper is ready to grab the target work piece. The Data
Access module calls the openClamps() function of the Gripper Firmware, and the gripper passes
from any current status to that with all the relevant clamps closed.

• openClamps: When this service is called, the gripper is ready to release the grabbed
part. The openClamps() function of the Firmware Interface is responsible for opening the
Gripper’s clamps.

J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 9 of 23

 getPosition: When called, the robot service demands the robot arm coordinates from the

Robot Controller by sending a message. Afterwards, the service returns these coordinates as

a response to the client that asked for them.

 continueTask: It is used to inform the robot resource that it should continue executing its next

pending task. This method is useful when a manufacturing job comprises more than one

task, which has pre- and post-conditions. If, for example, a manufacturing job is composed

of two tasks, Task A and Task B—with Task B having, as a pre-condition, Task A—the

following sequence of actions happens: the robot, which is assigned to perform Task B,

suspends this task’s execution until Task A has been completed. When the resource assigned

to perform Task A finishes it, it is informed by calling the proper “Ontology Service” of the

resource assigned to Task B, and it calls upon this resource’s continueTask method. When this

method has been called upon, the resource is informed of the pre-condition task’s

completion and it resumes the execution of its assigned task.

2.2. Gripper

The architecture of the Gripper agent is diagrammatically depicted in Figure 4. The gripper

architecture includes the Gripper hardware unit, its firmware and the “Data Access” software

module, which is hosted on an external computer connected with the gripper.

Figure 4. Gripper agent architecture.

The Gripper hardware unit is controlled by the firmware running on the on-board controller

(which is an embedded PC that is integrated within the mechanical and electrical parts of the

gripper) of the hardware unit. This controller is an I/O module, supporting the ethernet/IP

protocol. The I/O ports of this module control the clams of the Gripper and receive input and

send input from the module’s ethernet/IP interface. Through this interface, the gripper firmware

communicates with the “Data Access” software module. The “Data Access” module, similar to

the robot architecture, forms the platform’s “Gripper Service”. It implements a set of services

through which the other resources of the platform can both communicate and control the Gripper.

The “Gripper Service” interface comprises the following methods:

 reconfigure: The Data Access module of the Gripper agent takes as input the ID of the target

work piece. Then, it calls for the appropriate function of the Gripper Firmware Interface and

passes from any current status to that with the arm configuration assigned to it. All arms

and sliders are operated.

 closeClamps: This service is called; the gripper is ready to grab the target work piece. The

Data Access module calls the openClamps() function of the Gripper Firmware, and the

gripper passes from any current status to that with all the relevant clamps closed.

 openClamps: When this service is called, the gripper is ready to release the grabbed part. The

openClamps() function of the Firmware Interface is responsible for opening the Gripper’s

clamps.

Data Access ROS Interface

Control
Firmware

Motor
Drivers

Gripper
Hardware

Embedded PC

Ontology
Service

Robot Service

ROS In
te

rfa
ce

Sensing

Control

Networking

Sensing
Firmware

Sensors
I/O

Figure 4. Gripper agent architecture.

2.3. Ontology

This agent consists of two modules, namely, the “Data Access” and the “Ontology Repository”
modules. The “Ontology Repository” is a web server application with an embedded semantic
“reasoner”. It serves the functionalities of storing semantic data and performing semantic queries upon
them, using the embedded semantic reasoner to create the result sets. Moreover, it has the ability of
using predefined semantic rules inside its reasoner. The “Ontology Repository” contains all the online
data of the shop floor. These data are the online services and resources participating in the platform,
the shop floor’s pending tasks, and the suitability of match between the resources and the pending
tasks. For this reason, the shop-floor ontology, describing all the appropriate semantic data (see the
details in Section 2.5), was developed. The Ontology Repository software module communicates with
the rest of the platform, through the “Data Access” module, as is done in the robot architecture. In this
case, the “Data Access2 module forms a set of services published to the platform as the “Ontology
Services”. The use of these services enables the participating resources to store and retrieve data from
the Ontology Server.

The “Ontology Services” interface comprises the following methods:

• registerResource and registerService: The registerResource and registerService methods are called upon
in order to inform the Ontology that a new resource or service has just been connected to the
platform and should be registered. Every resource or service participating in the framework
calls for the appropriate method to register itself to the platform. When registered, the Ontology
knows that this resource or service is ready, online, to serve shop-floor tasks. Only registered
services are taken into consideration when rescheduling is performed for the pending shop-floor
tasks. Furthermore, the Ontology Service, by analyzing the broadcasted messages, remains aware
of the unexpected platform events, and the resource or service break downs and updates the
Ontology information.

• executeQuery (string SPARQLQuery): It allows the platform resources to query the Ontology and
retrieve information from it. For instance, the resource that performs rescheduling queries the
Ontology about the existing shop-floor pending tasks, the online resources and their availabilities,
and the suitability of “match” among the resources and the pending tasks.

J. Manuf. Mater. Process. 2020, 4, 95 10 of 22

• updateQuery (string SPARQLQuery): It allows the platform resources and services to update the
existing information lying in the Ontology or feed it with new ones. For example, when the robot
agent finishes the rescheduling task, it calls for this method so as to supply the Ontology with the
new assignments and update the already existing ones.

• retrieveSchedule: This service is called for by every Robot’s agent, after a rescheduling task has
taken place. After calling these services, the Data Access module of the Ontology makes a query
at the Ontology Repository about the Robot’s tasks and operations. A list of the assigned tasks is
returned as a response.

2.4. Vision

Similarly to the rest of the agents, the Vision agent communicates with the framework through
its ROS interface, whose supporting services are exposed to the platform. This agent provides the
whole framework with vision-sensing capabilities: it is able to perform image processing and provides
recognition functionalities. In Figure 5, the Vision Service architecture is shown.J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 11 of 23

Figure 5. Vision agent architecture.

Apart from the two modules used for the communication, the Vision agent has the “Image

Processing” module, which is connected to cameras. The “Image Processing” module accesses

the platform requests through the “Data Access” module, performs the requested actions and

returns the results to the platform through the “Data Access” module.

The “Vision Services” interface consists of the following methods:

 performCalibration: The method performs the calculations for the identification of the relative

position of the mobile unit base in relation to the docking station base. The method is

required for the calculation of the mobile unit’s position with high precision.

 identifyPart: The method identifies the automotive part types at each rack.

 identifyPartLocation: The method identifies the parts’ positions and orientations inside the

racks.

2.5. Ontology-Based Approach for Coordinating the Execution of Robotic Operations

In this chapter, there is a description of the approach used for coordinating the robotic

operations. The approach involves two parts, namely:

 An ontology knowledge base.

 A decentralized negotiation and coordination mechanism.

To achieve an automatic coordination of robotic operations in real time, a model with

adequate information about the agents responsible for task execution is required. The agent

architecture discussed in this paper uses ontology and Semantic Web technologies for expressing

the knowledge coming from the production environment. Hence, the agents rely on a resource,

process and orders ontology that provides information on the manufacturing resources’ sequence

of operations they control.

In Figure 6, there is a representation of the Ontology. It contains information about the shop

floor, the existing assembly lines, the stations of each assembly line and the resources dedicated

to each station. Furthermore, there is information about the orders arriving at the shop floor,

dedicated to the production of a specific product. Each order is composed by specific jobs. Each

job consists of several manufacturing tasks, and each task is described as a set of operations.

Furthermore, there is information about the task execution sequence and the suitability of match

among the pending tasks and the existing resources besides the assignments among the resources

and the pending tasks available.

Data Access ROS Interface

Image
Processing

Hardware
Drivers

Cameras PC

Gripper
Service

Robot Service

RO
S

In
te

rf
ac

e

Sensing

Control

Networking

Figure 5. Vision agent architecture.

Apart from the two modules used for the communication, the Vision agent has the
“Image Processing” module, which is connected to cameras. The “Image Processing” module
accesses the platform requests through the “Data Access” module, performs the requested actions and
returns the results to the platform through the “Data Access” module.

The “Vision Services” interface consists of the following methods:

• performCalibration: The method performs the calculations for the identification of the relative
position of the mobile unit base in relation to the docking station base. The method is required for
the calculation of the mobile unit’s position with high precision.

• identifyPart: The method identifies the automotive part types at each rack.
• identifyPartLocation: The method identifies the parts’ positions and orientations inside the racks.

2.5. Ontology-Based Approach for Coordinating the Execution of Robotic Operations

In this chapter, there is a description of the approach used for coordinating the robotic operations.
The approach involves two parts, namely:

• An ontology knowledge base.
• A decentralized negotiation and coordination mechanism.

To achieve an automatic coordination of robotic operations in real time, a model with adequate
information about the agents responsible for task execution is required. The agent architecture discussed
in this paper uses ontology and Semantic Web technologies for expressing the knowledge coming from
the production environment. Hence, the agents rely on a resource, process and orders ontology that
provides information on the manufacturing resources’ sequence of operations they control.

In Figure 6, there is a representation of the Ontology. It contains information about the shop floor,
the existing assembly lines, the stations of each assembly line and the resources dedicated to each

J. Manuf. Mater. Process. 2020, 4, 95 11 of 22

station. Furthermore, there is information about the orders arriving at the shop floor, dedicated to the
production of a specific product. Each order is composed by specific jobs. Each job consists of several
manufacturing tasks, and each task is described as a set of operations. Furthermore, there is information
about the task execution sequence and the suitability of match among the pending tasks and the
existing resources besides the assignments among the resources and the pending tasks available.J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 12 of 23

Figure 6. Ontology.

A schematic description of the data model using the Unified Modeling Language (UML),

where all the data model classes are represented, can be seen above. This data model encapsulates

all the information required by the agents to perform autonomous decision making. This

information would have to represent the exact status of the shop floor not only in terms of

physical objects and geometries but also in terms of operation execution status. The association

or composition of the connected classes is also shown. More specifically:

 “hasAssemblyLine” declares that an assembly line belongs to a certain shop floor.

 “hasStation” connects an assembly line with all the working stations located in it.

 “hasResource” connects a working station with all the robots located in it.

 “hasToolRepository” is used to associate each work station with its tool repository.

 “hasDockingStation” associates each work station with its docking station.

 “hasAttachedMobileResource” connects the docking station with the mobile resource

docked on it.

 “hasTool” connects the resources with their attached tools.

 “hasToolType” declares the type of each tool by connecting it with the specified tool type.

 “releasedToStation” declares that a job is released and will be executed within a certain

station.

 “hasTasks” connects the job with its tasks.

 “hasOperations” connects a task with its operations.

 “hasPreCondition” declares that a task must be completed before a certain task begins.

 “hasPostCondition” declares that a task must start after a certain task is completed.

 “hasRelatedTask” is a property of the TaskResourceRel class. It is used together with the

“hasSuitableResource” property to denote that a certain task can be executed by a certain

resource.

 “hasRelatedResource” is a property of the Assignment class. The Assignment class is

connected with a resource using this property and with a task using the “hasRelatedTask”

property.

-id : Integer
-name : String

Shop Floor

-id : Integer
-name : String
-description : String

Station

-id : Integer
-name : String

Docking Station

-id : Integer
-name : String
-description : String
-isOnline : Boolean
-isMalfunction : Boolean

Resource

-id : Integer
-name : String
-description : String
-status : String
-isFinished : Boolean

Task

TaskResourceRel

-id : Integer
-name : String

Assembly Line

-id : Integer
-name : String
-description : String

Job

Assignments

TaskPrecedence
Constrains

-id : Integer
-description : String

Operation

hasAssemblyLines

hasStations

hasDockingStations
pre/postCondition

hasOperations
hasResources

hasRelatedResource

hasRelatedTask

hasSuitableResource

hasRelatedTask

-id : Integer
-name : String
-repositoryCapacity : Integer

ToolRepository

-id : Integer
-name : String
-description : String

Tool

-id : Integer
-name : String

ToolType

hasTool

hasToolType

hasToolRepository

hasAttachedMobile

releasedTo

hasTasks

Figure 6. Ontology.

A schematic description of the data model using the Unified Modeling Language (UML), where all
the data model classes are represented, can be seen above. This data model encapsulates all the
information required by the agents to perform autonomous decision making. This information would
have to represent the exact status of the shop floor not only in terms of physical objects and geometries
but also in terms of operation execution status. The association or composition of the connected classes
is also shown. More specifically:

• “hasAssemblyLine” declares that an assembly line belongs to a certain shop floor.
• “hasStation” connects an assembly line with all the working stations located in it.
• “hasResource” connects a working station with all the robots located in it.
• “hasToolRepository” is used to associate each work station with its tool repository.
• “hasDockingStation” associates each work station with its docking station.
• “hasAttachedMobileResource” connects the docking station with the mobile resource docked on it.
• “hasTool” connects the resources with their attached tools.
• “hasToolType” declares the type of each tool by connecting it with the specified tool type.
• “releasedToStation” declares that a job is released and will be executed within a certain station.
• “hasTasks” connects the job with its tasks.
• “hasOperations” connects a task with its operations.
• “hasPreCondition” declares that a task must be completed before a certain task begins.
• “hasPostCondition” declares that a task must start after a certain task is completed.
• “hasRelatedTask” is a property of the TaskResourceRel class. It is used together with the

“hasSuitableResource” property to denote that a certain task can be executed by a certain resource.
• “hasRelatedResource” is a property of the Assignment class. The Assignment class is connected

with a resource using this property and with a task using the “hasRelatedTask” property.

J. Manuf. Mater. Process. 2020, 4, 95 12 of 22

The representation of all such characteristics enables their automated integration in the
decision-making process, through the Ontology technologies. To define the Ontology model,
a systematic representation representing the interplay between the production processes and resources
needs to be formulated.

Regarding the hierarchical model of the assembly system, the “Shop Floor” represents the
complete production facility and encompasses a number of “Assembly Lines”. Each “Assembly
Line” incorporates several “Stations”, which, in turn, involve one or more “Resources”. “Assembly
Lines” mainly refer to dedicated parts of the facility where a specific subassembly or component of
the product is produced. “Stations” are used to denote smaller cells or groups of resources that are
included in the line and are responsible for a subset of the manufacturing operations. According to this
work’s approach a “Task” is assigned to a station and then dispatched to a resource inside this station.
“Resource” is used to describe a specific machine or equipment executing a task from start to end.

In analogy to the facilities hierarchy, the workload also follows a similar breakdown. The higher
level includes the “Orders”, which, in turn, consist of “Jobs” that are made up of several “Tasks”.
The “Tasks” of a specific “Job” must be carried out by the “Station” where the “Job” is “releasedTo”.
Therefore, “Tasks” can be carried out by one or multiple “Resources”, and the mapping of tasks to
Resources is decided by a scheduling algorithm such as a dispatching rule.

The Ontology presented above is utilized by a decentralized coordination and negotiation
mechanism, being responsible for the handling of events (for example, the introduction of new orders
or the breakdown of a resource) arising at the shop floor. The decentralized mechanism is based on a
negotiation procedure used for the selection of the agent that performs rescheduling in order for the
resultant event to be handled. In many proposed dynamic-manufacturing scheduling systems, there is
usually a preselected node that performs the scheduling calculations [17]. In this study, a new schema
is proposed in which every resource agent may undertake the role of a coordinator by providing the
sequence of operations. The negotiation and synchronization are performed bilaterally between the
resource agents and the ontology agent. A similar problem has already been faced in peer-to-peer
networks, known as the super-node selection problem. In such cases, several negotiation mechanisms,
addressing this problem, have been developed [31]. In the proposed system, a negotiation mechanism
has been developed, oriented towards a fast response time and a low data exchange in order for the
overloading of the network infrastructure to be avoided. When the Robot agents need to negotiate
with each other, they calculate an indicator, based on the processing load they have by that time,
and broadcast a message containing this number to a common topic. Then, they await the publishing of
all the negotiation messages in the same topic, containing the numbers of the other agents over a specific
time. When the negotiation time is up, each agent compares the numbers received by all the other
agents with its own transmitted number (illustrated as the “Calculating” process in Figure 7), and the
agent with the lowest number, and thus with the lowest processing load, broadcasts a negotiation
finish message and is then responsible for performing the rescheduling process. Then, the agent
triggers an external scheduler module, which takes the data from the ontology repository, performs
the scheduling, writes the assignments in the ontology and sends a message informing all the agents
that the scheduling is over. The scheduling method is described in detail in [32,33]. The negotiation
process is graphically presented in Figure 7. For the implementation of this mechanism, the ROS topic
communication technology has been utilized. A specific topic has been created, and each robot agent
is configured to register itself to this topic when connected to the network.

When the rescheduling calculations have been performed, the Ontology agent is notified, and the
new task assignments are updated into the ontology. Then, the Robot agent, having performed the
calculations, informs the rest of the agents about the new assignments. This is achieved by sending a
ROS message “reached” to the common ROS topic to which all the robot agents are subscribed. Next,
all the robot agents retrieve the new task assignments along with the task operations by calling the
retrieveSchedule service of the Ontology agent and continue controlling the manufacturing resources in
order to perform those tasks.

J. Manuf. Mater. Process. 2020, 4, 95 13 of 22

J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 14 of 23

When the rescheduling calculations have been performed, the Ontology agent is notified,

and the new task assignments are updated into the ontology. Then, the Robot agent, having

performed the calculations, informs the rest of the agents about the new assignments. This is

achieved by sending a ROS message “reached” to the common ROS topic to which all the robot

agents are subscribed. Next, all the robot agents retrieve the new task assignments along with the

task operations by calling the retrieveSchedule service of the Ontology agent and continue

controlling the manufacturing resources in order to perform those tasks.

Figure 7. Negotiation mechanism.

3. Case Study Implementation and Discussion of Results

This section discusses the realization, testing and evaluation of the proposed solution for the

case study presented in Section 2.2. The system was tested in a scenario that involves the

coordination (scheduling) of tasks to be performed by the production resources.

Robot1 Agent Robot2 Agent Ontology Agent

Negotiation ROS Message

Negotiation ROS Message

END_NEG ROS Message

END_NEG ROS Message

Scheduler Triggering

Calculating Calculating

updateSchedule ROS Service Call

true

retrieveSchedule ROS Service Call

schedule

WAIT FOR TASK

retrieveSchedule ROS Service Call

schedule

EXECUTING TASK

Figure 7. Negotiation mechanism.

3. Case Study Implementation and Discussion of Results

This section discusses the realization, testing and evaluation of the proposed solution for the case
study presented in Section 2.2. The system was tested in a scenario that involves the coordination
(scheduling) of tasks to be performed by the production resources.

At the beginning of the cell operation, the Robot agents negotiate in order to decide which of
the two will undertake the scheduling of the tasks, i.e., the assignment of the tasks to the two robots.
After the decision has been made, the selected robot agent considers the resource–task suitability and
the sequence constraints (e.g., task “Weld1-1” has to be carried out before “Weld1-2”) and generates the
schedule that indicates which resource is to be used (i.e., which tasks the robot and gripper execute).
In the next step, the schedule derived for each robot is stored in the ontology so that it is accessible by
the robot service. Each agent retrieves the respective schedule from the ontology and then controls the
robot accordingly. The task to be executed defines the transmitted data, which include the coordinates
of the points to be reached by the robot, the welding parameters, the motion type (joint or linear)
and other information. Following this, upon the completion of each task, the robot agent notifies
the ontology in order for the other robot that is waiting to start executing the tasks that have been
dispatched to it. Once all the tasks are finished, the handling robot positions the final assembly on the
table and retracts so that the operators may move the part from its working area.

J. Manuf. Mater. Process. 2020, 4, 95 14 of 22

3.1. Implementation Details

The approach proposed in this work was applied in a test case in a laboratory environment that
involved the automated configuration and real-time coordination of two industrial robots for the
welding of car floor parts. The scenario described in the previous paragraph was met using the approach
presented in this paper. Figure 8 presents the hardware and software architecture for the implemented
case study. In total, four PCs were configured, three of which were host agents (two robots and one
ontology), while the fourth one was configured to host the ROS infrastructure. The ontology agent was
configured on top of a Jena. In the original configuration of the cell, the cooperative behavior of robots
was achieved through a master/slave coupling under a DeviceNet network. For the purposes of this
research, the robot cell infrastructure was modified to accommodate the agent-based communication
between the robots. More specifically, two desktop PCs running ROS on top of Linux Ubuntu v.12.04
were configured and connected to the robot controllers through ethernet connections. Each robot was
connected to its own Comau C4G open controller. The Comau PDL2 robot programming language
was used in order to program the Comau C4G controller, and thus, the low-level layer of the robot
agent was written in PDL2.

J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 16 of 23

Service using the “updateQuery” function. After the scheduling process has finished, the

registered robot agents are informed by the Ontology Service that there are new pending tasks

assigned to them by means of publishing a message at the common ROS topic, to which everyone

is subscribed. Each agent then, by calling the “retrieveSchedule” service, retrieves its pending

tasks and starts executing them. The first robot agent starts the execution of the “Weld1-1” Task

by processing, one by one, the task’s operations while sending the appropriate commands to the

manufacturing resource. The second robot agent starts executing the “Grip1-1” task. The first

operation of this task is to wait for the pre-condition tasks to be executed, in this case, the task

“Weld1-1”. In this way, the agent enters a “hold state”, waiting for the first robot agent to

complete its task and inform it. When the “Weld1-1” task has finished, the first robot agent,

utilizing the Ontology Service, retrieves all the post-conditions of these tasks and informs the

agents assigned to them. In this case, the first robot agent informs the second robot agent, by

calling the “continueTask” function, that the “Weld1-1” task has been performed. The same

procedure is followed for the execution of all the pending tasks, namely, the “Weld1-2” and the

“Grip1-2” tasks.

Figure 8. Hardware and software architecture of the laboratory implementation. Figure 8. Hardware and software architecture of the laboratory implementation.

J. Manuf. Mater. Process. 2020, 4, 95 15 of 22

In Figure 9, the individual entities of the ontology model are presented. This Ontology instantiation
constitutes the description of the laboratory assembly equipment with one welding station. In the
welding station, two manufacturing resources exist, one robot with a gripper attached to it and a
second one with a welding gun attached to it. For this scenario, we assume that a new order that is an
automotive floor arrives, and this order comprises a floor-welding job with four tasks. The ontology
instantiation of each task has its precedence constraints and the operations that describe it. Furthermore,
within the instantiation of the Ontology, there is information about the assignments and the suitability
among the existing resources and the tasks.

In Figure 10, the sequence diagram of the use-case scenario is presented. For this scenario,
we assume that the robot agents are now turned on and an automotive floor order has just arrived
with four pending tasks, as they are also described in the Ontology instantiation. We can further
assume that it has been defined which task will be performed by a specific resource, but no scheduling
calculations have been performed and no assignments among the arrived tasks and the resources
exist. The use-case scenario starts with the registration of the robot agents to the platform. Each agent
registers itself to the platform, consuming the registering function of the Ontology Service. In that
case, the Robot agents utilize the negotiation and coordination mechanism to perform a negotiation
and decide which one will make the scheduling calculations. When the negotiation has finished,
the selected agent retrieves from the Ontology Service all the appropriate information required for the
task scheduling by the “executeQuery” function. When the assignments of the pending tasks have
been made, the agent stores these data in the Ontology Service using the “updateQuery” function.
After the scheduling process has finished, the registered robot agents are informed by the Ontology
Service that there are new pending tasks assigned to them by means of publishing a message at the
common ROS topic, to which everyone is subscribed. Each agent then, by calling the “retrieveSchedule”
service, retrieves its pending tasks and starts executing them. The first robot agent starts the execution
of the “Weld1-1” Task by processing, one by one, the task’s operations while sending the appropriate
commands to the manufacturing resource. The second robot agent starts executing the “Grip1-1” task.
The first operation of this task is to wait for the pre-condition tasks to be executed, in this case, the task
“Weld1-1”. In this way, the agent enters a “hold state”, waiting for the first robot agent to complete its
task and inform it. When the “Weld1-1” task has finished, the first robot agent, utilizing the Ontology
Service, retrieves all the post-conditions of these tasks and informs the agents assigned to them. In this
case, the first robot agent informs the second robot agent, by calling the “continueTask” function,
that the “Weld1-1” task has been performed. The same procedure is followed for the execution of all
the pending tasks, namely, the “Weld1-2” and the “Grip1-2” tasks.

J. Manuf. Mater. Process. 2020, 4, 95 16 of 22J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 17 of 23

Figure 9. Use-case instantiation of the ontology model.

Figure 9. Use-case instantiation of the ontology model.

J. Manuf. Mater. Process. 2020, 4, 95 17 of 22

J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 18 of 23

Figure 10. Scenario sequence diagram.

3.2. Discussion and Comparison with Other Approaches

At this point, the most common way of synchronizing various tasks, among many robots, is

with the use of both signals and a PLC before and after a certain task execution.

Every time that a job to be performed by two or more robots has to be executed, the signals

need to be sent and received by the robots in order to satisfy all the precedence constraints

between the various tasks. Firstly, the controller of every robot has to be connected to the master

Figure 10. Scenario sequence diagram.

3.2. Discussion and Comparison with Other Approaches

At this point, the most common way of synchronizing various tasks, among many robots, is with
the use of both signals and a PLC before and after a certain task execution.

Every time that a job to be performed by two or more robots has to be executed, the signals need
to be sent and received by the robots in order to satisfy all the precedence constraints between the
various tasks. Firstly, the controller of every robot has to be connected to the master PLC unit that

J. Manuf. Mater. Process. 2020, 4, 95 18 of 22

controls the I/O signals of every robot. Depending on the PLC unit, the ethernet, DeviceNet or RS-232
connection protocols are supported. Afterwards, the robot controllers and the PLC unit need to be
turned on and start writing the robot’s programs for each task. The welding robot is ordered to wait
until the first gripping task has finished. Consequently, a command is included at the start of the
welding robot program to wait until a certain memory slot of the PLC becomes true. The gripping
robot provides information upon finishing its first task. Therefore, after this task has been executed,
it sends the signal in order for the welding robot to be able to continue.

This approach, which is most commonly used in robot synchronization, requires a lot of time for
the setup, especially if there are more than two robots with several precedence constraints. Furthermore,
the programmer should know which memory slots of the PLC are available, in order to use them for
synchronization. The risk of updating a false memory slot and signaling the wrong robot to continue is
possible. The only way of eliminating this risk is the use of virtual commissioning technologies in
order for a simulation of the sequencing to be performed first, on the PC, before its application to the
real robots [34]. Figure 11 provides a high-level overview of the PLC approach.

J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 19 of 23

PLC unit that controls the I/O signals of every robot. Depending on the PLC unit, the ethernet,

DeviceNet or RS-232 connection protocols are supported. Afterwards, the robot controllers and

the PLC unit need to be turned on and start writing the robot’s programs for each task. The

welding robot is ordered to wait until the first gripping task has finished. Consequently, a

command is included at the start of the welding robot program to wait until a certain memory

slot of the PLC becomes true. The gripping robot provides information upon finishing its first

task. Therefore, after this task has been executed, it sends the signal in order for the welding robot

to be able to continue.

This approach, which is most commonly used in robot synchronization, requires a lot of time

for the setup, especially if there are more than two robots with several precedence constraints.

Furthermore, the programmer should know which memory slots of the PLC are available, in

order to use them for synchronization. The risk of updating a false memory slot and signaling the

wrong robot to continue is possible. The only way of eliminating this risk is the use of virtual

commissioning technologies in order for a simulation of the sequencing to be performed first, on

the PC, before its application to the real robots [34]. Figure 11 provides a high-level overview of

the PLC approach.

Figure 11. Programmable Logic Controller (PLC) approach for robot synchronization.

On the contrary, the use of the agent-based system previously described, the time for

embedding the manufacturing resources into the system and the effort for programming them

for achieving synchronization are reduced.

The setup phase only requires the turning on of the robot controllers and the PCs that the

robot agent software is running on. No connection to master the PLC is required. For enabling

communication, the robot agent PCs must be connected to the same network.

Figure 11. Programmable Logic Controller (PLC) approach for robot synchronization.

On the contrary, the use of the agent-based system previously described, the time for embedding
the manufacturing resources into the system and the effort for programming them for achieving
synchronization are reduced.

The setup phase only requires the turning on of the robot controllers and the PCs that the
robot agent software is running on. No connection to master the PLC is required. For enabling
communication, the robot agent PCs must be connected to the same network.

During the programming phase, the only required action is that the operations are added to
the Ontology Repository and the pre- and post-conditions for each task are set up. Then, during
the execution phase, new operations for waiting and sending notifications to continue are generated

J. Manuf. Mater. Process. 2020, 4, 95 19 of 22

according to the precedence constraints that the user has defined. After that, the robots can start their
negotiation in order to enter the execution phase.

The duration of the setup and the programming phases of the above scenario for both approaches
is discussed. Four major tasks are identified for measuring the time needed for each approach:
network configuration, robot programming, task-sequencing configuration and the integration of new
resources. The performance for the hierarchical approach is based on an expert’s estimation, while the
performance of the proposed system was estimated upon testing the system on the different cases.

• Network configuration: With the proposed approach, the network configuration time is
significantly reduced. Using the PLC approach, approximately 8 h is needed to configure
the fieldbus network including the gripper I/O configuration and the mapping of the robot I/Os
to those configured at the gripper side. On the other hand, with a resource that can support the
TCP/IP protocol, the only requirement is to connect all the resources at the same network (0.5–1 h).

• Robot program: There is not any foreseen effect on the time needed for the robot programming.
The writing of the robot program takes approximately the same time in both approaches.

• Task sequencing configuration: If no standard is used for PLC programming—as is the case in
several industrial sites—the development of interlocking PLC commands for task sequencing
takes 5–8 h. Using the proposed approach, it is only necessary to configure the precedence
constraints of each couple of tasks at the ontology, which may take approximately 1–2 h if a generic
purpose Ontology editing tool (e.g., Protégé) is used or even less (approximately 10–20 min) if a
specific end-user application is available.

• Integration of new resources: Using the traditional hierarchical approach, in case the new resource
has the same configuration (same vendor, same gripper and same IO configuration) as the already
installed resource, it is only necessary to copy the robot program to the controller (0.5 h). However,
if the robot is not configured properly (e.g., has a different vendor), we also need to program
the PLC signaling (approximately 3 h). On the other hand, when using the agent-based system
developed in this paper, we only need to add the new robot in the ontology and configure the
task-resource suitability (10–20 min using the Protégé Ontology editor).

In summary, the application of this approach to a simple scenario that includes the cooperation
of two robots can save a significant amount of setup and programming time. A job that previously
could take up to two working days to be set up now requires a couple of hours. In more complex
jobs, where more tasks need to be synchronized, the time saving—and, subsequently, the economic
profit—can be even bigger. Moreover, the programmer does not need to keep in mind all the memory
slots that are being altered at the PLC. Thus, the risks of sending the wrong signals to the wrong robots
are reduced.

4. Conclusions and Future Work

The automated configuration and the coordination of production equipment are considered
important capability factors for manufacturing systems in enhancing their overall performance.
Currently, configuration and coordination are usually performed with a centralized decision-making
approach with fixed and rigid control logic that reduces responsiveness, flexibility and re-configurability.
This work proposes an approach that combines the benefits of three key technologies, namely,
agent-based manufacturing, service-oriented architecture, and ontology. In order for the
aforementioned capabilities to be enabled, the production equipment is introduced and accessed by
the proposed system as a software agent that registers itself through the ontology service. Based on the
ontological representation of the production equipment and its relations, the system automatically
determines and initiates the configuration and coordination process. SOA is used in order for the
resource agents to communicate with each other and derive alternative schedules for the accommodation
of disturbances.

J. Manuf. Mater. Process. 2020, 4, 95 20 of 22

The system was developed and applied in an industrial case study of the robotics-based welding
of automotive floor parts. The application in the case study showed that the proposed system can
save setup and programming time by shifting the effort from low-level rigid PLC programming to
the configuration of flexible agents as well as the ontology that supports their coordination. The time
required to configure the network among the production resources and the integration of new resources
can be reduced when assisted by the ontology-based registration of the equipment’s network settings.
Effort spent on task-sequencing configuration is reduced, as the task precedence diagram can be
represented via high-level ontological data available to the resource agents.

Future work will need to focus on the development of a diagnostic system that, through the
observation of shop-floor events, computes the set of faults that may occur or a set of fault states that
the system may reach. In this way, high-level semantic information about the actual state can be sent
to the decision-making modules of the control architecture, thus enabling the deployment of proactive
fault-handling strategies. Furthermore, towards the direction of error and exception handling, the use
of mobile robots could be useful. In case something unexpected takes place while a robot is executing
a certain task, a mobile robot could then approach it and carry on its task.

Author Contributions: Conceptualization, S.M. and G.M.; methodology, S.M. and K.A.; software, K.A. and A.S.;
validation, G.M. and A.S.; writing, S.M., K.A., G.M. and A.S.; writing—original draft preparation, S.M., K.A.;
writing—review and editing, S.M., K.A., G.M.; visualization, G.M., K.A., A.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research has been partially supported by the research project “TRINITY—Digital Technologies,
Advanced Robotics and increased Cyber-security for Agile Production in Future European Manufacturing
Ecosystems” funded by the European Commission.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chryssolouris, G. Manufacturing Systems: Theory and Practice, 2nd ed.; Springer: New York, NY, USA, 2006.
2. Brennan, W.R.; Vrba, P.; Tichy, P.; Zoitl, A.; Sunder, C.; Strasser, T.; Marik, V. Developments in dynamic and

intelligent reconfiguration of industrial automation. Comput. Ind. 2008, 59, 533–547. [CrossRef]
3. Leitao, P. Agent-based distributed manufacturing control: A state-of-the-art survey. Eng. Appl. Artif. Intell.

2009, 22, 979–991. [CrossRef]
4. Scholz-Reiter, B.; Freitag, M. Autonomous processes in assembly systems. CIRP Ann. 2007, 56, 712–729.

[CrossRef]
5. Monostori, L.; Váncza, J.; Kumara, S.R.T. Agent-based systems for manufacturing. CIRP Ann. 2006,

55, 697–720. [CrossRef]
6. Mourtzis, D.; Papakostas, N.; Mavrikios, D.; Makris, S.; Alexopoulos, K. The role of simulation in digital

manufacturing—Applications and outlook. Int. J. Comput. Integr. Manuf. 2015, 28, 3–24. [CrossRef]
7. Monostori, L.; Kádár, B.; Pfeiffer, A.; Karnok, D. Solution approaches to real-time control of customized mass

production. Ann. CIRP 2007, 56, 431–434. [CrossRef]
8. Guo, Q.; Zhang, M. An agent-oriented approach to resolve scheduling optimization in intelligent

manufacturing. Robot. Comput. Integr. Manuf. 2010, 26, 39–45. [CrossRef]
9. Mezgebe, T.T.; Bril El Haouzi, H.; Demesure, G.; Pannequin, R.; Thomas, A. Multi-agent systems negotiation

to deal with dynamic scheduling in disturbed industrial context. J. Intell. Manuf. 2020, 31, 1367–1382.
[CrossRef]

10. Mishra, N.; Singh, A.; Kumari, S.; Govindan, K.; Ali, S.I. Cloud-based multi-agent architecture for effective
planning and scheduling of distributed manufacturing. Int. J. Prod. Res. 2016, 54, 7115–7128. [CrossRef]

11. Papakostas, N.; Mourtzis, D.; Makris, S.; Michalos, G.; Chryssolouris, G. An agent-based methodology for
manufacturing decision making: A textile case study. Int. J. Comput. Integr. Manuf. 2012, 25, 509–526.
[CrossRef]

http://dx.doi.org/10.1016/j.compind.2008.02.001
http://dx.doi.org/10.1016/j.engappai.2008.09.005
http://dx.doi.org/10.1016/j.cirp.2007.10.002
http://dx.doi.org/10.1016/j.cirp.2006.10.004
http://dx.doi.org/10.1080/0951192X.2013.800234
http://dx.doi.org/10.1016/j.cirp.2007.05.103
http://dx.doi.org/10.1016/j.rcim.2009.02.003
http://dx.doi.org/10.1007/s10845-019-01515-7
http://dx.doi.org/10.1080/00207543.2016.1165359
http://dx.doi.org/10.1080/0951192X.2011.637963

J. Manuf. Mater. Process. 2020, 4, 95 21 of 22

12. Rocha, A.; Barata, D.; di Orio, G.; Santos, T.; Barata, J. PRIME as a Generic Agent Based Framework to
Support Pluggability and Reconfigurability Using Different Technologies. In Proceedings of the 6th IFIP WG
5.5/SOCOLNET Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2015, Costa
de Caparica, Portugal, 13–15 April 2015. [CrossRef]

13. Cruz Salazar, L.A.; Ryashentseva, D.; Lüder, A.; Vogel-Heuser, B. Cyber-physical production systems
architecture based on multi-agent’s design pattern—Comparison of selected approaches mapping four agent
patterns. Int. J. Adv. Manuf. Technol. 2019, 105, 4005–4034. [CrossRef]

14. Shen, W.; Hao, Q.; Wang, S.; Li, Y.; Ghenniwa, H. An agent-based service-oriented integration architecture
for collaborative intelligent manufacturing. Robot. Comput.-Integr. Manuf. 2007, 23, 315–325. [CrossRef]

15. Zhang, Y.; Huang, G.Q.; Qu, T.; Ho, O.; Sun, S. Agent-based smart objects management system for real-time
ubiquitous manufacturing. Robot. Comput.-Integr. Manuf. 2011, 27, 538–549. [CrossRef]

16. Candido, G.; Jammes, F.; de Oliveira, J.B.; Colombo, A.W. SOA at device level in the industrial domain:
Assessment of OPC UA and DPWS specifications. In Proceedings of the 8th IEEE International Conference
on Industrial Informatics (INDIN), Osaka, Japan, 13–16 July 2010; pp. 598–603. [CrossRef]

17. Wang, C.; Shen, W.; Ghenniwa, H. An adaptive negotiation framework for agent based dynamic
manufacturing scheduling, IEEE International Conference on Systems. Man Cybern. 2003, 2, 1211–1216.

18. Vrba, P.; Radakovič, M.; Obitko, M.; Mařík, V. Semantic technologies: Latest advances in agent-based
manufacturing control systems. Int. J. Prod. Res. 2011, 49, 1483–1496. [CrossRef]

19. Secchi, C.; Bonfe, M.; Fantuzzi, C. On the Use of UML for Modeling Mechatronic Systems. IEEE Trans. Autom.
Sci. Eng. 2007, 4, 105–113. [CrossRef]

20. Ocker, F.; Kovalenko, I.; Barton, K.; Tilbury, D.; Vogel-Heuser, B. A Framework for Automatic Initialization
of Multi-Agent Production Systems Using Semantic Web Technologies. IEEE Robot. Autom. Lett. 2019, 4,
4330–4337. [CrossRef]

21. Ciortea, A.; Mayer, S.; Michahelles, F. Repurposing manufacturing lines on the fly with multi-agent systems
for the Web of Things. In Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), Stockholm, Sweden, 10–15 July 2018; pp. 813–822.

22. Reinhart, G.; Krug, S. Automatic Configuration (Plug & Produce) of Robot Systems—Data-Interpretation and
Exchange. In Enabling Manufacturing Competitiveness and Economic Sustainability; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 147–152.

23. Efthymiou, K.; Sipsas, K.; Melekos, D.; Georgoulias, K.; Chryssolouris, G. A Manufacturing Ontology
Following Performance Indicators Approach. In Proceedings of the 7th International Conference on Digital
Enterprise Technology, Athens, Greece, 28–30 September 2011; pp. 586–595.

24. Efthymiou, K.; Alexopoulos, K.; Sipsas, P.; Mourtzis, D.; Chryssolouris, G. Knowledge management
framework supporting manufacturing system design. In Proceedings of the 7th International Conference on
Digital Enterprise Technology, Athens, Greece, 28–30 September 2011; pp. 577–585.

25. Lepuschitz, W.; Zoitl, A.; Merdan, M. Ontology-Driven Automated Software Configuration for Manufacturing
System Components. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics
(SMC), Anchorage, AK, USA, 9–12 October 2011.

26. Lohse, N.; Ratchev, S.; Barata, J. Evolvable Assembly Systems—On the role of design frameworks and
supporting ontologies. IEEE Int. Symp. Ind. Electron. 2006. [CrossRef]

27. Alsafi, Y.; Vyatkin, V. Ontology-based reconfiguration agent for intelligent mechatronic systems in flexible
manufacturing. Robot. Comput.-Integr. Manuf. 2010, 26, 381–391. [CrossRef]

28. Orio, G.; Rocha, A.; Ribeiro, L.; Barata, J. The PRIME Semantic Language: Plug and Produce in Standardbased
Manufacturing Production Systems. In Proceedings of the Flexible Automation and Intelligent Manufacturing,
FAIM 2015, Wolverhampton, UK, 23–26 June 2015.

29. Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A. ROS: An
open-source Robot Operating System. In Proceedings of the Open-Source Software Workshop (ICRA), Kobe,
Japan, 12–13 May and 17 May 2009.

30. Jena Framework. Available online: http://jena.apache.org/ (accessed on 9 September 2020).
31. Lo, V.; Zhou, D.; Liu, Y.; GauthierDickey, C.; Li, J. Scalable Supernode Selection in Peer-to-Peer Overlay

Networks. In Proceedings of the Second International Workshop on Hot Topics in Peer-to-Peer Systems,
San Diego, CA, USA, 21 July 2005; pp. 18–27.

http://dx.doi.org/10.1007/978-3-319-16766-4_11
http://dx.doi.org/10.1007/s00170-019-03800-4
http://dx.doi.org/10.1016/j.rcim.2006.02.009
http://dx.doi.org/10.1016/j.rcim.2010.09.009
http://dx.doi.org/10.1109/INDIN.2010.5549676
http://dx.doi.org/10.1080/00207543.2010.518746
http://dx.doi.org/10.1109/TASE.2006.879686
http://dx.doi.org/10.1109/LRA.2019.2931825
http://dx.doi.org/10.1109/ISIE.2006.296008
http://dx.doi.org/10.1016/j.rcim.2009.12.001
http://jena.apache.org/

J. Manuf. Mater. Process. 2020, 4, 95 22 of 22

32. Michalos, G.; Sipsas, P.; Makris, S.; Chryssolouris, G. Decision making logic for flexible assembly lines
reconfiguration. Robot. Comput.-Integr. Manuf. 2016, 37, 233–250. [CrossRef]

33. Kousi, N.; Dimosthenopoulos, D.; Matthaiakis, A.-S.; Michalos, G.; Makris, S. AI based combined scheduling
and motion planning in flexible robotic assembly lines. Procedia CIRP 2019, 86, 74–79. [CrossRef]

34. Makris, S.; Michalos, G.; Chryssolouris, G. Virtual Commissioning of an Assembly Cell with Cooperating
Robots. Adv. Decis. Sci. 2012, 2012, 428060. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rcim.2015.04.006
http://dx.doi.org/10.1016/j.procir.2020.01.041
http://dx.doi.org/10.1155/2012/428060
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Case Study Overview and Technology Selection

	Approach for Multi-Agent Service-Oriented Integration
	Robot
	Gripper
	Ontology
	Vision
	Ontology-Based Approach for Coordinating the Execution of Robotic Operations

	Case Study Implementation and Discussion of Results
	Implementation Details
	Discussion and Comparison with Other Approaches

	Conclusions and Future Work
	References

