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Abstract: The machining industry raises an ever-growing concern for the significant cost of cutting
tools in the production process of mechanical parts, with a focus on the replacement policy of these
inserts. While an early maintenance induces lower tool return on investment, scraps and inherent costs
stem from late replacement. The framework of this paper is the attempt to predict the tool inserts Mean
Up Time, based solely on the value of a cutting parameter (the cutting speed in this particular turning
application). More specifically, the use of the Cox Proportional Hazards (PH) Model for this prediction
is demonstrated. The main contribution of this paper is the analytic approach that was conducted
about the relevance on data transformation prior to using the Cox PH Model. It is shown that the
logarithm of the cutting speed is analytically much more relevant in the prediction of the Mean Up
Time through the Cox PH model than the raw cutting speed value. The paper also covers a numerical
validation designed to show and discuss the benefits of this data transformation and the overall
interest of the Cox PH model for the lifetime prognosis. This methodology, however, necessitates the
knowledge of an analytical law linking the covariate to the Mean Up Time. It also shows how the
necessary data for the numerical experiment was obtained through a gamma process simulating the
degradation of cutting inserts. The results of this paper are expected to help manufacturers in the
assessment of tool lifespan.

Keywords: Cox proportional hazards model; machining; reliability engineering; survival analysis;
numerical simulation; stochastic modelling; degradation

1. Introduction

Little information is available to machining industry about proper cutting tools management.
In most industrial cases, the decision of replacing a cutting insert is made entirely by the machining
operator, and based on experience only. Meanwhile, an important fraction of the machining costs is
linked with the tool maintenance itself [1–3], and in particular with improper management and poor
maintenance decisions. A special aspect of this concern is the replacement policy of these inserts: while
an early maintenance induces lower tool return on investment, scraps and inherent costs stem from
late replacement [4]. In this last case, the important cost is due to dimensional discrepancies and bad
surface finish of parts that are machined by worn tools. While standardized geometrical wear criteria
for cutting inserts exist, their real-time quantification is not easily performed because said criteria
cannot be measured while the machining operation is ongoing. Therefore, the general framework of
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this paper is the effort to provide aid for real-time quantification of the Remaining Useful Life (RUL)
of a cutting insert.

While the wear phenomenon occurs in all machining operations, the present work is focused on
turning. Among the types of wear, the present study considers the average flank wear, which is the
nominal type of wear for the longest tool lifetime according to manufacturers of carbide inserts [5].
They consider that other forms of wear usually stem from poor cutting parameters choices [5]. However,
this type of wear is also crucial, because of its important correlation with surface roughness, surface
integrity and dimensional accuracy of the machined part.

Flank wear is usually considered a result of abrasive wear, and it is influenced by the machining
parameters, i.e., (in turning) cutting speed, depth of cut, and feed rate [6,7]. This degradation
process is linked with abrasive wear, and incidentally with the hardness of machined materials.
Regardless cutting parameters, the evolution of flank wear is usually divided into three phases: a first
quick wear phase, followed by a longer steady-state region, and finally an accelerated wear after a
given time. This evolution of the wear is always qualitatively similar albeit steeper as the cutting speed
increases. The end-of-life criterion in life testing cases is given by the ISO 3685 standard as given in
Equation (1) for average flank wear [8].

VB = 0.3 mm (1)

Several works showed the interest of stochastic simulation of the evolution of degradation over
time, using a stochastic model piloted by a gamma process modelling the monotonous characteristic
of the process [9,10]. Letot et al. also demonstrated its use in this framework recently [11,12].
Numerous other models have been used in the specific approach of tool flank wear. Aramesh et al.
showed the fit of the Weibull model to failure data of cutting tools [13]. Li also reviewed relevant
mathematical models and numerical simulations [3]. Rizal et al. used a neuro-fuzzy inference system
to extract specific characteristics from the force signal to predict the flank wear [14]. Moreover,
they also showed a strong correlation between flank wear and feed force signals. Halila et al. [15]
built a statistical model based on the Weibull model and proposed a new end-of-life criterion.
More recently, machine learning techniques were also presented to determine the tool wear evolution.
For example, training artificial neural networks and variants in order to determine the tool wear from
tool micrography [16,17], or to predict the tool wear from condition monitoring variables such as
cutting forces [18].

F. W. Taylor presented a relationship between the lifetime of a cutting tool (T) and the cutting speed
(vc) [19], which has been extensively discussed and used in numerous studies [6,7,11,20,21]. The Cox
Proportional Hazards (PH) Model has been introduced by Cox in order to study the survival rates
in medical context [22], but has since been widely used in mechanical engineering and in particular
in maintenance and machining fields [23,24]. In earlier work, it has also been postulated that the
influence of cutting parameters could therefore be used as the explanatory variable of a Cox PH Model,
and experiments corroborated this postulate [12,13,25]. Furthermore, questions have been raised
concerning the validity of data transformations when using the Cox PH Model [26].

A wide variety of wear indicators have also been associated with tool wear [27–29], therefore
opening perspectives for online Tool Condition Monitoring [11,30]. Current approaches attempt to
demonstrate the feasibility of prognosis regarding the Tool Lifetime based on few explanatory variables.
In particular, previous studies showed the Tool Lifetime Prediction to lack accuracy at the borders of
its learning interval [12]. The objective of this paper is to determine whether data transformation of
the covariates may lead to improvement of the accuracy of the Cox PH Model precision. Through this
objective, this paper aims specifically at improving the current approach using cutting parameters to
estimate the Tool Lifetime via the Cox PH Model.

In this paper, the Cox PH Model itself is first described, and its choice and use in the case of
cutting tools are explained. Second, the novelty of this contribution is developed, i.e., the analytic
approach comparing the PH Model outputs with a theoretical law, and contribute to answer the issues
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raised by Feng et al. [26]. Later, the interest of this methodology is illustrated through a numerical
validation, and the fitting methodology of the stochastic model that allows gathering of the necessary
data for this experiment is shown. Finally, a general discussion of the approach shown in this work,
and on perspectives concludes the paper.

2. Cox Proportional Hazards Model

Cox’s PH Model is the most important model in survival analysis [31]. It assumes the failure rate
of a system to be a parametric function of a hazard baseline. The model relies on the assumption of the
proportionality between the observed hazard rate and the baseline hazard function. The weighting of
the respective influences of the covariates is usually expressed through an exponential function of a
linear combination of the covariates.

The Cox PH Model has previously been shown to be well adapted to the evaluation of the Mean Up
Time of mechanical equipment, and in particular of cutting inserts [13,25]. Aramesh et al. also stated
that the Cox PH Model could take into account the ageing and cumulative wear of the tool, as well as
cutting parameters and condition monitoring, which constitute the main advantages of the PH models
in comparison with others [6].

In a general fashion, the Cox PH model can be expressed as follows:

h(t) = h0(t) · exp

(
p

∑
i=1

βiαi

)
(2)

In this equation, h(t) is the hazard function or failure rate, h0(t) is the baseline hazard function,
βi the weighting coefficients for the p covariates and αi the covariates.

In the framework of this paper, the only covariate that is taken into consideration is the cutting
speed. The estimation of the only weighting coefficient β and the baseline hazard curve are made
through the computation of partial likelihood for β and methods analogous to the Kaplan-Meier
estimators for the baseline hazard curve h0(t), as Si et al. showed [23].

Because we chose to study the influence of only one covariate, Equation (2) can be simply written as:

h(t) = h0(t) · exp(βvc) (3)

with vc the cutting speed. The Cox Model baseline can then be fitted to a Weibull distribution.
From the failure rate, which is fitted to a Weibull distribution, it is now possible to compute the

reliability function. In a general case, the reliability of the cutting insert can be computed from the
hazard baseline with help of Equation (4).

R(t) = exp
(
−
∫ +∞

0
h(t)dt

)
(4)

At this point, the distribution fitting provides us with the Weibull parameters, allowing the
analytical obtaining of the reliability function as given in Equation (5):

R(t) = exp

(
−
(

t
η

)k
)

(5)

In this equation, R(t) is the reliability function in the case of a 2-parameter Weibull distribution, η

being the scale parameter and k the shape parameter of the Weibull distribution.
Therefore, the Mean Up Time (MUT) of the cutting inserts can be computed through Equation (6).

It is to be considered to be a prediction for the cutting insert lifetime:

MUT =
∫ +∞

0
R(t)dt (6)
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This method for computing the Mean Up Time is classical and is used in a variety of similar
works [4,6,12,13]. However, as previous work showed [12], while the quality of the prediction is
very good within the learning interval, the quality of the prediction rapidly drops near the border of
the learning interval, which impedes the use of this method for providing extrapolating prognosis.
The mathematical interpretation of this behavior was found to be the inability of the usual approach
using the Cox PH Model to reproduce the concavity of the observed experimental data [12].

3. Analytical Expression of the MUT and Data Transformation

In the case of estimating the MUT from cutting speeds, the Cox PH Model lifetime prediction,
without data transformation, tends to be lower than the observed life duration at both ends of the
learning set [12]. Therefore, we question the ability of the PH Model to replicate the curvature of
the observed data curve in its prediction. Our inference is that analytical examination of the MUT
as predicted by the PH Model is necessary to determine why the model deviates from the observed
samples at the ends of the learning interval.

The MUT as computed in Equation (6) though the Cox PH Model is a result of computations
performed on experimental data through Equation (3). It is, therefore, of major interest to ensure that
the general expression of the Cox PH Model can reproduce the analytical influence of the covariate
on the MUT. Taylor’s law provides such an analytical relationship linking the tool lifetime with the
cutting speed [19]:

vcTn = CT (7)

With T the cutting tool lifetime (that we assimilate here to the MUT), n Taylor’s exponent and
CT a constant that depends on the tool and the material being used. The objective of this analytic
approach is to verify whether Equation (6) may be of the same form as Equation (7).

Mathematically stated: ∫ +∞

0
RCox(t)dt ?

=

(
CT
vc

)1/n
(8)

This equation must be developed to achieve a clear answer, but two assumptions must be made
at this point to obtain the analytic expressions that can be compared:

• the hazard baseline function is fitted on a Weibull distribution
• the Mean Up Time of the experimental sample that allowed to fit the Cox PH Model follows

Equation (7)

Statistical reliability relationships define the following expression, where f (t) is the failure probability
density function:

h(t) =
f (t)
R(t)

= −
dR(t)

dt
R(t)

(9)

therefore,

h(t) = − d
dt

(log(R(t))) (10)

Because the failure rate is obtained through the Cox PHM, and fitted to a Weibull model, the left
side of Equation (10) can be substituted with Equation (3), using the analytical expression of the failure
rate in the case of a Weibull distribution:

∫ ( k
η

)(
t
η

)k−1
exp(βvc)dt = − log(R(t)) (11)

The initial conditions giving a unitary reliability, the integration constant is null and Equation (11)
becomes:

R(t) = exp

(
−
(

t
η

)k
· exp(βvc)

)
(12)
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Therefore, the left-hand side of Equation (8) becomes:

∫ +∞

0
exp

(
−
(

t
η

)k
· exp(βvc)

)
dt ?

=

(
CT
vc

)1/n
(13)

The left-hand side can be integrated if
exp(βvc)

ηk > 0 and k > 0. Both conditions being always

true, Equation (13) becomes:
Γ(1/k)

k
(

exp(βvc)

ηk

)1/k
?
=

(
CT
vc

)1/n
(14)

The gamma function Γ(x) is defined as given in Equation (15) [32].

Γ(x) =
∫ +∞

0
tx−1 exp(−t)dt (15)

At this stage, the simplest strategy is to compare the sides of Equation (14), and to determine
whether both sides have similar expressions of vc.

For the constant part:

CT =

(
Γ(1/k)η

k

)n
(16)

This equation can be true, and the fitting of the Weibull model to the survival baseline curve aims
at verifying this equation. As for the vc part:

exp
(

β · vc

k

)
6= v1/n

c (17)

Equation (17) is never verified. Therefore, it can be concluded that the Cox PH Model is intrinsically
unable to produce a prognosis that follows Taylor’s law while using vc as covariate without data
transformation.

However, the notation vc in the left-hand side of Equation (17) should be interpreted as the covariate
used in the Cox PH Model. Instead, we can denote this input as any time-independent function of the
cutting speed: f (vc), despite Cox’s original paper mainly pointing to a linear function [22,33]. Then,
the objective becomes the search for a function f (vc) such that it would allow the last equation to be
true, which becomes evident:

f (vc) =
k log(vc)

nβ
(18)

which is an adequate data transformation to allow proper results of the Cox PH Model. This function
being time-independent, it will not affect the integration. The coefficients that appear in this final
equation involve the Weibull distribution parameters. Their value would be absorbed by the weighting
coefficient β during the process of fitting the Cox PH Model. Thus, only nonlinear transformations
should be taken into consideration at this stage.

This analytical approach therefore brings forward the necessity of performing a data transformation
on the covariate vc before fitting the Cox PH Model and the subsequent Weibull distribution. The covariate
that must be used in this fit is no longer vc but rather log(vc). This transformation should provide
much more accurate results in fitting the PH Model. It can also be checked whether this transformation
reduces the size of the sample that is necessary to achieve convergence of the PH Model. This question
arises because the analytical approach modifies the Cox PH Model equation in a way that allows its
MUT prediction to fit the analytical law that describes the phenomenon (in this case, Taylor’s law).
This issue is assessed in the numerical validation.

Furthermore, similar approaches could be performed for any covariate describing the system.
In actuality, only the first assumption (that the hazard baseline is fitted to a Weibull distribution) is
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strictly necessary for the reasoning to be true. Even in the case of this assumption not being verified,
similar approaches could be pursued for other statistical distributions if necessary. Special caution
must be paid while integrating Equation (13): some distributions may not provide with an expression
that can be integrated. The second assumption is not necessary under the formulation that was
given: any analytical law that describes the relationship between the covariate and the lifetime can be
used. However, the right-hand side of Equation (13) must have a shape that is compatible with the
comparison approach that was used on Equations (16) and (17).

The analytical developments using the logarithmic transformation lead from Equations (16) and
(17) to respectively Equations (19) and (20), which can be analytically satisfied regardless the value of vc,
and in practice through the fitting of the PH Model and the Weibull model to the survival baseline curve.

CT =

(
Γ(1/k)η

k

) k
β

(19)

n =
k
β

(20)

This development therefore confirms that the raw cutting speed value cannot be a satisfactory
Cox PH Model covariate, because regardless how good the model fitting may be, it cannot replicate
the analytical link between the cutting speed and the tool life.

4. Materials and Methods

To assess the analytical development that was described in the previous section, it is intended
to show an experimental validation based on tool life duration data obtained through a stochastic
degradation process.

The research technique is based on the following process:

• Degradation paths based on a gamma process are generated. This gamma process is fitted on
experimental tool wear evolution data.

• The degradation paths are used to generate a set of tool lifetimes (each curve yields a lifetime
when it crosses the tool end-of-life threshold).

• These lifetimes are used to fit and assess the Cox PH model with and without the identified data
transformation, to assess the benefits of the proposed methodology.

4.1. Piecewise Stochastic Flank Wear Model

In previous studies, several stochastic models of the degradation evolution using a gamma
process were constructed [11,12,34]. The gamma process is widely considered in various research
topics involving monotonous processes, such as reliability analyses and maintenance optimization
of ageing systems [10]. Its monotonic behavior makes it particularly well suited for the modelling of
physical degradation, i.e., wear, crack propagation, corrosion, etc. Therefore, the gamma process is
particularly well adapted to represent the flank wear evolution of cutting tool inserts [35].

If Z(t) denotes the evolution of the degradation process with respect to time, and Z(t0) is the
initial degradation, then:

Z(t) = Z(t0) + G(t|m(t), λ) (21)

G is the gamma process, and has the following characteristics:

• G has independent increments;
• G(0) = 0;
• G is a stochastic continuous process, and ∀t2, t1(t2 ≥ t1 ≥ 0), the intensity of the jump G(t2)−

G(t1) follows a gamma distribution with shape parameter m(t2)−m(t1) and scale parameter λ

with density function:
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f (x) =
λm(t2)−m(t1)

Γ(m(t2)−m(t1))
xm(t2)−m(t1)−1 exp(−λx) (22)

A characteristic of the gamma function is its domain being R+, therefore producing only positive
increments. The mathematical expectation and variance of the gamma process at any given time t are:

E(G(t|m(t), λ)) =
m(t)

λ
(23)

V(G(t|m(t), λ)) =
m(t)
λ2 (24)

If the shape parameter is a linear function of time (m(t) = αt), then the gamma process is stationary.
The degradation process may be into time slices depending on the experimental inspection intervals.
The interest and the fitting of this piecewise gamma process in comparison with nonlinear processes,
especially in the case of the wear of cutting inserts, was already discussed [34]. This approach allows
close replication of the non-stationary effects that occur at the beginning and the end of the tool life.

4.2. Gamma Process Fitting on Experimental Data

In this case, the data set used to create this model was obtained by gathering 29 replications
of turning 322 Hv FGL250 cylinders with a diameter of 190 mm and a length of 220 mm on a CNC
SOMAB “UNIMAB 450” lathe, using a cutting tool DCLNL 2525M 12 with CNMG 1204 085B OR
SAFETY SA coated tungsten carbide inserts [11]. The depth of cut is kept constant at 1.5 mm and the
feed at 0.18 mm/rev. The cutting speed is first kept constant at 340 m/min for the 29 degradation
trajectories, then the experiment is repeated at different cutting speeds. The degradation evolution
paths of the cutting inserts with machining time is represented in Figure 1 for the repetitions at constant
cutting speed, and in Figure 2 at the other cutting speeds. In Figure 1, the time slicing relative to
the piecewise approach are highlighted: the time intervals for which a gamma process is fitted are
represented at the top of the figure, and the corresponding gamma parameters are computed in Table 1.
The model fitting is performed through a maximum likelihood method [34].

Table 1. Parameters of the piecewise linear gamma process. Data from [34].

Gi(αi, λi) G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11+

αi 349.65 7.12 7.62 2.54 2.46 2.14 1.19 1.48 2.15 1.11 1.59
λi 5583.64 580.07 378.36 291.01 307.40 382.25 91.27 138.41 210.99 12.46 8.49

Figure 1. Set of 29 degradation trajectories obtained at 340 m/min during the experimental campaign.
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.

Figure 2. Experimental wear evolution measured at cutting speeds different from 340 m/min.

The model is extended to various cutting speeds by using Taylor’s tool life equation [19]:

vcTn = CT (25)

Given experimental points for the lifetime of cutting inserts at different cutting speeds, the Taylor
parameters n and CT can be found. In the case of this study, these values were found to be: n = 0.383 and
CT = 840. Taking advantage of the use of piecewise linear gamma process, simple lifetime corrections
may be added through a modification of each of the shape parameters of the gamma processes. Indeed,
the expected value of the gamma process is a linear image of the shape parameter [34]. Therefore,
a correcting factor Tre f /Tc can be introduced to the shape parameters, where Tre f is the average
tool lifetime at reference cutting speed vc,re f and Tc is the computed tool duration at the considered
cutting speed.

4.3. Numerical Validation

The general principle of this numerical experiment is to generate degradation trajectories based
on the stochastic model of the tool wear degradation [12]. The time values at which each trajectory
crosses the end-of-life degradation criterion provided in Equation (1) constitute our set of generated
tool lifetimes.

Let us remember that the stochastic approach allows us to generate failure times for different
cutting parameters. Two sets of 2000 trajectories of degradation each were generated for 20 different
cutting speeds (100 trajectories per cutting speed value, the evenly distributed cutting speed values
ranging from 280 to 470 m/min). The cutting speeds were chosen in order to discretize the interval of
possible cutting speeds for this tool proposed by the manufacturer’s catalog, and 20 discrete values of
cutting speeds are sufficient to highlight the interest of the data transformation, as shown in Section 5.
500 trajectories are sufficient to ensure convergence [36], but given the low computational cost, 2000
trajectories were generated. Furthermore, the convergence is also shown in Section 5. Of those two sets
of 2000 trajectories, one was used for learning, and the other as control. The two sets were generated
separately but following the same procedure, to ensure their statistical equivalence. A Cox PH Model
was fitted on the learning set. The PH Model was used to produce predictions for evenly spread
cutting speeds in the learning interval. These predictions were then compared to the control sample.
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5. Results and Discussion

The numerical experiment was performed first without data transformation. In that case, the Cox
PH Model received the cutting speed vc as a covariate. On the second experiment, the Cox PH Model
received the natural logarithm of the cutting speed log vc as a covariate. In the first case, depicted
dotted in Figure 3, as in previous studies, the prediction is shown to underestimate the actual lifetime
of the cutting inserts, even within the learning range of the Cox PH Model, and especially for lower
cutting speeds [12].

Figure 3. MUT estimate for cutting tools with and without logarithmic transformation.

These results are to be compared with the dashed results presented in Figure 3. In particular,
the left-hand part of the graph shows the correction for lower cutting speeds, and the predicted tool
lifetimes better fit the curvature of the observed data, thanks to the data transformation. The model
however diverges from the mean observed value. This effect can be attributed to the fitting method of
the Cox Proportional Hazards Model (max partial-likelihood method), as opposed to the arithmetic
mean that is shown on this Figure.

The comparison between both prediction curves in Figure 3 shows that without data transformation,
the prediction is underestimated by more than one standard deviation at the lower border of the
learning interval. In the case shown in Figure 3, this leads to an underestimation of the cutting tool
lifespan by 11.1% at 280 m/min without data transformation, compared to an overestimation of 1.7% by
the model with data transformation at the same cutting speed. This phenomenon is reduced with the
data transformation; therefore, it supports the interest of the data transformation that was proposed.

To assess the capability of the Cox Model to match the Taylor parameters used to pilot the stochastic
model that created its learning and control sets, they were estimated through a least square regression.
The results of this regression are compared between the model constructed with and without data
transformation in Table 2.

Table 2. Least squares estimated values, coefficient, and relative error (ε) on the Taylor parameters
from the MUT predictions with and without data transformation, compared to the learning set values.

Without Data Transformation With Data Transformation Generated Data

n 0.412 0.389 0.384
CT 885.5 856.7 839.7

R2 0.995 1 -
ε(n) 7.8% 1.7% -

ε(CT) 6% 2.5% -

This data transformation is therefore necessary for the Cox PH Model to produce a prediction that
bears an analytical compatibility with correct replication of the analytical model (in this case, Taylor’s
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law). We showed that applying this procedure reduces the error of the prediction, and we can expect
this error reduction to be of essential importance when using several covariates, in particular at the
edge of the learning interval for each covariate. This is because the deviation observed on the prediction
with one covariate would suffer from the combination of deviations due to each used covariate.

On the other hand, this methodology necessitates the previous knowledge of analytical laws linking
the covariates with the MUT prediction (such as Taylor’s laws for cutting parameters), which will in turn
allow performance of this analytical method and determine the correct data transformation that must be
made for each used covariate. The better model performance due to the data transformation could also
tend to suggest that smaller learning samples would be necessary to obtain a convergence. This assumption
can be assessed: the Cox PH Model can be fitted to both log-transformed and non-transformed datasets of
increasing learning sizes. Then, each time the model is fitted, the corresponding n and CT can be estimated
and compared to the mean observed value of the complete sample.

This comparison is done for both Taylor parameters in Figures 4 and 5. These figures represent the
evolution accuracy of the parameters estimates (i.e., the ratio between the Cox-predicted value and the
arithmetic average value over the total sample). They also allow to clearly see the convergence of the
model results given the sample size. The offset in the estimate of both parameters is clear, regardless
the sample size. The results show that an admissible value, within a relative error of 5%, is reached
within a sample size of 25 (i.e., 25 data points are sufficient to reach the asymptotic value of the Taylor
coefficients within a margin of ±5%). Furthermore, while a large offset separates the curves, it seems
to remain similar in value throughout the sample size growth. Furthermore, the changes in predicted
values follow the same tendency on both curves, linking them with the variability of generated data
rather than inherent failure to converge from either model.

Figure 4. Evolution of the accuracy of the estimate of Taylor’s parameter CT with learning sample size.

Figure 5. Evolution of the accuracy of the estimate of Taylor’s parameter n with learning sample size.
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6. Conclusions

In this paper, issues raised in previous work were addressed [11,12,26]: the necessity of data
transformation in using the Cox PH Model, and the nature of this transformation. A methodology used
for creating a stochastic model relative to cutting tools in turning in cast iron was showed. The use of a
Cox PH Model in survival analysis of cutting tools was discussed, and it was used to predict the Mean
Up Time of tools.

More importantly, facing previous discrepancies and issues with data transformation and the Cox
PH Model, the origins of discrepancies, that were brought forward by previous work, were highlighted.
In the case of the cutting speed, a logarithmic data transformation has been proposed that was tested
in the experimental part. Through a numerical validation, the data transformation has been shown to
have positive qualitative and quantitative effects on the MUT prediction of the model. It was shown
that few data is sufficient for an approximate estimate of the tool useful life through the Cox PH Model.

The analytical methodology that was demonstrated should be replicated on further studies using
the Cox PH Model if an analytical model linking the covariate to the MUT exists. If further experiments
confirm the interest of analogous analytical methodologies in mechanical framework or other uses of
the Cox PH Model, the use of this approach should be generally recommended. On an industrial point
of view, it is expected that the present methodology may contribute to a general condition monitoring
framework, this emancipating from the control charts methodology that may prove conservative and
constraining in some cases.
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