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Abstract: The potential of Additive Manufacturing (AM) is high, with a whole new set of manufactured
parts with unseen complexity being offered. However, the process has limitations, and for the sake of
economic competitiveness, these should also be considered. Therefore, a computational methodology,
capable of including the referenced limitations and providing initial solid designs for Selective Laser
Melting (SLM) is the subject of the present work. The combination of Topology Optimization (TO) with
the simplified fabrication model is the selected methodology. Its formulation, implementation, and
integration on the classic TO algorithm is briefly discussed, being capable of addressing the minimum
feature size and the overhang constraint limitations. Moreover, the performance and numerical
stability of the methodology is evaluated, and numerical variables, such as the accuracy of structural
equilibrium equations and the material interpolation model, are considered. A comparative study
between these variables is presented. The paper then proposes an enhanced version of the selected
methodology, with a better convergence towards a discrete solution.

Keywords: AM limitations; topology optimization; overhang constraints

1. Introduction

Metal Additive Manufacturing (AM), in particular Selective Laser Melting (SLM) and Electron
Beam Melting (EBM), is at the forefront of the advanced manufacturing technologies [1]. These consist
of the manufacturing of the 3D model layer by layer, allowing a great design freedom. On the
other hand, Topology Optimization (TO) is a type of structural optimization that seeks the optimum
material layout [2] and thus provides the means for intelligently exploring this freedom. In this way,
the interconnection between AM and TO has proven to be advantageous [3]. Moreover, Figure 1
illustrates their interplay, as well as their main steps and key advantages.
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Figure 1. The interplay between additive manufacturing and topology optimization (bracket’s figures
extracted from Komi [4]).

The current market trends indicate that clients are increasingly demanding mass customization
instead of mass production, and therefore, industry needs to adapt in order to be successful. Therefore,
effective and flexible processes are needed in order to reduce the time to market and the development
cycles [5]. Moreover, engineers and designers are encouraged to reduce geometric complexity, since
there is a direct link between costs and part complexity. Within this context, Additive Manufacturing
(AM) is seen as a disruptive technology [6,7] with the potential to overcome a number of limitations of
traditional processes. These advantages can be grouped into:

• shape complexity: it is possible to take advantage of great geometrical freedom in order to reduce
several parts in an assembly and/or using design optimization methodologies (TO), which opens
a new world of customization possibilities [8–10];

• material complexity: multi-material parts can be built [11–13]; non-weldable materials can be
joined [14]; coatings can be applied [15,16]; and surface finishing can be performed (polishing) [17];

• hierarchical complexity: multi-scale structures can be designed and fabricated using a geometric
mesostructure in order to provide information to the part-scale macrostructure (i.e., lattices with
negative or zero or positive coefficients of thermal expansion) [9,18,19];
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• operational simplicity: AM allows for simpler supply chains and, therefore, shorter lead-times,
lower inventories (less expensive storage), and no tooling (i.e., molds) [9,10,20].

According to Nickels [21], the aerospace industry can greatly benefit from AM technologies,
with several advantageous applications being reported. For instance, the development time frame of a
component (i.e., structural brackets) can be reduced from six months to just one using AM technologies,
since the part is produced directly from 3D without tooling. Another driver for the aerospace industry
is the highly-expensive storage of rarely-used spare parts all around the world. Due to its operational
simplicity, the alternative is using the AM technology to produce the spare parts on site and just
in time.

However, the unclear part is its limitations as reported by Weller et al. [10] and Kelly [22]; there are
several AM limitations, namely: build size, reproducibility, surface finishing, low build rate, skilled and
experienced labor, standardization, and lack of design tools and guidelines to exploit the technology
fully. Thus, the article’s goal is a computational methodology capable of providing initial solid designs
for metal AM, in particular SLM. Moreover, process limitations can also be accounted for in the
referenced methodology. Therefore, the study presents its limitations in a succinct manner, as well as
the main methodologies to overcome the referenced limitations. In this way, the rationale behind the
present methodology is available, as well as the other alternatives, each one with its advantages and
disadvantages. Then, the paper presents the selected methodology in a succinct manner, which is based
on the TO filter and fabrication model in order to impose a minimum member size and an overhang
constraint, respectively. The methodology presentation includes a succinct problem formulation, the
computational algorithm structure and implementation, the performance evaluation, and an industrial
application. Regarding performance evaluation, two well-known problems are considered: cantilever
and MBB. During the TO of the referenced problems, variables such as: (i) the material interpolation
model, (ii) the precision of structural equilibrium (approximated structural equilibrium versus a full
precision industry solver), and (iii) the existence of a simplified fabrication model are considered in
order to evaluate their impact in the convergence of TO, as well as their industrial applicability. After
this study, an improved version of the simplified fabrication model is presented, showing a greater
ability to converge to discrete solutions.

2. Current State of AM Limitations and Its Design Approaches

Powder bed fusion processes, in particular SLM, provide a cost-effective and time-efficient way
of producing highly-customized low-volume parts [23]. While AM seems to have unlimited potential,
it does not have unlimited applicability [24]. In fact, the design stage shall be meticulously carried
out in order to take full advantage of AM. Thus, Design for Additive Manufacturing (DfAM) is an
important research topic. Studies such as Thomas [25], Vayre et al. [26,27], Adam and Zimmer [28],
Klahn et al. [29], Kranz et al. [30], Lemu and Gebisa [31], and Sossou et al. [32] focused on stabilizing
design rules for AM, which are crucial for achieving competitive and successful parts.

The current limitations of the AM processes can be grouped into non-directional and directional
constraints. Non-directional constraints are the minimum feature size and cavities, while directional
constraints can be seen as warping, anisotropy, and overhangs [3]. In a nutshell, these are:

• The minimum feature size is important in order to guarantee the manufacturability: for instance,
the SLM processes cannot print walls with less than 0.4 mm [25];

• Regarding cavities, the design shall ensure that all cavities have exit points for the non-melted
powder. For simple cavities, one exit can be sufficient, but more complex geometries require more
than one exit point. On the other hand, the use of these cavities can avoid issues such as material
accumulation or a large volume of solid material [30];

• Regarding warping, its occurrence is related to the local melting and non-uniform cooling, which
causes the referenced effect. Strains such as thermal, creep, and phase transformations are the
causes of residual stresses [14]. In order to avoid warping, support structures can be used [3];
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• Regarding anisotropy, AM can create parts that often exhibit anisotropy between the in-plane and
out-of-plane directions. This issue is a direct consequence of the layer-wise construction, but the
origin of this phenomenon is related to the resultant microstructures, being explained in detail in
DebRoy et al. [14].

• Concerning the overhang constraints, their construction at zero degrees is not advisable, since
the molten pool would simply sink into the powder. Even, if a support structure is used, the
resultant geometry will be inaccurate with poor surface quality [25]. Thus, this constraint shall be
considered. The solution can either be the use of chamfers and/or optimizing the build direction
in order to maximize the overhang angles. A 45◦ angle is usually indicated as an acceptable
threshold [25].

The intelligent search for a design that seeks the optimal material distribution (i.e., minimum
compliance) and accounts for the previous constraints poses a greater challenge. Studies such as Joshi
and Sheikh [33], Reddy K. et al. [34], Mirzendehdel and Suresh [35], Walton and Moztarzadeh [36],
Allaire et al. [37], and Guo et al. [38] indicated that TO may provide the answer. Moreover, this method
can include in its formulation some of the previous constraints and, thus, provide a solid initial design.
The inclusion of AM constraints in the formulation of the TO algorithm has received some attention
from the scientific community, namely the overhang constraints. In TO algorithms, the minimum
feature size can be controlled by the radius of the filtering operation [3]. These are largely studied and
reviewed in works such as Sigmund [39], Svanberg and Svärd [40], where extensive studies on the
existing filters are available. On the other hand, imposing the overhang constraints on the topology
optimization poses a greater problem, due to the implicit high non-linearity. Currently, there are
several approaches to tackle the overhang constraint. These are:

• Modifying the design in order to limit the overhang to a certain limit. Since this approach
is a post-processing technique, the resulting geometries have their ratio mass and stiffness
compromised. For further details, consult Leary et al. [41];

• Using two scale calculations: a discrete scale where the overhang constraints are enforced
and a continuous scale that uses the information from the discrete scale in order to produce
self-supporting structures [42]. Alternative to the use of two macroscales (discrete and continuous)
is the use of a mesoscale and a macroscale, where the mesoscale is defined by a Representative
Unit Cell (RUC) and the macroscale uses the information of the homogenized mesoscale [43–45].
Thus, the RUC can be chosen to be self-supporting, but some manufacturing restrictions arise,
namely minimum dimensions and extraction of non-melted powder;

• Using local constraints, being a simple and effective implementation. However, local constraints
are expensive to compute and not very well suited for large-scale problems [46];

• Using edge detection algorithms to control the overhang angles [47–49]. The suppression method
of intermediate densities in Qian [47] and Mezzadri et al. [49] uses an additional constraint, while
the work in Garaigordobil and Ansola [48] used a Heaviside projection;

• Using simplified fabrication models, which stand for a low computational cost operation.
Moreover, this does not require additional constraints to the optimization problems. Currently,
there are two main AM fabrication models, one based on min-max operators [50–52], the other
being based on area occupation and Heaviside projections [53–56], which can provide
self-supporting designs.

In short, the last approach is considered the way forward, due to its computational cost and its
simple integration on existent TO codes. Their drawback is related to the impossibility of parallel
computing since the simplified fabrication model imposes that the algorithm must proceed in a
layer-wise manner. In a preliminary analysis, this limitation can be seen as prohibitive. However,
after a deep analysis, the relevance of this limitation becomes rather limited, if the implementation is
properly structured. Thus, these fabrication models can be subdivided into three main steps. The first
step corresponds to the supporting region search, which is computationally expensive, but can be
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fully parallelized. The second and third steps correspond to sensitivities and densities scanning in
a layer-wise manner in order to impose the overhang constraint. These steps are not parallelizable.
However, their computational cost is marginal when compared with the structural equilibrium required
by TO. In the current implementation, the difference is several orders of magnitude. The simplified
fabrication model based on Heaviside projections requires high Heaviside penalization, making it
highly susceptible to local minima. Moreover, if low Heaviside penalization is used, the algorithm
converges to the classic solutions and uses intermediate densities to support it, defeating its purpose.
The model based on min-max operators [50,51], which has already gained commercial applicability [52],
exhibits good convergence properties and is less susceptible to be trapped in local minima. Therefore,
the authors defend a preference for the last referenced approach due to its numerical performance.
Therefore, the next section presents the topology optimization algorithm in order to explain the
integration fabrication model in the referenced algorithm.

3. Topology Optimization

3.1. Standard Algorithm

3.1.1. Problem Formulation

Topology Optimization (TO) is a type of structural optimization that seeks the optimum material
layout [2]. There are numerous methods to perform TO with a compressive list being available
in Rozvany and Lewiński [57] and Deaton et al. [58]. Within the present work, density methods
were used, namely the well-known Solid Isotropic Material with Penalization (SIMP) [59,60] and
the Rational Approximation of Material Properties (RAMP) [61]. Both approaches seek the optimal
material distribution, x, across the design domain, Ω, in order to minimize compliance (for example).
Thus, the classic TO problem of compliance minimization of a quasi-static loaded structure can be
mathematically formulated as:

min f (x) = UTK(x)U, (1)

subjected to:
K(x)U = F,

∑
e∈Ω

Veρe(x)
VΩ

= Vf , e ∈ Ω and

0 < xe < 1, (2)

where U, F, and K are the global displacements, forces, and stiffness matrices, respectively.
Furthermore, x represents the design densities, which become physical densities (ρ) after filtering.
Additionally, Vf , Ve, and VΩ stand for the volume fraction (constraint), the volume of the element, and
the domain, respectively. Using the SIMP approach, the element stiffness matrix, Ke, becomes:

Ke =
(

ρmin + ρ
η
e

)
K0

e , (3)

where K0
e is the stiffness matrix of the solid element, ρmin is a small constant to avoid an ill-conditioned

system of equations, and η is the penalty parameter. Alternatively, using RAMP, the element stiffness
matrix, Ke, becomes:

Ke =

(
ρmin +

ρe
1 + η(1− ρe)

)
K0

e , (4)

where K0
e is the stiffness matrix of the solid element multiplied by 1/(1 + ρmin) [55] and η is again the

penalty parameter.
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3.1.2. Minimum Member Size

In order to ensure the existence of a solution, to impose a minimum member size and avoid
problems such as the formation of checkerboard patterns, a filtering operation is recommended.
The linear density filter (e.g., Bruns and Tortorelli [62], Bourdin [63]) can be formulated as:

ρe = ∑
k∈N

wekxk, (5)

where N defines the filtering neighborhood, composed by a set of elements, k [40]. Thus,
Ne = {e : d(e, k) ≤ r}, where d(e, k) is the distance between the centroids of elements e and k.
Considering conic weights, wek becomes:

wek =


r−d(e,k)

∑l∈N r−d(e,l) , k ∈ Ne

0 , k /∈ Ne.

(6)

Within the scope of this work, an extension of the density filter is used. Initially proposed by [64],
this filter uses the Heaviside function, formulated as:

ρe =
tanh(βϕ) + tanh(β(µe − ϕ)

tanh(βϕ) + tanh(β(1− ϕ))
and (7)

µe = ∑
k∈N

wekxk, (8)

where ϕ is set to 0.5. Additionally, β controls the “aggressiveness” of the Heaviside function [50].

3.1.3. Sensitivity Analysis

The derivatives of the objective function and constraint function for the independent variable, x,
are computed using the chain rule as:

∂ f
∂x

=
∂ f
∂ρ

∂ρ

∂x
. (9)

Using SIMP, the first term is given by:

∂ f
∂ρ

= −ηρ
η−1
e ue

Tk0
e ue, (10)

where ue and k0
e are displacements and the stiffness matrix, respectively, associated with element e.

Alternately, using RAMP, the first term is given by:

∂ f
∂ρ

= − η + 1
(η(ρe − 1)− 1)2 ue

Tk0
e ue. (11)

Finally, the second term is computed using the chain rule as:

∂ρ

∂x
=

∂ρ

∂µ

∂µ

∂x
= ∑

k∈N
wek

β (sech(β(µk(x)− ϕ))2

tanh(βϕ) + tanh(β(1− ϕ))
. (12)

3.2. Simplified Fabrication Model

3.2.1. Integration in TO

This section briefly presents a methodology that allows the control of overhang angles (simplified
fabrication model), as well as its integration in the classic topology optimization algorithm, being
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based on min-max operators [50,51]. This algorithm proceeds in a layer-wise manner, mimicking the
actual AM process. Thus, the algorithm starts on the first layer (that would be printed) up to the last
layer. During this process, the densities of layer i cannot be higher than the maximum of the densities
in the support region defined in layer i − 1. For the 2D case, the support region, S(i, j), is defined
according to Figure 2. It is worth noting that if a regular mesh (squares) is used, then an implicit
overhang constraint of 45◦ is imposed, the extension to 3D being straightforward [51].

Base plate

i

i,j

i=1

i=L

S(i,j)

j
Figure 2. Definition of support region, S(i, j), for the element (i, j) [50].

Thus, the smooth approximation of this constraint is formulated as:

ξ(i,j) = smin(ρ(i,j), Ξ(i,j)) =
1
2

(
ρ(i,j) + Ξ(i,j) −

((
ρ(i,j) − Ξ(i,j)

)2
+ ε

) 1
2
+
√

ε

)
, (13)

Ξ(i,j) = smax
(
ξ(i−1,j−1),ξ(i−1,j),ξ(i−1,j+1)

)
=
(
ξP
(i−1,j−1) + ξP

(i−1,j) + ξP
(i−1,j+1)

) 1
Q (14)

with Q = P +
log(nS)

log(ρ0)
, ξ(1,j) = ρ(1,j) and 1 < i ≤ L, (15)

where P, ρ0, and ε are constants, nS is the size of the region S (meaning three in 2D), and L is the
number of layers. The new density, ξ, is called the printed density. These densities result from the
application of the previous equations to the physical densities. Since every ξi is dependent of all
ξi−1, the calculation of the print densities shall proceed in a layer-wise manner, starting with the first
layer up to the last. On the first layer, printed densities are equal to the physical densities. On the
second layer, printed densities from the previous layer are used to compute smax (maximum density
of region S), and then, smin is computed using the physical density of the current layer and the
maximum from the previous layer (minimum between both). For the third layer and the remaining
ones, the process is repeated.

Regarding the evaluation of the objective function, the printed densities are the ones that should
be used, meaning that in Equation (3) or (4), the term ρ is replaced by ξ.

3.2.2. Sensitivity Analysis

The sensitivity analysis of the standard topology optimization requires some changes. The chain
rule differentiation (Equation (9)) requires an additional term, becoming:

∂ f
∂x

=
∂ f
∂ξ

∂ξ

∂ρ

∂ρ

∂x
. (16)

the term ∂ f /∂ξ corresponds to:
∂ f
∂ξe

= −ηξ
η−1
e uT

e k0
e ue or (17)

∂ f
∂ξe

= − η + 1
(η(ξe − 1)− 1)2 uT

e k0
e ue, (18)
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using SIMP or RAMP, respectively. The term ∂ρ/∂x is already defined by Equation (12). The term
∂ξ/∂ρ is the referenced additional term. This term is computed via an adjoint formulation (in addition
to the adjoint formulation of TO), with its full formulation being shown in [50,51]. Briefly and given
the sensitivities ∂ f /∂ξ, the present procedure modifies them in order to compute ∂ f /∂ρ. Thus,
the procedure can be formulated as follows:

∂ f
∂ρi

= λT
i

∂smini
∂ρi

and (19)

λT
i =


∂ f
∂ξi

+ λT
i+1

∂smini+1
∂ξi

for 1 ≤ i < L

∂ f
∂ξi

for i = L

, (20)

where i stands for the layer index and i + 1 stands for the layer above, and therefore, each multiplier
depends on the layer above. The algorithm modifies the existent sensitivities in the reversed print
direction, meaning that the algorithm starts on the last layer until the first. The remaining derivatives
are computed as:

∂smin
∂ρ

=
1
2

(
1− (ρi − Ξi)

(
(ρi − Ξi)

2 + ε
)− 1

2
)

, (21)

∂smin
∂ξ

=
∂smin

∂Ξ

∂Ξ

∂ξ
, (22)

∂smin
∂Ξ

=
1
2

(
1 + (ρi − Ξi)

(
(ρi − Ξi)

2 + ε
)− 1

2
)

and (23)

∂Ξk
∂ξi

=
P
Q
ξP−1

i

(
∑
k∈S

ξP
k

) 1
Q

. (24)

3.2.3. Modified Fabrication Model

Following the work of [50], the study points out that the smax operator has numerical problems.
Initially, the study proposed the use of the P max function as the smax operator, but it suffered from
severe overestimation, and then, the P-Q max function was proposed to tackle the referenced issue.
However, the proposed solution solved the problem partially, since the operator can still accumulate
relevant errors. Thus, this issue motivated the search for another smooth max function that would
reduce the referenced errors. The function denominated as softmax [65] can be an interesting alternative,
since this function does not produce overshoot. This function can be expressed as:

smax(ξi) = Ξ(ξi) =
∑i∈S ξiePξi

∑i∈S ePξi
, (25)

where P >0, and its gradient is expressed as:

∂Ξk
∂ξi

=
ePξi

∑k∈S ePξk
[1 + P (ξi − Ξ)] . (26)

Thus, this function can be used as the new smax operator instead of the P-Q max function.
In order to quantify the precision increase of the new smax operator, several support regions(
ξ(i−1,j−1),ξ(i−1,j),ξ(i−1,j+1)

)
were generated randomly, and their maximum was computed using the

P-Q max and the softmax functions. Considering a “large number” of random support regions, the P-Q
max function (for P = 40) provides a maximum absolute error (difference between real maximum
and maximum smooth approximation) about 0.02, and around 7% of the support regions still get
overestimated (these values may vary for different random number generators). The reader may
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consider that an absolute error of 0.02 has limited relevance; however, it should be highlighted that
this algorithm proceeds in a layer-wise manner. Thus, as the number of layers increases, the referenced
absolute error can propagate in a relevant way, crippling the ability of the algorithm to converge
towards a discrete solution. On the other hand, the softmax operator fully addresses the referenced
issues. Regarding overestimation, the new operator provides no overestimation, allowing a precise
computation of the smax operator and a more effective convergence to a discrete solution. In fact,
for the same level of P, the absolute error of the smax operator is reduced by a factor of 1.5 in
unfavorable situations up to 2.4 in more favorable situations. In the scope of work, a P value of 40 was
considered, being an effective compromise between precision and problem non-linearity. The value
of P can be raised, but no relevant practical advantage was observed; however, the increase of the
referenced constant increases the problem non-linearity, negatively affecting the numerical stability of
the problem.

3.2.4. Algorithm Structure

The integration of the simplified fabrication model in the TO algorithm results in a procedure with
numerous steps. Thus, a simplified flowchart of the optimization algorithm is shown in Algorithm 1.

Algorithm 1 Topology optimization algorithm structure with the fabrication model.

1. Build and save the neighborhood, Ne, for an efficient filtering operation;
2. Build and save the support region, Se, for an efficient application of the fabrication model;
3. Initialize the design domain, x;
4. Compute the physical densities, ρ, using Equations (7) and (8);
5. Compute the print densities, ξ. In the layer-wise loop following print direction, apply

Equations (13) and (14);
6. Optimization loop:

(a) solve the structural problem (K(ξ)U = F), using the element stiffness matrix given by
Equation (3) or Equation (4), where ρ shall be replaced by ξ;

(b) compute sensitivity ∂ f /∂ξ based on print densities (Equation (17) or Equation (18));
(c) update sensitivities using the sensitivity information of the fabrication model. In a

layer-wise loop following the reversed print direction, apply Equations (19) and (20)
in order to update them;

(d) perform the filtering operation in order to obtain the final sensitivities using Equation (12).
(e) calculate new x using an optimizer
(f) compute physical densities, ρ, using Equations (7) and (8);
(g) Compute print densities, ξ. In a layer-wise loop following the print direction, apply

Equations (13) and (14)
(h) return to Sub-step (a) or break the loop if the solution has converged

3.3. Implementation

This implementation is aligned with the architecture proposed in [66]. The quality of the resultant
solutions (ideally void (zero) and solid (one)) was evaluated using an indicator denominated as a
measure of non-discreteness, Mnd. This indicator can be evaluated as [39]:

Mnd =
n

∑
e=1

4.0ξe(1.0− ξe)/n, (27)

where zero means that the design is fully discrete (there are no intermediate densities) and one
means that the design is full of intermediates densities (for Vf = 0.5). The optimization problem
was solved with the gradient-based Method of Moving Asymptotes (MMA) [67], using the default
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parameters unless otherwise specified. The parameter η was set to three using SIMP and six using
RAMP. Additionally, the parameter Vf was set to 0.5. Regarding Heaviside filtering, the filtering radius
was set to four units; the parameter β was set to two and then doubled at Iterations 100, 150, 200,
and 250; and finally, the parameter ϕ was set to 0.5. Regarding fabrication models, the parameters P,
ρ0, and ε were set to 40, 0.5, and 1× 10−4, respectively, following Langelaar [50]. Unless otherwise
specified, the build direction of fabrication was considered to be from bottom to top (upwards).

4. Examples

In order to increase manufacturability, in particular SLM, the initial designs resulting from the
presented methodology always considered a minimum member size constraint imposed by TO filter.
Unless otherwise stated, the filter radius was set to three elements in width. The overhang constraint
may or may not be considered. If considered, the model is denominated as restricted. If not considered,
the model is denominated as unrestricted.

4.1. Comparative Study

This section presents the topology optimization results of two well-known problems. The first
problem, a cantilever structure, is depicted in Figure 3a, which is discretized by a regular quadrilateral
mesh of 160 × 100 elements. The second problem, MBB, is depicted in Figure 3b, discretized by a
regular quadrilateral mesh of 240 × 80 elements using symmetry conditions. Both problems consider
unitary forces in the depicted direction.

L

F

a - Cantiliver

L

L
2

H=
L
6

F

b - MBB beam

Figure 3. Benchmark problems’ definition [55,68].

Figure 4 presents a compilation of the results of the cantilever problem at Iterations 20, 90,
150, and 300. Each subfigure contains two similar analyses, the difference being on the structural
equilibrium evaluation. The simulation on the left used MSC Nastran code with a full integration rule
to perform the structural equilibrium, while the analysis on the right used an approximated FE model
presented in Andreassen et al. [66] and Sigmund [69]. Figure 5 presents a compilation of the results of
the MBB problem at Iterations 20, 90, 150, and 300. Similar to the previous problem, each left subfigure
used MSC Nastran to evaluate the structural equilibrium, while each right half used an approximated
FE model presented in Andreassen et al. [66] and Sigmund [69].

Table 1 presents the final results at Iteration 300 of the cantilever and MBB problems, where it is
possible to compare different variables such as FE model precision, the material interpolation models
(SIMP or RAMP), and solution performance without (unrestricted) and with (restricted) the severe
restriction of the simplified fabrication model.

After a close analysis of Figures 4 and 5, as well as Table 1, it becomes clear that the precision
of the structural equilibrium had limited relevance even with such highly non-linear operators such
as the fabrication model in a general perspective. However, Figure 4o is an exception, because a
problematic member appeared (gray) with approximated structural equilibrium and not with MSC
Nastran. Regarding filtering, the material interpolation model influenced the minimum member size
solution. The RAMP model produced solutions with a larger minimum member size, but the final
solutions were in accordance with the published results [66,69]. Moreover, the RAMP model allowed
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material to grow out of the void, while SIMP did not. However, the numerical stability of SIMP
combined with the topological “morphing” capabilities [56] makes the decision of the best material
interpolation model somehow unclear. In the scope of this work, the SIMP model was used in the
subsequent analysis since it is an industry standard.

a It20: SIMP
unrestricted

b It 20: RAMP
unrestricted

c It 20: SIMP
restricted

d It 20: RAMP
restricted

e It 90: SIMP
unrestricted

f It 90: RAMP
unrestricted

g It 90: SIMP
restricted

h It 90: RAMP
restricted

i It 150: SIMP
unrestricted

j It 150: RAMP
unrestricted

k It 150: SIMP
restricted

l It 150: RAMP
restricted

m It 300: SIMP
unrestricted

n It 300: RAMP
unrestricted

o It 300: SIMP
restricted

p It 300: RAMP
restricted

Figure 4. Topology optimization of the cantilever problem at Iterations 20, 90, 150, and 300. In each
subfigure, the left image uses the full precision structural equilibrium, and the right image uses
approximate structural equilibrium. SIMP, Solid Isotropic Material with Penalization; RAMP, Rational
Approximation of Material Properties.

a It 20: SIMP unrestricted b It 20: RAMP unrestricted

c It 20: SIMP restricted d It 20: RAMP restricted

e It 90: SIMP unrestricted f It 90: RAMP unrestricted

g It 90: SIMP restricted h It 90: RAMP restricted

i It 150: SIMP unrestricted j It 150: RAMP unrestricted

Figure 5. Cont.
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k It 150: SIMP restricted l It 150: RAMP restricted

m It 300: SIMP unrestricted n It 300: RAMP unrestricted

o It 300: SIMP restricted p It 300: RAMP restricted

Figure 5. Topology optimization of the MBB problem at Iterations 20, 90, 150, and 300. In each
subfigure, the left image uses full precision structural equilibrium, and the right image uses approximate
structural equilibrium.

Table 1. Overview of the topology optimization of the cantilever and MBB problems at Iteration 300 in
terms of Compliance (C) and the measure of non-discreteness level (Mnd).

SIMP RAMP

MSC Nastran Aprox Model MSC Nastran Aprox Model

C Mnd (%) C Mnd (%) C Mnd (%) C Mnd (%)

Cantilever Problem

Unrestricted 1.0 0.7 1.004 0.8 1.012 0.8 1.015 0.5
Restricted 1.058 0.6 1.051 1.0 1.066 0.8 1.038 0.1

MBB Problem

Unrestricted 1.0 1.0 1.0 1.0 1.037 0.9 1.037 0.5
Restricted 1.049 0.4 1.049 0.7 1.054 1.0 1.055 1.4

Figure 6a,c shows the convergence curves of the cantilever and MBB problems using the original
and modified (softmax) simplified fabrication models. The results consider the SIMP model and the
approximated structural equilibrium. Moreover, a solution without the fabrication model is also
included for reference purposes. The non-linearity of the referenced model with Heaviside filtering
led to numerical instability in the initial iterations. At this point, the evaluation of the convergence
properties resulting from the original and modified smooth max functions was required, and the
initial instability made it less clear. Thus, this issue can be tackled by reducing the init parameter, s0

(from [67]), to 0.05 [70], making the convergence slower in the initial iterations, but perfectly smooth.
The overall convergence with original and modified smooth max functions remained similar, and an
overview of the final iteration can be seen in Table 2. In these two problems, the modified version led
to a marginal increase in compliance when compared to the original. On the other hand, Figure 6b,d
depicts the evolution of the measure of non-discreteness Mnd. The modified filter showed a greater
ability to converge to discrete solutions as depicted in Figure 7. This ability should be related to a more
precise computation of the smax operator. The final values of Mnd are given in Table 2.
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Figure 6. Comparison of the cantilever and MBB problems’ topology optimization with the original
and modified fabrication models.

Table 2. Overview of the cantilever and MBB problems’ topology optimization with the original and
modified fabrication models.

Reference P-Q Norm Softmax

C Mnd C Mnd C Mnd

Cantilever Problem 1.000 0.7 1.052 2.4 1.066 1.1
MBB Problem 1.000 1.0 1.028 2.2 1.061 1.1

The cantilever and MBB topology optimization problems presented in Figures 4 and 5
(SIMP restricted) are similar to the ones shown in Figure 7. The difference between them is the
referenced change on the s0 parameter of the MMA. Both simulations converged to self-supporting
designs; however, different designs were observed, corresponding to different minima solutions.

In short, the proposed modified fabrication model addressed the issues identified
by Langelaar [51] such as the performance of smax, the high level of intermediate densities, and the
problematic grey scale member. The proposed new smax operator provided smaller error, no
overestimation, and no additional parameter, and thus, the filter showed better ability to use fewer
intermediate densities. For instance, on the cantilever and MBB problems at Iteration 100, the use of
the new operator led to a reduction of the intermediate densities by 11% and 23%, respectively (consult
Figure 6b,d). Regarding the problematic grey scale member, it should be related to the precision of
structural equilibrium and not with fabrication model.
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Figure 7. Comparison of the topology optimization problem of MBB using the original and modified
version of the fabrication model.

5. A 3D Case Study

The section presents the TO results of the Sentinel-1 Antenna Support Bracket (approximated
dimensions were used, since the real ones were not available). Figure 8 presents the available design
domain, as well as boundary conditions. As depicted in the figure, the zero-displacement condition
was applied to the four corners of the bracket, while the force was at its tip. The TO load case consisted
of three subcases: (i) unitary force in the X direction, (ii) unitary force in the Y direction, and (iii)
unitary force in the Z direction. Taking into consideration the maximum characteristic length of the
part of 250 mm, a minimum member size constraint of 4.5 mm was considered (approximately a
radius of three elements), as well as the overhang constraint. Moreover, a supporting region of five
elements was used. Figures 9 and 10 present interactive models of the obtained material distribution
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considering Vf = 0.3. In the design of Figure 9, the printing direction was aligned to the Z axis
shown in Figure 8, and the faces of the design domain at Z were considered to be supported by
support structures that connected the part to the base plate. The bottom oblique face (all the way to
its tip) respected the overhang constraint; however, some support structures on its tip (at least) are
recommended in order to avoid excessive thermo-mechanical warping. In the design of Figure 10,
the printing direction was aligned to the X axis shown in Figure 8, and the faces of the design domain
at X were considered to be supported by support structures that connected the part to the base plate.
Some support structures on its tip (at least) are also recommended (for the same reasons) in order to
avoid excessive thermo-mechanical warping.

F

Figure 8. Topology Optimization (TO) design volume and boundary conditions.

The presented results showed that the algorithm was able to produce a self-supporting design in
the 3D domain, as well. Moreover, the self-supporting design of Figure 9 had a similar compliance
level when compared with the unrestricted solution. In fact, the restricted design suffered a marginal
increase in compliance of 2%. On the other hand, the self-supporting design of Figure 10 led to an
important increase in compliance (23%) when compared with the unrestricted solution.

Figure 9. TO result considering the Z axis as the printing direction.
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From a manufacturing and post-processing point of view, the major advantage of considering the
overhang constraint was related to the reduction of support structures. In fact, the design can change
significantly in order to become self-supporting and avoid the use of support structures. This advantage
comes with a cost of compliance and computational time. On the other hand, internal support
structures represent costs in terms of raw material, building time, and post-processing (i.e., cutting
and machining). Moreover, their removal can pose a major challenge if they are internal to the design
volume due to access and/or the risk of rupture of thin structural members during cutting and
machining operations.

Figure 10. TO result considering the X axis as the printing direction.

6. Concluding Remarks

This study presented a computational methodology capable of providing initial solid designs
for metal AM, and its performance was evaluated via a comparative study. The final methodology
showed an improved capability of converging towards a discrete solution, having considerable
relevance. In fact, a solution with a high level of intermediate densities has little practical use.
However, the modified fabrication model was able to provide solutions with higher compliance when
compared to the original. On the other hand, the compliance difference had limited relevance due to
the small difference.

The initial self-supporting designs provided by the presented methodology allowed controlling
the minimum member size and the overhang features in a closed computational environment, which
was performance driven. Moreover, the resultant designs took advantage of the freedom provided
by SLM, and TO played an important role in the search for optimal material distribution. Moreover,
the referenced distribution can reduce the need for support structures.
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