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Abstract: The ball-bar instrument is used to estimate a maximum number of hysteretic error sources.
Machine error parameters include inter- and intra-axis errors as well as hysteresis effects. An error
model containing cubic polynomial functions and modified qualitative variables, for hysteresis
modeling, is proposed to identify such errors of the three nominally orthogonal linear axes machine.
Such model has a total of 90 coefficients, not all of which being necessary. A numerical analysis is
conducted to select a minimal but complete non-confounded set of error coefficients. Four different
ball-bar test strategies to estimate the model coefficients are simulated and compared. The first one
consists of circular trajectories on the primary planes XY, YZ, and XZ and the others use the XY plane,
as an equator, and either four, five, or nine meridians. It is concluded that the five-meridian strategy
can estimate the additional eight error coefficients: ECZ1, ECZ2, ECZ3, ECZb, EZY3, EZX3, ECX3,
and ECXb. The Jacobian condition number is improved by increasing the number of meridians to
5. Further increasing the number of meridians from five to nine improves neither the number of
estimable coefficients nor the conditioning, and so as it increases, the test time it was dismissed.

Keywords: three-axis machine tool; 3D telescopic ball-bar test; geometric and hysteretic error model

1. Introduction

The Cartesian volumetric error at the tool tip relative to the workpiece affects the quality of
machined parts. Causes of such errors are inter- and intra-axis error parameters [1]. So, describing and
identifying those errors play an important role in ensuring the machine tool performance through
compensation or mechanical adjustments and repairs. For that purpose, several testing instruments
were proposed such as the telescopic magnetic ball-bar [2–5], laser tracker interferometer [6], R-test [7],
and touch trigger probe [8,9]. The telescopic magnetic ball-bar test is widely used to capture the
linear axes errors by running a circular test on the plane of two axes [3] and to estimate machine error
parameters [10]. It measures the deviations from a nominal circular trajectory as the volumetric error
projected in the radial direction of the circular path [4]. Kunzmann et al. [11] proposed a ball-bar test
to estimate positioning and squareness errors. Pahk et al. [12] used polynomials to model geometric
errors. They used different terms of the polynomials to model positioning and straightness errors.
Three circular tests, one for each pair of axes, yield 12 error coefficients plus three servo mismatch
errors for the linear axes by their model. Mir et al. [5] proposed a theory and simulation to calibrate
the five-axis machine tool link errors using ball-bar measurements. They constructed the sensitivity
Jacobian matrix and applied the mathematical analysis, which yielded the reduced Jacobian. Jiang and
Cripps [13] developed several ball-bar testing paths to identify the inter-axis errors of the rotary axes
of a five-axis machine tool. They also used different ball-bar lengths to capture the orientation errors.
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Intra-axis errors of the rotary axes were estimated by running ball-bar tests on a five-axis machine tool
with several circular patterns by Xiang and Yang [14]. They analyzed the effect of inter-axis and setup
errors on measurement results. Slamani et. al. [15] modeled machine tool error parameters with degree
optimized polynomials including motion hysteresis. They concluded that polynomials of degree three
to four are appropriate for modeling the intra-axis errors.

Lee et al. [16] evaluated a machine tool accuracy by means of ball-bar measurements having
various bar lengths and incorporating different machine tool feed rate. They ran the test for the base
planes ZX, XY, and YZ and fitted a sphere to all data points using the least-square method. Then, they
calculated the spherical deviations and the circular deviations to show that spherical analysis. It leads
to a more reliable estimation and prediction than circular analysis since the former results in global
optimization while the later results in local optimization. However, the spherical analysis is limited to
using two axes at a time. Zhong et al. [17] proposed circular test paths considering different tool axis
directions to evaluate the machine tool accuracy using spherical deviation modeling. They claimed
that incorporating different tangential tool axis direction let the machine tool to reflect rotary axis
errors in the measurements.

The main contribution of the work is to design different 2D and 3D telescoping ball-bar test
strategies. The purpose is to identify a strategy by which a minimal but complete non-confounded
set of error coefficients are provided using the numerical analysis. The proposed strategies involve
the simultaneous motion of two or three linear axes thus resulting in volumetric errors that are the
combination of many error sources. The novelty of the work is proposing a best ball-bar test strategy
among several proposed models by which the number of the detectable machine error parameter
modeled by cubic polynomials are improved from 29 to 37 in a single tool mode. The best strategy
is experimentally tested on a machine tool. In Section 2, the forward kinematic model of the tested
machine is described. Section 3 presents instructions to construct the Jacobian matrix considering the
integrated error model. In Section 4, the mathematical analysis used to find the reduced Jacobian and
set of non-confounded coefficients is discussed. In Section 5, different ball-bar test configurations are
simulated and compared in terms of the Jacobian rank and condition number. In Section 6, the setup
for the selected calibration strategy is explained and the results are presented and discussed. Finally,
the conclusion follows in Section 7.

2. Forward Kinematic Modelling

A machine tool axes nominal motion, as well as geometric errors, are propagated through the
kinematic chain. The relative inter-axis location errors, nominal axis motion, and intra-axis errors,
representing the imperfection in the motion of an axis, are modeled by homogeneous transformation
matrices (HTMs). Each machine axis is modeled by the consecutive multiplications of three HTMs
describing the nominal link, between the preceding axis and the current one, the nominal axis motion
and finally the intra-axis errors of the axis [18], e.g., Y, relative to its preceding neighbor, e.g., Z, as,

ZTY = Tnominal inter−axis locationTnominal motionTintra−axis error (1)

Considering the target laboratory machine tool, it has a topology wCBXFZYSt where X, Y, and Z
are the linear axes and B and C are the rotary axes. F is the machine tool frame located at the nominal
intersection of B and C. w, S, and t are the workpiece, spindle, and the tool, respectively. T stands for the
homogeneous transformation matrix (HTM). ZTY is the HTM of the Y-axis to the Z-axis. Considering
that the rotary axes and the spindle are not used, the kinematic equation describing the location of the
tool relative to the workpiece is,

wTt = (FTX
XTw)

−1
(FTZ

ZTY
YTt) (2)
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3. Integrated Error Model and Jacobian Matrix Generation

The three linear axes X, Y, and Z each contribute six intra-axis errors and together three
out-of-squarenesses. Six setup errors including three translational errors for the ball-bar workpiece
ball and three translational errors for the ball-bar tool ball are also added. The workpiece and tool
orientations are not considered in this work. Each intra-axis error is modeled by cubic polynomials
extended with a hysteresis term made of a real-valued error coefficient. It quantifies the hysteresis and
a balanced ternary variable to apply it correctly depending on the known or unknown direction of
motion to reach the current position [15]. So that,

EIH = EIH0 + EIH1h + EIH2h2 + EIH3h3 +
.
bHEIHb (3)

where EIH is an intra-axis error, EIH0, EIH1, EIH2, and EIH3 are the coefficients of the polynomials. EIHb

is the hysteretic effect coefficient. The upper case I and H subscripts stand for the X-, Y- and Z-axis with
different permutations. The lowercase variable h is a real number and stands for the H-axis position.
Equation (3) is applied to all 18 intra-axis error parameters. The variable

.
bH is the sense of the motion

defined as,.
bH = +1, for a forward movement in the X direction to reach the current position,
.
bH = −1, for a backward movement in the X direction to reach the current position,
.
bH = 0, for an unknown sense of movement in the X direction to reach the current position.
The Jacobian matrix is generated using the HTMs of Equation (1), Equation (2), and small angular

error approximations. It forms a linear system describing the sensitivity of the tool tip Cartesian
volumetric error components to the machine intra-axis errors and the setup errors,

Ev = J × Ep (4)

where J is the Jacobian (3m × n) with m as the number of measured positions and n as the number of
machine error parameters. Ev is the volumetric Cartesian error vector components column matrix and
Ep is the machine error parameters and setup errors column matrix. Having modeled the intra-axis
errors with polynomials and hysteretic terms, the Jacobian is further expanded to represent the
sensitivity of the Cartesian volumetric error components to the intra-axis error coefficients and setup
errors. Table 1 lists the initial 90 machine error coefficients and six setup errors.

Table 1. All potential machine error coefficients for the three linear axes and the setup errors: With and
without asterisks (*). The sufficient non-confounded error coefficients: with asterisks (*).

Error Parameters
Polynomial Coefficients (Polynomial Degree 3)

Hysteretic Errors
E0 E1 E2 E3

X
-a

xi
s

er
ro

rs

EXX EXX0 EXX1 * EXX2 * EXX3 * EXXb *

EYX EYX0 EYX1 * EYX2 * EYX3 * EYXb *

EZX EZX0 EZX1 * EZX2 * EZX3 * EZXb *

EAX EAX0 EAX1 * EAX2 * EAX3 * EAXb *

EBX EBX0 EBX1 * EBX2 * EBX3 * EBXb *

ECX ECX0 ECX1 * ECX2 * ECX3 * ECXb *

Y
-a

xi
s

er
ro

rs

EXY EXY0 EXY1 EXY2 * EXY3 * EXYb *

EYY EYY0 EYY1 * EYY2 * EYY3 * EYYb *

EZY EZY0 EZY1 EZY2 * EZY3 * EZYb *

EAY EAY0 EAY1 EAY2 EAY3 EAYb

EBY EBY0 EBY1 EBY2 EBY3 EBYb

ECY ECY0 ECY1 ECY2 ECY3 ECYb
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Table 1. Cont.

Error Parameters
Polynomial Coefficients (Polynomial Degree 3)

Hysteretic Errors
E0 E1 E2 E3

Z
-a

xi
s

er
ro

rs

EXZ EXZ0 EXZ1 * EXZ2 * EXZ3 * EXZb *

EYZ EYZ0 EYZ1 * EYZ2 * EYZ3 * EYZb *

EZZ EZZ0 EZZ1 * EZZ2 * EZZ3 * EZZb *

EAZ EAZ0 * EAZ1 * EAZ2 * EAZ3 * EAZb *

EBZ EBZ0 EBZ1 EBZ2 EBZ3 EBZb

ECZ ECZ0 * ECZ1 * ECZ2 * ECZ3 * ECZb *

Setup errors EXw, EYw, EZw, EXt *, EYt *, EZt *

4. Sufficient Set of Non-Confounded Error Coefficients

The 90-variable model and 6 setup errors are now analyzed for minimality and completeness.
Minimality means that a minimum number of variables are used, which can completely represent
the behavior of the system considering the relevant volumetric quantities, the tool geometry, and the
machine poses. Here, a pose is a set of X-, Y-, and Z-axis coordinates and the volumetric quantities are
only the Cartesian coordinates, not the orientation, of the tool relative to the workpiece. The Jacobian
is generated for a random set of 8000 poses located on the X, Y, and Z working volume. The Jacobian
has 96 columns, one per unknown coefficient, its rank is 59, and its condition number is 3.8 × 1035.
Therefore, a minimal model should have 59 independent variables (or columns). A set of variables
is selected to provide the lowest possible condition number but favoring a set that makes geometric
sense. So, both numerical quantities and geometric reasoning are used to prune variables off the initial
Jacobian. The pruning proceeds as follows,

The workpiece ball setup errors, i.e., EXw, EYw, and EZw, are removed as they are confounded
with the tool ball setup errors, i.e., EXt, EYt, and EZt, and the new Jacobian has 93 columns, a rank of
59, and a condition number of 3.8 × 1034.

The first (zero-degree) terms of the polynomials for all the errors except EAZ0 and ECZ0, which
model the out-of-squareness errors of the Y-axis, are confounded. The squareness error EA(0Z)Y
of the Y-axis relative to the Z-axis around an axis parallel to the X-axis is modeled using intra-axis
error coefficients EAZ0. The squareness errors EC(0X)Y of the Y-axis relative to the X-axis around an
axis parallel to the Z-axis is modeled using intra-axis error coefficients ECZ0. So, a total of 16 error
coefficients (EXX0, EYX0, EZX0, EAX0, EBX0, ECX0, EXY0, EYY0, EZY0, EAY0, EBY0, ECY0, EXZ0,
EYZ0, EZZ0, EBZ0) are removed from the model because they have the same effect as the setup errors.
The Jacobian rank is still 59 while now having 77 columns or variables. The machine tool schematic
and the intra- and inter-axis errors are illustrated in Figure 1.

The angular error coefficients of the Y-axis cannot be estimated because a single tool geometry is
used, which does not allow the linear system to distinguish between its linear and angular intra-axis
errors. So, 12 error coefficients (EAY1, EAY2, EAY3, EAYb, EBY1, EBY2, EBY3, EBYb, ECY1, ECY2,
ECY3, ECYb) are removed from the Jacobian. The Jacobian size, rank, and condition number become
65, 59, and 2.9 × 1026, respectively.

Using only one tool length for the analysis causes the angular error of EBZ not to be distinguishable
from the linear errors. So, by removing (EBZ1, EBZ2, EBZ3, EBZb) from the model the size, rank, and
condition number become 61, 59, and 2.4 × 1024, respectively.

The first-degree coefficients of the polynomials for the straightness errors are redundant because
out-of-straightness is the departure from straightness and this first-degree term does not cause a
departure from straightness. However, EXZ1 is intentionally kept because it can model the squareness
error EB(0X)Z of the Z-axis relative to the X-axis around an axis parallel to the Y-axis. Since eliminating
EXY1 from the model does not change the rank, it is removed from the model. The Jacobian size, rank,
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and condition number are 60, 59, and 2.5 × 1024, respectively. The last confounded coefficient is EZY1,
which is deleted from the model. The Jacobian becomes full rank, with a size of 59 and rank of 59.
The non-normalized and normalized Jacobian condition numbers are 2.3 × 1011 and 387, respectively.
By deleting EYX1, EZX1, and EYZ1 one by one from the model, the Jacobian rank decreases to 56 while
the normalized Jacobian condition number becomes 108.41.

Hence, to predict the volumetric error, 53 error coefficients plus 3 setup errors are required to
be estimated (96 minus 40 redundancies), which represents the minimal and complete model shown
by red color in Table 1. However, because the ball-bar test provides only the distances between the
two balls, which is equivalent to projecting the Cartesian volumetric errors along the ball-bar axis,
additional coefficients, which will be shown in the next section, will not be independently observable.

Figure 1. The machine tool schematic and the intra- and inter-axis errors. The inter-axis errors are
shown in red.

5. Ball-Bar Test Modelling (Simulation)

A typical ball-bar test is designed to measure the distances between two balls, the tool ball at the
tool holder, and the workpiece ball on the machine pallet or table while the axes travel a nominally
circular path. The circular paths can pass through the XY, YZ, and XZ planes, which only requires
a circular interpolation. They involve the motion of two axes (2D ball-bar) or a combination of the
three linear axes (3D ball-bar) for linear axes evaluation. The test strategy should estimate all machine
error coefficients of the minimal and complete model in a minimum test time. Table 2 shows different
test strategies as 2D ball-bar (XY, XZ and YZ plane), 3D5 ball-bar (XY, XZ, YZ plane, and two 45◦

meridians), 3D6 ball-bar (XY, XZ plane, and four 36◦ meridians), and 3D10 ball-bar (XY, XZ plane, and
eight 20◦ meridians). The travels are bidirectional (back and forth) to capture hysteretic effects. To
model the ball-bar test, all relative positions of the tool to the workpiece obtained by Equation (2) are
projected along the sensitive direction of the ball-bar. A workpiece spherical coordinate system is
defined located at the workpiece ball center attached to the table. Also, the Jacobian is projected along
the sensitive direction of the ball-bar. For position i, Ji,projected is obtained by,

Ji,projected = [sinθi cosφi sinθi sinφi cosθi]Ji (5)

which presents the first partial derivatives of the ball-bar length variations to the machine error
coefficients and the setup errors. Ji is the Jacobian for each position (3 × 1). The θ and φ are the polar
and the azimuthal angle, respectively, illustrated in Figure 2. So, the error of the tool tip projected in
the ball-bar direction, ρ, is related to the error coefficients as,
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ρ = JprojectedEp (6)

where Jprojected is the accumulated projected Jacobian for all the positions. To estimate machine error
coefficients, an iterative Gauss–Newton method is applied on,

Ep = Jprojected
†ρ (7)

where Jprojected
† is the pseudo-inverse of the projected Jacobian matrix. The calculated error coefficients,

after the first iteration, are used to predict the projected error using Equation (6). The iteration is
continued until convergence to a negligible error coefficients change threshold in the iterative loop.

Figure 2. Projection of measurements in the ball-bar sensitive direction.

Table 2. Different configurations for the ball-bar test, Jacobian rank (J. rank) and Jacobian condition
number (J. C. N.). Strategy 3D3: XY, XZ, and YZ plane, Strategy 3D5: XY, XZ, YZ plane, and two 45◦

meridians, Strategy 3D6: XY, XZ plane, and four 36◦ meridians, Strategy 3D10: XY, XZ plane, and eight
20◦ meridians.

Strategy 1, 2D Strategy 2, 3D5 Strategy 3, 3D6 Strategy 4, 3D10

To
p

vi
ew

3D
vi

ew
J.

ra
nk 32 40 40 40

Jacobian not normalized condition number before pruning (J.C.N.)

5.04 × 1028 3.7 × 1026 2.3 × 1026 3.4 × 1026

Jacobian normalized condition number after Pruning (J.C.N.)

2801 1950 1948 1948
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The first strategy, 2D ball-bar, gives a Jacobian with a rank of 32 (29 error coefficients plus 3 setup
errors). However, the second, third, and fourth strategies, i.e., 3D5, 3D6, and 3D10, provide Jacobians
with ranks of 40. The Jacobians condition numbers are 5.04 × 1028, 3.7 × 1026, 2.3 × 1026, and 3.4 × 1026

for the first, second, third, and fourth strategies, respectively. By comparing the ranks of the Jacobians,
it is observed that by adding two 45◦ meridians to the first strategy (2D) to obtain the 3D5 strategy, the
rank is improved to 40 (37 error coefficients plus 3 setup errors). However, adding more meridians to
the third strategy does not improve the estimates, rank, and condition number for the fourth strategy.
The second, third, and fourth strategies provide equal projected error information in the 3D volume,
which is higher than the first strategy. The condition number and the rank of the Jacobians show that
further error coefficient pruning is needed to eliminate the weakly contributing coefficients and obtain
more reliable estimates of the error coefficients than when the Jacobian column size is 56. Pruning can
be guided by a mathematical analysis including singular value analysis, condition number, and rank
of the Jacobian. The procedure of eliminating the confounded coefficients for strategy 3D5, 3D6, and
3D10 are listed in Table 3. The Jacobians of the second and fourth strategies are reduced as for the third
one. The normalized Jacobians condition numbers are 1950, 1948, and 1948 for the second, third, and
fourth strategies, respectively.

Table 3. The procedure to obtain the reduced Jacobians for the strategies, 3D5, 3D6, and 3D10.

Error
Coefficients

Removed

Number of
Redudancies Notes J.

Size
J.

Rank

J.
Condition
Number

- -

The results are for the minimal
complete set of coefficients obtained
for the machine model for a single
tool in 3D Cartesian position mode.
This set of coefficients is the starting

point for the analysis of these ball-bar
strategies. The size exceeds the rank

by 16 coefficients.

56 40
Not-normalized

Cond.
3D6: 3.3 × 1026

EAX1
EAX2 EAX3

EAXb
EBX1,EBX2
ECX1,ECX2

8

For the ball-bar test, the angular
errors of the X-axis cannot be

separated from the linear errors.
However, it is not preferable to

remove the fourth (third-degree)
terms and the backlashes of the EBX

and ECX since those eliminations
would decrease the rank.

48 40
Not-normalized

Cond.
3D6: 3.3 × 1025

EAZ1
EAZ2
EAZ3
EAZb

4

Since the errors are projected in the
sensitivity direction of ball-bar and

the tool is in the Z direction, the
angular error of the Z-axis around A

cannot be distinguished from the
linear errors in Y direction.

44 40
Not-normalized

Cond.
3D6: 5.4 × 1023

EXX2 1 EXX2 is in part confounded with EXt. 43 40
Not-normalized

Cond.
3D6: 1.2 × 1021

EYX3 1 EYX3 is in part confounded
with EXY3. 42 40

Not-normalized
Cond.

3D6: 1.9 × 1015

EYY2 1 EYY2 is in part confounded with EYt. 41 40
Not-normalized

Cond.
3D6: 9.7 × 1014

EZZ2 1 EZZ2 is in part confounded with EZt. 40 40

Not-normalized
Cond.

3D6: 1.3 × 1011

Normalized Cond.
3D6: 1948



J. Manuf. Mater. Process. 2020, 4, 24 8 of 14

The first strategy (2D) has the Jacobian rank and size of 33 and 40, respectively. Having exploited
the reduced Jacobian in the second, third, and fourth strategies explained in Table 3, the procedure to
achieve a full rank Jacobian for strategy 3D3 is as follows,

While less information is provided by a 2D ball-bar test strategy, the error coefficients ECZ1, ECZ2,
ECZ3, and ECZb for the angular error parameter ECZ are deleted from the model. Therefore, rank,
size, and condition number are 33, 36, and 3.2 × 1026.

EZY3 is in part confounded with EYZ3. Therefore, removing EZY3 from the model results in a
Jacobian with a rank, size, and condition number 33, 35, and 2.1 × 1026.

By deleting EZX3, which is in part confounded with EXZ3 from the Jacobian, its rank, size, and
condition number become 33, 34, and 2.8 × 1025.

One more coefficient should be removed. Although removing ECZ0 from the model results in
the Jacobian being full rank (rank of 33) with the normalized Jacobian condition number of 3118, it is
preferable to keep this coefficient in the model because it models the out-of-squareness of EC(0X)Y.
By analyzing the Jacobian, it is observed that by removing the error coefficients of ECX3 and ECXb
for the angular error parameter ECX, the Jacobian becomes full rank (rank of 32) while having 32
columns. The non-normalized and normalized Jacobian condition numbers become 1.49 × 1011 and
2801, respectively. Therefore, 29 error coefficients plus 3 setup errors are the output of this strategy.
The non-confounded error coefficients in 3D ball-bar test while having one tool length and one ball-bar
length for all four strategies are shown in Table 4.

Among different ball-bar test strategies simulated, the third strategy is selected as the best strategy
because it has a Jacobian with a higher rank than the first one. On the other hand, in terms of
considering the minimum test time, it is preferred over the 3D10 strategy. The preference of strategy
3D6 over 3D5 is because the third strategy generates a Jacobian with a lower condition number than
the second strategy. However, 3D5 and 3D10 strategies could be also useful since the rank of generated
Jacobian are as the same as strategy 3D6.

Table 4. Non-confounded error coefficients in 3D ball-bar test using strategies 3D5, 3D6, and 3D10:
With and without asterisks (*). Non-confounded error coefficients in strategy 2D: with asterisks (*).

Error Parameters
Retained Polynomial Coefficients for Degrees 0 to 3 Hysteretic Error

Coefficients0 1 2 3

X
-a

xi
s

er
ro

rs

EXX EXX1 * EXX3 * EXXb *
EYX EYX2 * EYXb *
EZX EZX2 * EZX3 EZXb *
EAX
EBX EBX3 * EBXb *
ECX ECX3 ECXb

Y
-a

xi
s

er
ro

rs

EXY EXY2 * EXY3 * EXYb *
EYY EYY1 * EYY3 * EYYb *
EZY EZY2 * EZY3 EZYb *
EAY
EBY
ECY

Z
-a

xi
s

er
ro

rs

EXZ EXZ1 * EXZ2 * EXZ3 * EXZb *
EYZ EYZ2 * EYZ3 * EYZb *
EZZ EZZ1 * EZZ3 EZZb *
EAZ EAZ0 *
EBZ
ECZ ECZ0 * ECZ1 ECZ2 ECZ3 ECZb

Setup errors EXt *, EYt *, EZt *
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6. Experimental Test and Discussions

The third strategy is selected for experimental trials for validation. The ball-bar has a measuring
range of around 1 mm. So, the test path aims to keep the ball to ball distances nominally constant.
A circular path is usually programmed. Therefore, by running the test, the ball attached to the tool
travels on an arc in a space centered on the workpiece ball. The tested machine is a five-axis horizontal
machining center produced by Mitsui Seiki model HU40-T, with ball screw feed-drive systems, and a
150i-M Fanuc controller. The nominal ball-bar length is 150 mm. Figure 3 shows the test setup. Writing
the G-code for the test requires calculating the joint positions for points on the meridians and equator
using Cartesian coordinate retrieved from the spherical coordinates incorporating the machine tool
kinematic model. The number of measurements depends on the sampling rate of the ball-bar software,
which depends on the declared feed rate. G-code command G01 is used. The number and positions of
ball-bar length readings may not match the positions programmed in the G-code because there is no
synchronization between the machine motion and the ball bar readings, except that the start of the
G-code program is detected via the initial radial engagement of the ball-bar as for a classic ball-bar
test. Hence, the positions locations, whose errors are captured by the test, are estimated, not measured.
The feed rate is set to 500 mm/min and is kept constant. A total of 5990 distance readings are acquired
by the ball-bar test. The hysteretic error compensation was deactivated in the machine tool controller.
The room temperature was 21 ◦C during the test. The test was repeated five times over five consecutive
days while the machine was in similar environmental conditions. Each test lasted 37 min without
considering setup time, which was around 20 min.

Figure 3. Telescopic ball-bar test for the strategy of 3D6.
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The experimental ball-bar measurements for the strategy 3D6 are shown in Figure 4 for the
movements along the meridians. Each polar plot contains the measurement data of the forward and
the backward movements. The errors are magnified 1000 times. Each segment is equal to 1 µm.

Figure 4. The experimental test for the strategy of 3D6 for forward and backward movements.

Once the 3D ball-bar tests information is gathered, they are injected into the model (Equation (6))
to estimate the machine error coefficients. The test was repeated five times with each data set processed
separately, thus providing mean and standard deviations of the estimated model coefficients given by,

si(Epi) =

√√√
1

n− 1

n∑
j=1

(Epij − Epi)
2

(8)



J. Manuf. Mater. Process. 2020, 4, 24 11 of 14

where Epij is ith error parameter for the jth run. j = 1 to 5 and i = 1 to 37.
Table 5 lists the estimated error coefficients and their uncertainties. The predicted Cartesian

volumetric errors calculated using the estimated coefficients in Equations (1) and (2) are projected in
the sensitive ball-bar direction and compared with the experimental ball-bar measurements in Figure 5.
The 10 polar plots show the forward and backward meridian travels. The model prediction closely
matches the experimental data. As seen in Figure 5, the minimum errors are observed for the travel on
the first meridian, which could be because only the X- and Z- axis errors are involved. However, for
the rest, all the X-, Y-, and Z-axis errors are involved.

Table 5. Estimation results for the error coefficients values and their standard deviation.

Coefficient Estimated
Results

Standard
Deviation Coefficient Estimated

Results
Standard
Deviation

EXX1
(mm/mm) −6.96 × 10−6 2.5 × 10−6 EZY3

(mm/mm3) 2.34 × 10−9 3.7 × 10−10

EXX3
(mm/mm3) 3.64 × 10−10 1.7 × 10−10 EZYb (mm) −5.24 × 10−4 4.7 × 10−4

EXXb (mm) 4.81 × 10−4 1.6 × 10−4 EXZ1
(mm/mm) 3.94 × 10−5 3.5 × 10−6

EYX2
(mm/mm2) −8.25 × 10−8 2.4 × 10−8 EXZ2

(mm/mm2) −3.74 × 10−7 3.5 × 10−8

EYXb (mm) −4.54×10−4 1.0 × 10−5 EXZ3
(mm/mm3) 1.16 × 10−9 4.7 × 10−10

EZX2
(mm/mm2) 5.99 × 10−7 3.9 × 10−8 EXZb (mm) −1.37 × 10−4 3.9 × 10−6

EZX3
(mm/mm3) 2.05×10−9 3.9 × 10−10 EYZ2

(mm/mm2) −6.59 × 10−8 1.4 × 10−8

EZXb (mm) 3.91 × 10−5 1.08 × 10−5 EYZ3
(mm/mm3) 9.88 × 10−10 8.8 × 10−11

EBX3
(rad/mm3) 5.71 × 10−11 1.7 × 10−11 EYZb (mm) 6.07 × 10−5 8.1 × 10−6

EBXb (rad) −0.0023 3.3 × 10−5 EZZ1
(mm/mm) 3.79 × 10−5 5.9 × 10−7

ECX3
(rad/mm3) 8.1 × 10−10 1.4 × 10−10 EZZ3

(mm/mm3) −9.68 × 10−10 2.4 × 10−11

ECXb (rad) 0.0018 6.6 × 10−5 EZZb (mm) 5.01 × 10−4 3.3 × 10−5

EXY2
(mm/mm2) 2.74 × 10−8 3.4 × 10−9 EAZ0 (rad) −9.44 × 10−5 1.0 × 10−5

EXY3
(mm/mm3) −4.01×10−10 1.66×10−10 ECZ0 (rad) 2.48×10−4 3.2×10−6

EXYb (mm) 2.24 × 10−5 6.88 × 10−6 ECZ1 (rad/mm) −5.21 × 10−6 2.2 × 10−7

EYY1
(mm/mm) 1.06 × 10−4 1.85 × 10−5 ECZ2

(rad/mm2) 3.56 × 10−8 3.8 × 10−9

EYY3
(mm/mm3) −2.78 × 10−9 3.58 × 10−10 ECZ3

(rad/mm3) −8.01 × 10−11 2.5 × 10−11

EYYb (mm) −0.0031 1.49 × 10−4 ECZb (rad) 1.83 × 10−5 8.1 × 10−6

EZY2
(mm/mm2) −6.47 × 10−7 1.81 × 10−7
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Figure 5. The predicted (blue color) and measured (red color) projected Cartesian volumetric errors.
(M: Meridian, F: Forward movement, B: Backward movement).

The maximum discrepancy between the predicted and the measured projected Cartesian
volumetric errors is less than 2 µm. The maximum backlash happens for the Y-axis, EYYb, which is
around −3 µm. However, the minimum backlash is for X-axis, EXXb, which a magnitude of 0.5 µm.
The target machine tool does not reveal a big lateral play since the maximum lateral play is for the
error coefficient EYXb with a magnitude of −0.4 µm. The backlashes and the lateral plays values are
shown in Figure 6.
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Figure 6. Estimation results of the hysteretic errors modeled by 3D6.

7. Conclusions

A geometric error model of a three-axis machine tool is proposed including all 18 intra-axis
errors, the three out-of-squarenesses, and 18 hysteretic errors, one for each intra-axis error. Cubic
polynomials enriched with hysteretic error terms capable of modeling backlashes and lateral plays are
used yielding a total of 90 potential unknown error function coefficients. A minimal but complete set
of the coefficient is selected using geometric reasoning as well as the sensitivity Jacobian column size,
rank, and condition number. Considering a single tool length, if the three coordinates of the tool could
be measured, a selection of 53 machine error coefficients could be estimated. In order to experimentally
estimate these coefficients, various 2D and 3D ball-bar test strategies are simulated and their ability to
estimate a maximum number of the necessary coefficients is analyzed using the sensitivity Jacobian.
A five meridian plus the equator circle strategy is retained capable of estimating 37 error coefficients
with a normalized Jacobian condition number of 1948. This strategy is tested on a five-axis machine tool
and includes back and forth motions. The strategy analysis yields a maximum number of independent
coefficients, which results in a good fit to the experimental data. The target machine tool reveals
small backlashes. The model shows the maximum backlash for Y-axis for around −3 µm. However,
the backlashes for X- and Z-axis are less than 1 µm. The proposed 3D ball-bar strategy predicts the
projected Cartesian volumetric error where the maximum discrepancies between the prediction and
the measurements are less than 2 µm. The simulations of different strategies showed that the 3D
ball-bar strategy with one setup is able to distinguish a maximum of 37 machine error parameters.
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