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Abstract: In this work, we introduce an analytical expression for approximating the transient melting
radius during powder melting in Selective Laser Melting (SLM) assumed with a stationary laser heat
source. The purpose of this work is to evaluate the suggested analytical approach in determining the
melt pool geometry during laser processing, by considering heat transfer and phase change effects.
This will allow for the rendering of the first findings on the way to a quasi-real time calculation of the
melt pool during laser melting, which will contribute significantly to the process design and control,
especially when new powders are applied. Initially, we consider the heat transfer process associated
with a point heat source, releasing a continuous and constant power (in a semi-infinite powder bed.
On the point of the heat source the temperature is infinite, and the material starts to melt spherically
outwards, creating an interface that separates the solid from the molten material; we assume different
properties between the two phases. Unlike the cases of the cartesian and cylindrical coordinates,
(in a cartesian coordinate the heat source is over a plane, i.e., W/m2, and in cylindrical along a
line, i.e., W/m), where the melting process is proportional to the square root of time, in spherical
coordinates the melting stops at a finite radius, i.e., a maximum radius, which depends only on the
heat source, the conductivity of the solid and the difference between the far-field temperature and
the melting temperature of the material. Here we should also point out that to achieve continuous
melting in spherical coordinates the power of the source must increase with the square root of the
time. The obtained analytical expression for the maximum melting radius and the approximate
expression for its dependence on the time compare well with the numerical results obtained by a
finite element analysis.

Keywords: phase change; analytical melt pool calculations; numerical melt pool appraisal; spherical
symmetry; continuous point heat source; semi-infinite domain

1. Introduction

Melting due to a heat source is very significant in thermal manufacturing processes such as Selective
Laser Melting (SLM) [1–6] and Selective Laser Sintering (SLS) [7,8], spot welding, torch welding [9–11],
and arc welding [12], to name a few. In these processes, an understanding of the melting process is very
important due to the many other physical phenomena taking place simultaneously, such as Marangoni
effects and the internal flow in the molten material.

The fundamentals of the thermodynamic change phase of solids are presented comprehensively
by Tosun [13], whereas in the work of Berveiller & Fischer [14] a deeper insight into the influence
of the change phase on the mechanical properties of solids is outlined. Here, kinematic models to
describe the phase change effects in metals during melting and solidification, especially in the case

J. Manuf. Mater. Process. 2019, 3, 50; doi:10.3390/jmmp3020050 www.mdpi.com/journal/jmmp

http://www.mdpi.com/journal/jmmp
http://www.mdpi.com
https://orcid.org/0000-0002-5947-3000
http://www.mdpi.com/2504-4494/3/2/50?type=check_update&version=1
http://dx.doi.org/10.3390/jmmp3020050
http://www.mdpi.com/journal/jmmp


J. Manuf. Mater. Process. 2019, 3, 50 2 of 9

of steel alloys, are expedient [15]. During the phase change from solid to liquid and back to solid,
thermal and plastic stresses occur due to a lower yield strength in metals at higher temperatures [16].
After a cooling down to an ambient temperature due to a non-linear interaction of thermal, elastic and
plastic stresses and the phase change, rest stresses are formed in the solid structure, so called residual
stresses [17,18]. In particular in the case of SLM processes, a residual stresses formation is of great
importance since residual stresses are dominated by the actual process parameters [19]. Modeling
methods are applied in order to simulate the formation of residual stresses that have a significant
impact in process feasibility and product properties [20,21]. A deeper insight into the characterization
and evaluation of residual stresses by means of experimental measurements and analytical models is
presented by Ghidelli et al. [22].

Fundamental work on phase change dates back to Lamè & Clapeyron [23] and to Stefan [24] who
consider the problem of ice formation. Phase change in cylindrical and spherical coordinates were
later considered by Frank [25], Paterson [26], and Cho & Sunderland [27]. Paterson [26] addressed the
problem of a line heat source in cylindrical coordinates and obtained an expression for the propagation
of the melting interface. The temperature along the line heat source is infinite, and an interface
separates the material into two regions: the molten phase and the solid phase. The velocity of the
interface is proportional to the square root of time, and the proportionality constant is obtained through
a characteristic equation by employing the boundary condition describing the energy conservation
along the boundary of fusion. The analytical expression for the process was obtained by employing
a similarity variable that reduced the partial differential equations (PDE) into ordinary differential
equations (ODE). Finally, the characteristic algebraic equation is obtained.

Analytical expressions for the phase change process can be also obtained in one-dimensional
cartesian coordinates in the case of the solidification of a supercooled liquid, and the melting or
solidification in a half-space with a constant temperature along the boundary [28]. As mentioned before,
a common characteristic of many one-dimensional problems, particularly in cartesian coordinates,
is the reduction of the PDE to an ODE using the characteristic variable x/

√
t. Detailed accounts of

many problems with different configurations in solidification and melting are described in Alexiades
& Solomon [29], Carslaw & Jaeger [30], Ghez [31] and Hu & Argyropoulous [32], along with the
methodologies for addressing more complicated problems, both analytically and approximately.

An analytical solution for solidification/melting in spherical coordinates is not available.
The physical reason for this is that the temperature drops rapidly enough along the radius, and after a
certain point the solidification/melting cannot be sustained due to the reduction of the temperature
gradient. Mathematically, the situation can be easily understood by considering the problem of one
dimensional heat conduction in an infinite medium in the three basic coordinate systems, i.e., cartesian,
cylindrical and spherical. Although for steady-state conditions there is an analytical solution in
spherical coordinates and the temperature is proportional to the inverse radius 1/r, this is not the case
in cylindrical and cartesian coordinates; in cylindrical coordinates, the temperature is proportional
to the log[r] and in artesian coordinates it is proportional to x [33], i.e., for cartesian and cylindrical
coordinates the only possible solution is time dependent. Hence Paterson [26], who considered the
problems of phase change in cylindrical and spherical coordinates, and was able to obtain an analytical
solution in spherical coordinates only under the assumption that the power of the heat source increases
with the square root of time; hence, this solution is of less practical importance.

In the existing literature, time-intensive thermal models of the transient temperature distribution
during SLM processing are presented using equivalent heat sources on the basis of the finite element
analysis [34,35]. In this work, we focus exclusively on the transient heat transfer effects during the phase
change, i.e., the melting, of solid powder to liquid, by proposing an analytical model. We consider the
problem of phase change in spherical coordinates assuming a continuous but constant heat source at a
single point. This simplifies the problem, as the solution is spherically symmetric. In what follows,
we present the problem, the steady-state solution and a transient approximate analytical solution,
and compare them with a numerical simulation obtained using a finite element analysis. Here, the main
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goal is to appraise the proposed analytical solution, which provides a quasi-real time estimation of the
melt pool. Future enhancements are intended to assist the SLM process, as well as the product design
and control, especially due to the recent rising industrial application of additive manufacturing (AM)
technologies [36].

2. Problem Statement and Solution

Consider the case of semi-infinite solid material, i.e., powder beds, that we wish to melt in order
to subsequently produce a solid component. A point laser beam provides a heat source of power

.
Q

that melts the material with a spherical symmetry. The configuration is shown in Figure 1. We assume
that the solid and the molten material have the same density, so the shape of the configuration remains
the same, i.e., no annulus is created. However, we assume that the heat capacity and the conductivity
of the two phases are different. This leads to a discontinuity of the temperature gradient at the interface
(R[t]) between the solid and the liquid (molten material). The interface (R[t]) separates the solid from
the molten material and is a function of time.

J. Manuf. Mater. Process. 2019, 3, x FOR PEER REVIEW 3 of 9 

 

real time estimation of the melt pool. Future enhancements are intended to assist the SLM process, as 
well as the product design and control, especially due to the recent rising industrial application of 
additive manufacturing (AM) technologies [36]. 

2. Problem Statement and Solution 

Consider the case of semi-infinite solid material, i.e., powder beds, that we wish to melt in order 
to subsequently produce a solid component. A point laser beam provides a heat source of power Q  
that melts the material with a spherical symmetry. The configuration is shown in Figure 1. We assume 
that the solid and the molten material have the same density, so the shape of the configuration 
remains the same, i.e., no annulus is created. However, we assume that the heat capacity and the 
conductivity of the two phases are different. This leads to a discontinuity of the temperature gradient 
at the interface (R[t]) between the solid and the liquid (molten material). The interface (R[t]) separates 
the solid from the molten material and is a function of time. 

 

Figure 1. Schematic representation of a cross section of the physical problem, which is spherically 
symmetric. The molten material has the shape of a hemisphere with radius R[t] that denotes the 
location of the interface. The melting is due to a laser delivering a power Q  at the point 0 of the 
semi-infinite solid material (powder). 

The equations that describe the two phase-problem are as follows [28]: 

(i) The liquid phase: 

   


 

T α Tl l 2 lr2 rt rr
 (1) 

  Qrr
l
k 




 022

t
lT

  (2) 

 
melt

TttRr
l
T  ],[  (3) 

(ii) The solid phase: 

Figure 1. Schematic representation of a cross section of the physical problem, which is spherically
symmetric. The molten material has the shape of a hemisphere with radius R[t] that denotes the location
of the interface. The melting is due to a laser delivering a power

.
Q at the point 0 of the semi-infinite

solid material (powder).

The equations that describe the two phase-problem are as follows [28]:
(i) The liquid phase:

∂Tl
∂t

=
αl

r2
∂
∂r

(
r2 ∂Tl
∂r

)
(1)

− 2π kl r2 ∂Tl
∂t

[r→ 0] =
.

Q (2)

Tl[r = R[t], t] = Tmelt (3)
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(ii) The solid phase:
∂Ts

∂t
=
αs

r2
∂
∂r

(
r2 ∂Ts

∂r

)
(4)

Ts[r→∞, t] = T∞ (5)

Ts[r = R[t], t] = Tmelt (6)

(iii) Energy balance on the interface:

ks
∂Ts

∂t
− kl

∂Tl
∂t

= Lρs
dR[t]

dt
(7)

where α is the thermal diffusivity, k is the thermal conductivity, L is the latent heat, ρ is the density that
is constant, i.e., ρs = ρl, and Tmelt is the melting temperature of the material. In the above equations,
the subscript l denotes the liquid phase (molten material) and s the solid (powder).

The above system of equations and boundary conditions (Equations (1)–(7)) have no analytical
solution. There is only an analytical/similarity solution if the heat source increases with the square root
of time [26], i.e.,

− 2π kl r2 ∂Tl
∂t

[r→ 0] =
.

Q
√

t

However, if we assume steady-state conditions, i.e., we drop the time derivative terms from the
system of Equations (1)–(7), and we obtain the following steady-state solutions: Tl, Ts, and R for the
temperature fields and the radius, respectively:

Tl =

.
Q

2 kl π

(
1
r
−

1

R

)
+ Tmelt (8)

Ts =
R(Tmelt − T∞)

r
+ T

∞
(9)

and

R =

.
Q

2 ksπ (Tmelt − T∞)
(10)

It is important to point out that the above steady-state solutions must also be valid in the case of
different densities between the solid and the liquid. This is justified because at a steady-state the terms
related to convection must be zero, and the system of Equations (1)–(7) would be applicable.

3. Approximation Solutions

3.1. Approximate Analytical Solution

An approximate solution for the interface R[t] can be obtained by considering that the process
is controlled by diffusion in the solid phase. This is justified because (i) the powder has a smaller
thermal diffusivity than the molten material, (ii) the melt pool is confined in a small radius and (iii) the
steady-state solution of the interface R (Equation (10)) is independent of the properties of the liquid.
Hence, for the case of a constant, continuous, thermal energy source

.
Q at the origin of a semi-infinite,

homogeneous medium, the temperature distribution is obtained as [37]:

T[r, t] = T∞ +

.
Q

2 ksπ r
er f c

[
r

2
√
αs t

]
(11)
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Hence, the location of the interface R[t] with the temperature T = Tmelt is given by numerically solving
the implicit equation:

Tmelt = T∞ +

.
Q

2 ksπR[t]
er f c

[
R[t]

2
√
αs t

]
(12)

3.2. Numerical Solution

The finite element simulation was performed on the commercial software ANSYS Workbench [38].
For the properties of the solid material, we have used the properties of the powder IN718 [2], i.e.,
ks = 0.37 W/(mK), αs = 2.76 × 10−7 m/s2, T∞ = 20 ◦C and Tmelt = 1300 ◦C. For a heat source of power

.
Q

= 4 W, using Equation (10), we obtain that at a steady-state the interface is located at R = 0.13 mm.
In the FE simulation, the heat power

.
Q was defined on an infinitesimal surface of radius 0.01 mm in

order to replicate the point heat source. This dimension represents 7.7% of the computed melt pool of
radius 0.13 mm, even at a very short time duration (0.01 s) after the simulation starts. The significance
of the heat source dimension in the FE analysis drops to a theoretical zero, i.e., the point source
is approximated, especially when compared to the expected final melt pool radius of 1.3 mm, i.e.,
at steady state, reaching a value of solely 0.77%. Based on these dimensional observations, the mesh
density in the heat source area was estimated to have a value of 0.005 mm and in the expected melt pool
area a value of 0.05 m. This geometrical discretization enables a fast convergence during the transient
thermal analysis, with an adequate computation of the temperature gradients, as shown in Figure 2.
The very high temperature of 3.4 × 105 ◦C in the center of the melt pool, i.e., on the approximated point
heat source, represents the theoretical infinity of the analytical solution.
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3.2.1. Numerical Results with no Phase Change

To verify the numerical analysis, we first addressed the problem of the continuous release of
heat at single point on a homogeneous semi-infinite medium, i.e., without considering the varying
material properties at the melt pool interface (Equation (7)). We have used the properties of the solid
mentioned earlier. The analytical solution for this problem is given by Equation (11), hence we expect
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the numerical solution to match Equation (12). In Figure 3, we compare the results of the simulation
with Equation (12). The figure shows the location of the radius where the temperature is at Tmelt for the
two cases, i.e., numerical (dashed curve) and analytical (solid curve, Equation (12)). For the given data,
the steady-state radius is R = 0.00134 m. As expected, the results are very accurate, and the error is less
than 1%.
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Figure 3. Heat transfer in a homogeneous, semi-infinite material with a continuous heat release at a
single point. The curves show the radius (semi-spherical interface) where the temperature has the
constant value Tmelt, as a function of time. The solid curve is the analytical solution (Equation (12)),
and the dashed curve is the numerical solution obtained using the finite element analysis (ANSYS [38]).

3.2.2. Numerical Results with Phase Change

The numerical analysis is enhanced with the definition of the varying, i.e., non-linear specific heat
capacity between the solid and liquid phases, implying that the phase change from the solid to liquid
state requires the latent heat at the melting temperature. We have assumed a pure material, i.e., the phase
change occurs at the distinct temperature Tmelt. The liquid phase and the solid phase are characterized
by different properties of the heat capacity, specifically cps = 351 J/(kg·K) and cpl = 643 J/(kg·K), resulting
in a latent heat of 4.59 × 105 J/kg. In addition, the density of the liquid is ρl = 7756 kg/m3 and
kl = 26.63 W/(m·K). A parameter sensitivity analysis shows that the thermal conductivity variation due
to the phase change does not influence the melt pool creation significantly, i.e., the dominant material
property in this case is the heat capacity, as justified by literature findings [39]. In Figure 4, we show the
results of the numerical simulation, and we compare them with the approximate transient analytical
result (Equation (12)). It is evident that both the numerical and approximate results (Equation (12))
approach the steady-state solution (Equation (10)), the only difference being the rate at which this
is approached. It is interesting, however, that although the approximate solution (Equation (12))
assumes a single material, in particular solid powder, it provides results close to the numerical solution,
the maximum error being approximately 10%. This is not surprising as the melt pool is isolated in a
small region.

In addition, because of the latent heat and the higher heat capacity, the interface obtained by the
numerical solution requires more time to achieve a certain radius, hence the radius obtained from the
analytical solution is always higher than the one obtained from the numerical solution.
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Figure 4. Heat transfer with phase change in a semi-infinite powder bed with continuous heat release at
a single point. The curves show the melt pool radius (semi-spherical interface) where the temperature
has the constant value Tmelt. The solid curve is the analytical solution obtained assuming a single
material, i.e., homogeneous powder (Equation (12)), and the dashed curve is the numerical solution.
In the latter, we assume that there are two phases: solid and liquid.

4. Conclusions

The findings of our work are summarized as follows:

(1) We consider the heat conduction problem associated with a continuous source of power at a
single point in a semi-infinite material. At the point of the heat source, the temperature is infinite,
and the melting process is spherically symmetric. Unlike cartesian and cylindrical coordinates,
there is no analytical solution; there is, however, a steady-state solution, i.e., the melting process
reaches a maximum radius. The radius is proportional to the power of the heat source and
inversely proportional to the conductivity of the solid and the difference between the melting
temperature and the temperature at infinity, as proposed in the work of [26].

(2) An approximate analytical solution of the melting radius as a function of time is obtained by
assuming a single material, i.e., solid powder, and by locating the radius where the temperature
is at the melting temperature, as in [37].

(3) This simple approximation has the same steady-state result as the numerical solution, and also
provides transient results close to the numerical solution, although the numerical solution includes
the latent heat, and a higher heat capacity and conductivity for the fluid similar to the finite
element analyses conducted by [34,35] for a moving heat source (Figure 4). The reason for this is
that the heat conduction process is controlled by the material with the lower thermal diffusivity,
i.e., the solid powder, and that the melt pool has small dimensions. The difference between
the two is that the numerical result requires more time to achieve the steady-state solution
because of the extra energy required due to the latent heat and the non-linear heat capacity of the
molten material.
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