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Abstract: Transient liquid phase (TLP) bonding of 6063 aluminum alloy (Al-6063) and duplex alloy
2304 stainless steel (UNS S32304) was performed using copper foil as an interlayer between the base
metals. A compression load was applied normal to the specimens. Metallurgical examination of
the produced joints showed three distinct regions including a reaction zone, diffusion affected zone,
and the base metals. The diffusion of copper into aluminum resulted in an Al–Cu eutectic structure.
However, the oxide layer on the aluminum surface controlled the dissolution behavior of copper
and the extent of its wettability with the base metals. Although voids and intermetallic compounds
were detected at the interfaces of the processed joints, a defect free joint was produced at 570 ◦C.
In addition, the results from corrosion tests showed that the use of copper as an interlayer decreased
the corrosion resistance of the joints. However, increase in thickness of the joining reaction zone with
increasing bonding temperature was observed to increase corrosion resistance.

Keywords: TLP bonding; eutectic; aluminum alloys; duplex stainless steel

1. Introduction

There is a growing demand for cost-effective materials with enhanced engineered properties.
This involves the use of dissimilar metals [1,2]. Although dissimilar metal-couples are being used
in the transportation, aerospace, and oil and gas sectors, the bonding of dissimilar metals is still
facing numerous challenges and difficulties [1–4]. The difference in thermal expansion coefficients
of dissimilar metals can result in residual stresses within the joint region which can eventually cause
failure of the joint when conventional fusion welding is used [5]. Furthermore, the large difference in
melting point between different metals (e.g., aluminum and steel) makes the use of fusion welding
processes difficult to apply to these metals [6,7].

Stub ends, flanges, and pipe fittings are examples of parts and structures, where dissimilar metal
joints are used [1,8]. Furthermore, many engineering components where corrosion susceptibility
is high, the potential difference between the dissimilar materials is of great concern corrosion [9].
The formation of intermetallic compounds (IMCs) during welding is a challenge for scientists and
researchers, such compounds can easily result in brittle fracture of the joints. Therefore, all these
factors must be considered in order to produce good dissimilar metal-couples [10–12].
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The emerging trend in the automotive industry is to reduce CO2 emissions by improving the
fuel efficiency. Reducing the weight of vehicles is one way of savings in fuel consumption [4,13].
This pressing demand has led to the introduction of lightweight materials such as aluminum alloys
into the transportation industry. Aluminum alloys are among the lightest metallic materials promising
structures with high specific strength, good corrosion resistance, and excellent recyclability [14,15].
Although the employment of aluminum as the sole material for the manufacturing of vehicles
has been successfully achieved, the limited strength of aluminum, as well as the expected cost of
production, are among the challenges that resist the commercialization of such a vehicle [16]. On the
other hand, steel has been recognized as the most widely used metal in vehicle construction [17].
Thanks to their high elevated-temperature strength, low cost, and good formability [18,19].
Therefore, merging aluminum to steel in a single structure could be a smart approach to combine the
beneficial properties of both materials.

Several methods have been applied to bond dissimilar metals in general, and steel and aluminum
in particular [1]. Each one has its own advantages and limitations. Selecting the most appropriate
method is vital for accomplishing successful joints. Fusion welding processes, solid-state bonding,
adhesive bonding, brazing, and soldering are the most well-known methods of bonding dissimilar
metals [1,20].

Spot welding has been considered the predominant and the most used welding method in the
automotive industry [2]. Qiu et al. (2010) characterized the interface between mild steel and 5052 Al
alloy joints made by spot welding. Reaction products of FeAl3 were detected at the circumferential
region of the weld, while FeAl3 and Fe2Al5 were detected beside aluminum and steel respectively at
the central region of the weld [21]. Insertion of interlayers between the joining surfaces could suppress
the formation of IMCs [1]. Zhang et al. (2014) investigated the effect of interlayer 4047 AlSi12 on the
microstructure and mechanical properties of H220YD galvanized high strength steel and 6008-T6 Al
alloy joints. It was found that Fe2(Al,Si)5 and Fe4(Al,Si)13 compounds formed at the interface between
aluminum and steel. Furthermore, the thickness of IMC formed has an inverse correlation with the
interlayer thickness [16].

Joining of Al alloys to steel by laser welding has been investigated and many publications are
available in the literature [3,22–25]. Meco et al. (2015) used laser brazing technique to join XF350 steel
to AA5083 aluminum alloy. The idea of this process involves applying a laser beam to the steel surface.
The heat will be conducted through the steel plate and melt the aluminum to wet the steel and create
the joint. It was reported that the welded samples were free from defects although some IMCs such as
Fe2Al5 and FeAl3 were detected [22].

Unlike fusion welding, solid-state diffusion brazing does not require melting of base metals.
It can also be considered as a versatile process in terms of work piece thickness and geometry [2].
Many researchers have investigated different methods of joining metals and their behaviors [26–28].
Chen and Kovacevic (2004) declared that aluminum 6061 can be joined to mild steel by friction stir
welding (FSW) through the combined effect of solid-state and fusion welding. However, several holes
were found at the top of the weld and IMCs such as: Al13Fe4 and Al5Fe2, were detected in the
nugget zone [29]. Shen et al. (2015) also used FSW technique to join Al5054 plates to DP600 steel
plates. Welds with excellent mechanical properties were fabricated. However, intermetallic compound
Fe4Al13 was detected at the fracture zones [30].

In this paper, a feasibility study is undertaken to fabricate joints between Al-6063 and UNS
S32304, using a pure Cu foil as an interlayer between the base metals and at a temperature lower than
conventional welding processes. The advantage of using Cu between Al and steel is that Cu can make
a eutectic reaction with Al, and at the same time one avoids the formation of IMCs with Fe [31].

2. Materials and Methods

UNS S32304 and Al-6063 were supplied by ThyssenKrupp (Nirosta GmbH, Krefeld, Germany) and
Qalex (Qatar Aluminium Extrusion Company, Rayyan, Qatar), respectively. Samples were machined
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to rectangular dimensions of 30 mm × 15 mm. Aluminum samples were fabricated from an extruded
Al-6063 sheet of 2 mm thickness, while duplex stainless steel samples were in the form of coupons
with a thickness of 1 mm. A copper foil with 99.9% purity and 10 µm thickness was obtained from
Goodfellow, Huntingdon, UK, was used to form an interlayer between the aluminum and stainless
steel sheets. The base metal surfaces to be bonded, were ground to 1000 grit surface finish using SiC
paper, cleaned with ethanol and dried using hot air. Each joint consisted of two overlapping samples
with a piece of copper foil sandwiched in between.

The TLP bonding process was executed using a thermo-mechanical simulator of type Gleeble 3500
(Dynamic Systems Inc., New York, USA), in an inert atmosphere (argon) and a heating rate of 100 ◦C
min−1. A thermocouple wire was welded to the edge of the aluminum sample; approximately in the
middle of the overlap region in order to ensure an accurate monitoring of the specimen temperature.
A compression load of 0.2 KN was applied to the specimens. The processing temperature to form the
joints was varied between 550 ◦C, 555 ◦C, 560 ◦C and 570 ◦C. Figure 1 shows a sample setup in the
Gleeble system.
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Figure 1. Sample set up for bonding in the Gleeble system [2].

The microstructural development at the joint interface of the copper interlayer was characterized
in a scanning electron microscope (SEM, FEI Nova NanoSem 450, Brno, Czech Republic) equipped with
energy dispersive X-ray spectroscopy (EDX) and an X-ray diffraction analysis unit (XRD, PANalytical
Empyrean, Almelo, The Netherlands). Al-6063 and UNS S32304 were grinded and polished to a
1 µm finish using a diamond suspension. After polishing, Al-6063 was etched with Weck’s reagent,
while UNS S32304 was etched with Kalling’s reagent. An optical microscope (Leica DM IRM, Wetzlar,
Germany) equipped with Clemex image analysis software, was used to measure the size of aluminum
grains. Micro-hardness measurements across the interface were conducted in accordance to ASTM
E384 using a load of 50 g in a Vickers micro-hardness tester (Future-Tech ARS900, Kanagawa, Japan).
The hardness profile included 11 points measured from the center of the joint to 500 µm on both sides of
the interface. The indentation spacing was 0.1 mm. Further, corrosion rates of the joints were evaluated
using potentiodynamic polarization tests in a Gamry 600 potentiostat, and a 3.5% NaCl solution.
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3. Results and Discussion

3.1. Microstructural Development in Joints

The resultant area of bonding in various samples can be categorized into three distinct zones
(Figure 2), i.e., base metal (Z1), reaction zone (Z2), and diffusion affected zone (Z3); The latter is the
area adjacent to Z2 at both sides extending into the Al-6063 and UNS S32304, respectively.J. Manuf. Mater. Process. 2018, 2, x 4 of 11 
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Figure 2. Scanning electron microscope (SEM) micrograph showing resultant reaction zones after the
bonding process. (Transient liquid phase (TLP)-560 ◦C-5 min).

In general, the wettability of liquid Cu on the Al-6063 substrate is relatively high. Hence, liquid copper
spread easily along the whole joint interface. On the contrary, the wettability of Cu on UNS S32304 is
low and no intermetallic zones formed at the Cu/Fe interface. The formation of Al–Cu eutectic phase
occurred at the interface. As soon as the eutectic liquid forms, Cu will tend to diffuse into Al rather
than the steel. This occurs as a consequence of the much higher value of the diffusion coefficient of
Cu in Al than for Cu in Fe. An undissolved portion of Cu was observed at the joint interface of some
samples, while the samples processed at 570 ◦C showed a defect-free joint with a thick reaction zone
having a dense sub-zone closed to the interface (see Figure 3c).

The thickness (Z) of the reaction zone Z2 is a function of temperature (T) and time (t) and can be
expressed by the following parabolic equation:

Z = (2Kt)0.5

and
K = K0 exp(−Q/RT). (1)

Hence, K is the growth velocity (m2s−1); K0 a growth constant (m2s−1); R is the gas constant
(8.314 KJ mol−1); and Q is the activation energy (KJ mol−1) [21,32].

Further, a direct correlation between the bonding temperature and reaction zone thickness could
be found, i.e., see Figure 4. The average thickness of Z2 increased from 96 µm at 550 ◦C to 217 µm
at 570 ◦C.

Figure 5 shows the location of the EDX analysis and the corresponding, chemical compositions,
across the interface, respectively. The diffusion coefficients of Cu in Al (Dcu→Al) and Cu in Fe (Dcu→Fe),
at same temperature, are about six order of magnitude different. Therefore one observed that Cu
diffused more easily into the Al-alloy than the steel [31,33]. In comparison, insignificant amounts of
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Cu (≈0.8 at.%) were detected in points D and E, e.g., along the joint interface at the UNS S32304 side.
The stainless steel bonded at 570 ◦C, absorbed Cu to a content close to 0.8% (see Figure 5). In fact,
in the literature it was reported that the solubility of Cu in Fe can be enhanced by raising the bonding
temperature [31].
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Figure 5. SEM micrograph and energy dispersive X-ray spectroscopy (EDX) analysis of five selected
points (A to E) (TLP-560 ◦C-5 min).

The highest Cu concentration between 28–33 at.% was observed at Point C, located in the Al-alloy.
Furthermore, diffusion of Cu extended into the Al-alloy away from the joint. The decrease in Cu
content at the joint interface resulted in isothermal solidification at the eutectic temperature [34].

Moreover, diffusion of Fe into Al was also observed. An approximate amount of 0.3 at.% of Fe was
detected at point B. The lowest percentage of Al detected at points D and E were 0.32 and 0.31 at.%,
respectively, which is due to the large difference in the diffusion coefficients between Fe in Al (DFe→Al
= 1.00× 10−13 m2 s−1) and Al in Fe (DAl→Fe = 9.94× 10−19 m2 s−1) [13].

The shown XRD pattern revealed the existence of Al2Cu at the interface near the Al-6063 side
(see Figure 6). This is in good agreement with the EDX data (Figure 5). The presence of FeAl3 as
indicated by Sun et al. (2015) has not been observed in the present case, which is presumably because
Cu acted as a transition material between Al and Fe, preventing direct contact and hence suppressing
the formation of Fe–Al intermetallic compounds [24].

The highest magnification view of the microstructure shown in Figure 7 indicates that Cu diffused
from the joint interface into the Al-alloy along grain boundaries. Therefore, one can claim that grain
boundary diffusion is dominant over lattice diffusion during the present bonding process.

The diffusion path depends on several factors such as microstructure, temperature and the
interface quality between the metal and adjacent layers [35]. The Arrhenius’ law describes the effect of
activation energy (Ea) on the diffusion coefficient (D):

D = D0 e−Ea/RT . (2)

Grain boundary diffusion has a fast diffusion path due to the open structures of the boundaries.
The latter formed a network along the whole area of the specimen. Also, voids and imperfections
along Al grain boundaries render the diffusion of Cu easier than diffusion through the lattice [35–37].

Figure 8 shows the microstructure of UNS S32304 steel before and after the bonding process.
Unlike Al, because of the presence of Cu, the etching process was more aggressive on the post-welded
samples than the as-received ones. It was also noticed that ferrite grains (α-Fe) were significantly more
etched than the austenite grains (γ-Fe). This could be attributed to the significant difference between
Cu diffusivities in α-Fe and γ-Fe (4.4 × 10−9 and 9.4 × 10−12 cm2 s−1, respectively). In addition,
α-Fe (BCC) has a more open atomic structure than γ-Fe (FCC) [37,38].
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3.2. Micro-Hardness Evaluation

Figure 9 shows the micro-hardness profile for samples made by TLP bonding at 550 ◦C, 555 ◦C,
560 ◦C, and 570 ◦C. The average micro-hardness values at the joint interface were in the range
of 125–175 HRB. A gradual decrease in the hardness occurred away from the interface, towards the
Al-6063 side. The micro-hardness of Al-6063 decreased after a distance of 200 µm from the joint interface
by 44–50% (from an average of 132 HRB to 58–67 HRB). The higher hardness of the post-welded Al-6063
was due to diffusion of Cu [39]. Furthermore, the joint formed at 570 ◦C exhibited a significant increase
in hardness within the Al-6063 alloy compared to the other joints made at lower temperatures. This is
due to the maximum spread of the eutectic phase for the joint produced at 570 ◦C. On the UNS S32304
side, the micro-hardness profile gave an average value of 266 HRB in a position 200 µm from the
joint interface.
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3.3. Corrosion Resistance

The potentiodymaic polarization curves for TLP bonding joints as a function of bonding
temperature are shown in Figure 10. Icorr and Ecorr were calculated by extrapolating the tafel plots of
each test to the zero potential. Each test was repeated twice and found to be reproducible. As shown
in Figure 10, all the joints exposed to the same experimental condition, showed similar behavior in
the polarization test. However, Icorr decreased at higher bonding temperature with the lowest Icorr

value obtained for the joint produced at 570 ◦C. It was found that the thickness of the reaction zone
had a direct relation with the bonding temperature (see Figure 4). Therefore, the joint produced at
570 ◦C formed the thickest reaction zone compared to other joints formed at lower temperatures.
According to the findings in [40], the denser the reaction zone, the higher the corrosion resistance of
the joint. The present polarization curves in Figure 10 clearly confirmed these observations. The shift
in curves to a more positive potential with increasing bonding temperature from 550 ◦C to 570 ◦C
indicated a better corrosion resistance of the joint.
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4. Conclusions

Transient liquid phase bonding of Al-6063 to UNS S32304 was studied using a thin Cu interlayer.
The effects of the Cu interlayer and bonding temperature (550 ◦C, 555 ◦C, 560 ◦C, and 570 ◦C) on the
microstructure, corrosion resistance and micro-hardness of the resulting joints were investigated.

• The resultant area of TLP bonding consisted of three distinct zones including base metal,
reaction zone and diffusion affected zone. Cu diffused into the Al alloy and formed an eutectic
phase. However, no reaction was observed on the UNS S32304 side.

• As the bonding temperature increased from 550 ◦C to 570 ◦C, the thickness of the reaction zone
increased by over 100%.

• Although voids and intermetallic compounds (Al2Cu) were found at the interface, a TLP joint
was produced successfully at 570 ◦C.

• Employing Cu foil as an interlayer suppressed the formation of Fe–Al intermetallics.
• Hardness was increased on the Al-6063 side as a result of Cu diffusion. However, changes in

hardness for the UNS S32304 steel was negligible.
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