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Abstract: A drastically growing requirement of electronic packages with an increasing level of
complexity poses newer challenges for the competitive manufacturing industry. Coupled with
harsher operating conditions, these challenges affirm the need for encapsulated board-level (2nd level)
packages. To reduce thermo-mechanical loads induced on the electronic components during operating
cycles, a conformal type of encapsulation is gaining preference over conventional glob-tops or resin
casting types. The availability of technology, the ease of automation, and the uncomplicated storage
of raw material intensifies the implementation of thermoset injection molding for the encapsulation
process of board-level packages. Reliability case studies of such encapsulated electronic components
as a part of board-level packages become, thereupon, necessary. This paper presents the reliability
study of exemplary electronic components, surface-mounted on printed circuit boards (PCBs),
encapsulated by the means of thermoset injection molding, and subjected to cyclic thermal loading.
The characteristic lifetime of the electronic components is statistically calculated after assessing the
probability plots and presented consequently. A few points of conclusion are summarized, and the
future scope is discussed at the end.

Keywords: encapsulation; board level package; electronics; epoxy molding compound; flow
simulation; injection molding; injection molding simulation; lifetime; manufacturing; PCB; QFN;
reliability; resistors; SMD; surface mount technology; thermoset; transfer molding; Weibull; boxplot;
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1. Introduction

The recently changing trends in the automotive sector towards greener and autonomous
mobility and the ever increasing growth in the market of handheld devices (especially towards
5G implementation) coupled with other consumer dominant markets enforce the electronics industry
to constantly improve itself in terms of functional integration and miniaturization with minimum
compromise on the reliability. To attain a certain level of functional integration and miniaturization, the
need of board-level (2nd level) packages crops up. The robustness, namely the ability of the package
to protect itself from external harmful media and withstand or overcome adverse environmental
conditions, is brought in by means of a board-level encapsulation.

An assessment of thermoset injection molding for the encapsulation of PCBs with surface-mounted
electronic components was presented in a previous work [1]. During that assessment, mold trials were
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carried out as a part of a chalked out design of experiments (DoE) with PCBs of different transition
temperatures (125 ◦C and 170 ◦C) and different encapsulation thicknesses (0.25 to 1 mm) to evaluate
the implementation of thermoset injection molding as an alternative to other dominant methods
for the purpose of the encapsulation of board-level packages. An example of such an encapsulated
package is shown in Figure 1. The definition of levels of packaging (here, 2nd level package) is taken
from [2] and was also summarized in [1]. As mentioned already in [1], extensive literature is not
available on this particular topic (encapsulation of 2nd level packages with the help if thermoset
injection molding). Extensive research is, however, available in the field of 1st level packaging with
encapsulations manufactured by transfer molding [3,4] and as a part of the Cornell injection molding
program (CIMP), especially report 16 [5]. Further literature is also available relating to wafer-level
encapsulations [6–9]. An approach for the reliability analysis can be derived according to a standard
operating procedure used for microsystem technology in the automotive sector, as also used in [10].
This procedure is explained in the Sections 2.4 and 2.5. Useful tips and relevant information about
board-level reliability of different components (without 2nd level encapsulation) are available in
different sources [11–19]. These sources lay out the best practices used for defining and testing
board-level reliability, involving the reliability analysis of commonly used components like ball grid
arrays (BGAs) [13,16], quad-flat no-leads packages (QFN) [11,15], and thin small outline packages [17].
The effect of 2nd level encapsulation, e.g., by means of conformal potting on QFN reliability is
presented in [20]. The fundamentals (distribution and probability) and definitions regarding lifetime
and reliability are taken from [21], leading to the choice of valid analysis methods dependent on case
information. This systematic approach for the reliability analysis is followed in line with a previous
work [22], which presents the reliability analysis of different commonly used electronic components
(ceramic resistors, BGAs, QFN, and small outline packages) mounted on different substrates relevant
for molded interconnect devices (MID).
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Figure 1. Example of encapsulated board-level packages as an outcome of earlier mold trials [1].

In the sections to follow, the conception of such a package to be encapsulated is introduced
(Section 2.1), a filling process simulation is presented (Section 2.2), the executed mold trials are detailed
out (Section 2.3) before the test-setup is exhibited (Section 2.4) and the implementation of the tests is
explained (Section 2.5). Furthermore, the mechanisms of the failure of the components are evaluated
(Section 3.1) and the statistical analysis of the recorded data is put forth (Section 3.2). In the end, the
results are discussed along with the drawn conclusions (Section 4).

2. Materials and Methods

2.1. Conception of the Package

A board-level package with commonly used electronic components was designed. Some of
these components and the package with the mounted components are shown in Figure 2.
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The chosen and mounted components are enlisted in Table 1. A printed circuit board (PCB) of
size 55 mm × 55 mm × 1.55 mm was used. To avoid the bending of the PCB during the overmolding
process, as noticed in [1], boards made of a material with a high glass transition temperature (170 ◦C)
were procured. A thermo-mechanical analysis (TMA) was carried out on a sample to confirm the
transition temperature. The PCBs were subsequently subjected to a 100% inspection process for
electrical connectivity of all the mounted components.
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Table 1. List of mounted electronic components on each printed circuit board (PCB).

Legend (For Figure 2) Electronic Component Component Type Quantity (Per PCB)
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parameters such as melt temperature, tool temperature, flow control, etc., are fed to the simulation 
with reference to material data [23] and based on previous experience. These parameters are listed in 
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The output of the simulation can be seen in Figure 3. The material manufacturer recommends 
(which is also confirmed by earlier experience gained during [1]) that a sprue (runner) length of 
approximately 100 mm is required for the processed material to attain a temperature of around  
130 °C. The simulation showed that such a temperature level could be realized in this case 
successfully. Six filling stages are shown with an indicated percentage of cavity filled. The total 
cavity volume is defined as the encapsulation and the runner system together. As seen in the stage 
50% filled, it can be noted that the runner system contributes to a little more than half of the cavity to 
be filled to ensure that a higher melt temperature is attained—a temperature level required to 
achieve the low viscosity of flowing melt and subsequently accelerate the curing after the filling 
stage is complete. A video of the filling simulation is made available as supplementary material to 
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The encapsulation was carried out using the thermoset injection molding process. For this
purpose, an Arburg Allrounder 375 V with necessary attachments, tooling, and encapsulation material
(NU6110V by Duresco) analog to [1] was used. The chosen material is easily available in the European
market and, according to the manufacturer, is suitable for this purpose. The fed granulate of the
material was heated at a temperature of 70 ◦C and then injected into a molding tool held at elevated
temperatures of 160 to 175 ◦C, which contained the mounted PCB as a mold insert.

2.2. Process Simulation

To reduce the risks of defects during the injection molding process and to optimize the tempering
concept, a simulation study using SIGMASOFT®was carried out beforehand. The geometry model
used for these simulations can be seen in Figure A1 (Appendix A). Process parameters such as melt
temperature, tool temperature, flow control, etc., are fed to the simulation with reference to material
data [23] and based on previous experience. These parameters are listed in Table 2.

The output of the simulation can be seen in Figure 3. The material manufacturer recommends
(which is also confirmed by earlier experience gained during [1]) that a sprue (runner) length of
approximately 100 mm is required for the processed material to attain a temperature of around
130 ◦C. The simulation showed that such a temperature level could be realized in this case successfully.
Six filling stages are shown with an indicated percentage of cavity filled. The total cavity volume is
defined as the encapsulation and the runner system together. As seen in the stage 50% filled, it can be
noted that the runner system contributes to a little more than half of the cavity to be filled to ensure
that a higher melt temperature is attained—a temperature level required to achieve the low viscosity of
flowing melt and subsequently accelerate the curing after the filling stage is complete. A video of the
filling simulation is made available as Supplementary Materials to this article.

Table 2. Process parameters for the injection molding simulation.

Parameter Value

Injection temperature 70 ◦C
Tool temperature 170 ◦C

Pre heat time 5 s
Flow control 1–2 cm3/s

Curing pressure 250 bar
Curing time 30 s

2.3. Mold Trials

The mold trials were carried out in a sequential manner according to the experience gained
during the earlier feasibility tests. Regular purging and cleaning of the molding tool, as per the
recommendations of the material and machine suppliers, were carried out before, during, and after the
mold trials. The process parameters had to be fine-tuned as per the interim molding results. The final
parameters are listed out in Appendix A (Tables A1 and A2).

As a standard practice, a mold filling study was conducted to measure and adjust the injection
screw speeds and time intervals. This filling study also serves to observe the filling behavior of the
melt in the mold cavity and to compare the same with the process simulation results. After conducting
several mold (pilot) trials, an optimized filling pattern was achieved and is presented in Figure 4.
The upper row of pictures shows the flow pattern on the (surface)-mounted side of the PCB and the
lower row shows the same on the unmounted side. The real flow pattern is similar to the pattern
foreseen by means of the process simulation (Figure 3).
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2.4. Test Setup

Eight packages of each of the two types, namely open and encapsulated, were electrically tested,
soldered with connecting cables, and then fixed on two mounting plates (one mounting plate shown
in Figure 5). All the mounted components on the PCBs with connecting pads on the left side were
connected for inline testing by means of resistance measurement. The components that led to the right
side of the PCB were the thermistor and the capacitors which were not tested inline. The capacitors
were tested for functionality after definite relevant intervals.

2.5. Running of Tests

The two mounting plates were placed in the climatic chamber (CTS TSS-70/130) for the thermal
shock tests. The test conditions were defined according to current advancements and other standard
practices in the automotive industry. The packages were subjected to thermal cyclic loading (shock),
involving temperature levels of +150 ◦C and −40 ◦C with a holding time of 15 min on each side. Apart
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from the chamber changing time of 10 s, a waiting time of 60 s was induced before measuring the
resistance at each temperature level to allow for the thermal equilibrium of the system. The adequacy
of this waiting time was checked by means of thermistor measurements on sample packages. Figure 6
shows the process flow for a systematic approach towards reliability analysis, which was followed and
can also be applied to analyze similar parts or components.

J. Manuf. Mater. Process. 2020, 3, x FOR PEER REVIEW 6 of 13 

 

2.5. Running of Tests 

The two mounting plates were placed in the climatic chamber (CTS TSS-70/130) for the thermal 
shock tests. The test conditions were defined according to current advancements and other standard 
practices in the automotive industry. The packages were subjected to thermal cyclic loading (shock), 
involving temperature levels of +150 °C and −40 °C with a holding time of 15 minutes on each side. 
Apart from the chamber changing time of 10 s, a waiting time of 60 s was induced before measuring 
the resistance at each temperature level to allow for the thermal equilibrium of the system. The 
adequacy of this waiting time was checked by means of thermistor measurements on sample 
packages. Figure 6 shows the process flow for a systematic approach towards reliability analysis, 
which was followed and can also be applied to analyze similar parts or components 

 
Figure 5. Eight encapsulated PCBs fixed on the mounting plate to be placed in the climatic chamber 
for the temperature shock tests. 

 
Figure 6. Systematic approach for the climatic tests for reliability analysis showing the illustrative 
images of each stage. 

3. Results 

3.1. Mechanisms of Failure 

To investigate the different mechanisms of failure for the packages and the individual mounted 
components, these were subjected to multiple tests. Firstly, visual inspection was carried out to 

Figure 5. Eight encapsulated PCBs fixed on the mounting plate to be placed in the climatic chamber for
the temperature shock tests.

J. Manuf. Mater. Process. 2020, 3, x FOR PEER REVIEW 6 of 13 

 

2.5. Running of Tests 

The two mounting plates were placed in the climatic chamber (CTS TSS-70/130) for the thermal 
shock tests. The test conditions were defined according to current advancements and other standard 
practices in the automotive industry. The packages were subjected to thermal cyclic loading (shock), 
involving temperature levels of +150 °C and −40 °C with a holding time of 15 minutes on each side. 
Apart from the chamber changing time of 10 s, a waiting time of 60 s was induced before measuring 
the resistance at each temperature level to allow for the thermal equilibrium of the system. The 
adequacy of this waiting time was checked by means of thermistor measurements on sample 
packages. Figure 6 shows the process flow for a systematic approach towards reliability analysis, 
which was followed and can also be applied to analyze similar parts or components 

 
Figure 5. Eight encapsulated PCBs fixed on the mounting plate to be placed in the climatic chamber 
for the temperature shock tests. 

 
Figure 6. Systematic approach for the climatic tests for reliability analysis showing the illustrative 
images of each stage. 

3. Results 

3.1. Mechanisms of Failure 

To investigate the different mechanisms of failure for the packages and the individual mounted 
components, these were subjected to multiple tests. Firstly, visual inspection was carried out to 

Figure 6. Systematic approach for the climatic tests for reliability analysis showing the illustrative
images of each stage.

3. Results

3.1. Mechanisms of Failure

To investigate the different mechanisms of failure for the packages and the individual mounted
components, these were subjected to multiple tests. Firstly, visual inspection was carried out to notice
abnormalities on the packages, e.g., missing components from open packages and surface of the
encapsulation. Open PCBs witnessed the falling off of failed components due to the failure of the
solder joint. In some cases, the encapsulation suffered from cracks due to the thermal shock loading.
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The next stage of tests involved the use of a scanning acoustic microscope to investigate the
interface between the encapsulation and the PCB. Figure 7 shows a widespread delamination of the
encapsulation from the PCB, owing to the thermal cyclic loading and different coefficients of thermal
expansion (CTE mismatch). Cracks in the encapsulation can also be noted in this image. In the current
example, this crack is positioned in the flow shadow region of the ElKo. This region poses itself as a
strong candidate for the building of a weld line during injection molding (Figures 3 and 4).

The packages were then subjected to X-Ray solder joint inspection. The solder joints had failed,
not sustaining the extensive thermal shock environment. Figure 8 shows examples of the components
under the encapsulation with initiated or complete cracks through the solder joints.
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A selection of these components was randomly chosen to be further subjected to a more extensive
optical microscopy after the preparation of relevant cross-sections. Figure 9 shows examples of the
output of the microscopic analysis.

3.2. Statistical Analysis of Reliability

A boxplot study (Figure 10) was first carried out to identify and rule out statistical outliers based
on the number of sustained cycles. A reference censoring (time) was made at 9147 cycles since the tests
were ceased at this point (<5% of the components were still running).

The further analysis was based on two main categories of the tested parts, namely open and
encapsulated packages. For ease of representation, shorter forms of the component names were used
(as mentioned in Table 1). The suffix “E” was used for components on encapsulated probes and the
suffix “O” was used for components, which were not encapsulated. Since two sets of chip resistors
were mounted on the PCBs, they were identified by means of “N” for near sprue and “F” for far away
from sprue.
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According to [24], Weibull (3 parameters) was the preferred method of distribution analysis
considering the following reasons:

1. The correlation coefficient should be greater than for the second-best distribution.
2. The data in the Weibull plot indicate a curvature (concave curve).
3. A large sample size (n > 20) is available; with previous knowledge of a time without failure, eight

to ten must be sufficient.
4. A physical explanation of why a failure-free can occur.

The distribution analysis was carried out with the help of probability plots involving different
analysis methods. A comparison of the correlation coefficients for the methods was carried out.
A comparison of all the correlation coefficients is shown in the Appendix A (Table A3). The Weibull
(3 parameter) distribution came out to provide the best fit for most of the plots (15 out of 18) and
indicated a concave curvature. Since previous knowledge of the failure of similar components
is available through an earlier project [22], a sample size of at least eight was deemed sufficient.
The encapsulated parts were subjected to a tempering (curing) process at 160 ◦C for 3 h, then all the
PCBs, open and encapsulated, were electrically tested before being subjected to thermal shock tests.
This rules out the existence of weak (defective) specimen in the chosen test samples. The characteristic
lifetime (63.2% parts failed) was deduced from this distribution analysis using the least squares
estimation method for each constellation according to [21,25].

Looking at Figure 11, it was noticed, in general, that the encapsulation reduces the characteristic
lifetime of the mounted components except in the forth-mentioned cases. Encapsulated BGAs witness
no significant change (<2%) in the lifetime as compared to the corresponding open BGAs. The resistors
in the area far from the sprue also showed a peculiar behavior. The encapsulated CR0603 resistors in
this zone (far) showed only a slight fall (<3%) in the lifetime, whereas the encapsulated CR1206 resistors
exhibited a gain (22%) in the lifetime as compared to their counterparts on the open PCBs. This can
possibly be attributed to the longer flow length that the material in this zone (far) has to undergo,
which provides scope for earlier cross-linking of the encapsulation. Moreover, the components in the
zone near the sprue are subjected to higher glass fiber concentration in the encapsulation induced
during the packing/curing phase.
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The component nomenclature is defined in Table 1.

Figure 12 shows two chosen cases of comparison, the best and the worst case, as examples with
maximum difference in the characteristic lifetime in the positive and negative directions. The diagram
on the left (a) shows the case of the resistors CR1206 placed in the zone far away from the injection sprue.
This combination experiences a rise in the characteristic lifetime after encapsulation by approximately
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22% in comparison to their open counterparts. On the right side (b), the example of MLF28 is
shown, which shows, as the worst case, a drop in the characteristic lifetime by approximately 80%.
The components MLF are already known to have the least lifetime compared to other components
according to [22]. Moreover, they have a very thin gap of less than 100 µm under them till the PCB,
which allows only the polymer matrix of the epoxy molding compound (EMC) to enter. This matrix
usually has a higher CTE compared to the glass-filled EMC.

The capacitors were not tested online due to the limitation of the measurement equipment to only
monitor electric resistance values. These components were present on the PCB as part of a feasibility
study only. They were, however, checked for electric contact and capacitance values after 50, 100,
250, 500, and thereafter at regular intervals of 500 cycles though they were not the focus during this
reliability study. All the electrolytic capacitors (open and encapsulated) were reported to have failed by
6000 cycles. By 7500 cycles, all the encapsulated capacitors (ceramic and electrolytic) were announced
as failed owing to either missing contact or minimal residual capacitance.
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Figure 12. Probability plots according to the least squares’ estimation method and right censored data
at 9147 cycles, showing the combinations with the maximum differences in lifetime. (a) The maximum
gain in case of CR1206_F and (b) the maximum reduction in case of MLF28.

4. Discussion and Conclusions

Conclusions were drawn through the various stages in this study. The implementation of the
thermoset injection molding on an industry-relevant package was successfully carried out based on
earlier feasibility analysis. The filling velocity had to be adjusted in a way that the lower viscosity of
the melt was reached in a suitable time that enabled the filling of not only the cavities around the ElKo
(e-caps) but also produced a well filled tail end of the encapsulation on the PCB.

After the environmental tests, it was derived through X-Ray analysis that solder joint cracking
is the most often occurring mechanism of failure for components encapsulated using thermoset
injection molding. This was further confirmed by virtue of cross-sectional analysis. This failure of
the components is attributed to various stages of CTE mismatch through the encapsulation material,
FR4, metallization, the solder joint, and the component. Delamination also occurs at the interface
of the encapsulation and the PCB by virtue of CTE mismatch during the thermal cyclic loading.
The encapsulation also experiences cracking subsequently.
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The characteristic lifetime of the resistors CR1206 increases in the zone away from sprue with the
presence of the 0.5-mm-thick encapsulation. The BGAs witness insignificant change in the characteristic
lifetime with thermoset injection molded encapsulation. The characteristic lifetime of the rest of the
components reduces with different proportions due to the 0.5-mm-thick encapsulation. The location of
a component over the PCB (near or far from the sprue location) is seen to play a vital role in the change
of the characteristic lifetime. A strong dependency of the characteristic lifetime on the thickness of
the encapsulation and the fiber orientation is also likely and is currently under scrutiny. The factors
contributing to the rise and fall of the characteristic lifetime need to be provoked intentionally and
investigated further. These dependencies can also be evaluated with the help of coupled simulations
based on fiber orientation dependent material properties similar to previous works [22,26]. An article
covering the systematic approach of such coupled simulations with detailed modelling of the solder
joints is planned in the near future.
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Table A1. Injection molding process parameters.

Phase Parameter Unit Phase 1 Phase 2 Phase 3

Injection

Feeding volume cm3 12.650
Flow flux cm3/s 1 0.5 0.3
Pressure bar 900 850 800

Switching volume cm3 6.7 4.5 1.0

Packing
Flow flux cm3/s 1
Pressure bar 100 50 25
Duration s 0.10 29.80 0.10

Table A2. Injection molding auxiliary parameters.

Phase Parameter Unit Phase 1

Feeding

Pre-heating time s 30
Screw speed RPM 80

Pressure bar 10
Volume cm3 12.650

Decompression Decompression flux cm3/s 2
Decompression volume cm3 0.5

Tempering

Cylinder temperature ◦C 55
Nozzle temperature ◦C 70
Tool temperature up ◦C 170

Tool temperature down ◦C 170

Table A3. Comparison of correlation coefficients for the fitting of the statistical data for all variants.
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Weibull 0.899 0.97 0.947 0.99 0.991 0.948 0.966 0.899 0.954 0.943 0.895 0.905 0.948 0.928 0.943 0.941 0.951 0.887
Lognormal 0.936 0.945 0.967 0.986 0.985 0.881 0.941 0.936 0.942 0.911 0.843 0.962 0.901 0.964 0.965 0.936 0.958 0.831
Loglogistic 0.925 0.945 0.961 0.989 0.982 0.885 0.942 0.925 0.934 0.91 0.858 0.957 0.902 0.953 0.957 0.936 0.948 0.848
3-P Weibull 0.978 0.972 0.974 0.99 0.994 0.974 0.969 0.978 0.959 0.964 0.989 0.995 0.974 0.99 0.983 0.955 0.972 0.97

3-P Lognormal 0.959 0.966 0.971 0.994 0.992 0.967 0.972 0.959 0.955 0.96 0.987 0.985 0.962 0.982 0.972 0.949 0.959 0.955
3-P Loglogistic 0.952 0.963 0.967 0.996 0.988 0.962 0.973 0.952 0.945 0.96 0.99 0.979 0.959 0.98 0.969 0.938 0.949 0.958

Smallest
Extreme Value 0.879 0.939 0.825 0.901 0.958 0.965 0.907 0.879 0.951 0.964 0.988 0.835 0.974 0.859 0.895 0.939 0.928 0.97

Normal 0.928 0.963 0.89 0.953 0.988 0.968 0.952 0.928 0.955 0.96 0.987 0.915 0.962 0.92 0.941 0.949 0.959 0.956
Logistic 0.917 0.959 0.884 0.956 0.984 0.963 0.956 0.917 0.945 0.96 0.99 0.914 0.96 0.904 0.929 0.944 0.949 0.959
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