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Abstract: This study proposes using the iterative learning control method to adjust the volumetric
error-compensated tool path, where the working volume motion accuracy of three-axis computerized
numerical control (CNC) milling machine tools is increased by segmented modification of the part
program. As the three-axis CNC milling machine tools generally have volumetric error of working
volume, this study refers to the measured and established table of volumetric errors and uses
the method of the modifying part program for volumetric error compensation of machine tools.
This study proposes using part-program single-block positioning segmented for volumetric error
compensation, as the generated compensated part program with multiple compensated blocks can
effectively compensate the volumetric error of working volume in the tool moving process. In terms
of the compensated tool path computing method, this study uses the iterative learning control
(ILC) method and refers to compensated tool path and volumetric errors along the compensated
tool path for iterative computation. Finally, a part program with multiple blocks is modified
by the converged optimal compensated tool path, in order that the modified part program has
higher-precision volumetric error compensation effect. The simulation result shows that the rate of
improvement of error of the volumetric error compensation method proposed in this study is 70%.
The result of cutting tests shows that the average rate of improvement of the straightness error of the
test workpiece is 60%, while the average rate of improvement of height error is 80%. Therefore, the
results of simulation and cutting tests can prove the feasibility of using the ILC method for segmented
modification of the volumetric error-compensated part programs proposed in this study.

Keywords: iterative learning control; volumetric error; part program; CNC machine tools

1. Introduction

Manufacturing mechanical parts with higher accuracy has been the machining target of various
computerized numerical control (CNC) machine tools through the ages, as the conventional pitch
error measurement and compensation methods cannot meet the requirement. Using volumetric
error measurement and implementing the geometric error compensation of machine tool working
volume according to this measurement result have become an important method to improve
machine tool machining quality [1–5]. There are six static geometric errors resulting from the axial
movement of three-axis CNC milling machine tools, including displacement errors and angular errors.
The displacement errors are linear displacement errors, vertical straightness errors, and horizontal
straightness errors. The angular errors are pitch angular errors, yaw angular errors, and roll angular
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errors. In addition, the three-axis CNC milling machine tools have three squareness errors; therefore,
for the three-axis CNC milling machine tools, there are 21 static geometric errors, leading to the
volumetric error of the working volume of the machine tool [6–10].

The volumetric error has significant effect on the motion accuracy of a machine tool, and severely
influences the geometric dimension accuracy of the workpiece, thus, measurement and compensation
are required [11–16]. Xiang et al. [17] developed a volumetric error compensation technique for
real-time and simultaneous compensation of the volumetric errors of multiple machine tools by
integrating an ethernet distributed numerical control system with a generalized volumetric error
kinematic model, which was also developed in this study. Due to the increased importance of
integrating metrology systems to machine tools to online compensate volumetric errors of machine
tools for improving machining efficiency and accuracy, Wang and Maropoulos [2] developed a real-time
volumetric error compensation algorithm to improve the dynamic path accuracy of a machine tool
using a laser tracker-assisted 3-axis positioning system. Holub et al. [18] identified volumetric errors
of a small three-axis vertical machining center using a laser interferometer, and ballbar tests were used
to validate the volumetric error compensation results. Later, Holub et al. [19] performed on-the-fly
tracking experiments on the small three-axis machining center to measure the volumetric errors of
the small three-axis machining center using a self-tracking interferometer, and then compared the
measurement time and results with conventional trigger- or time-based measurements to show the
superior performance of on-the-fly measurement. Circular tests based on ISO 230-4 were also employed
for verification. Owing to the influence of thermal distortion on the manufacturing accuracy of large
machine tools, Gomez–Acedo et al. [20] developed a thermal distortion compensation system using
parametric state-space representation as the model architecture, and the Kalman filter as the estimator
for the thermal drift of the machine tool center point for different spindle speeds and temperatures of
the motor gearbox and room air, respectively. Later, Gomez–Acedo [21] developed a new methodology
for the measurement of thermal distortion in large machine tools using a laser tracking interferometer to
achieve low measurement uncertainty. The measurement method for the angular thermal distortion of
the horizontal plane was also developed by referring to the temperatures of the machine headstock and
column. López De Lacalle et al. [22] developed a methodology for the geometric accuracy estimation
of five-axis machine tools using the Denavit–Hartenberg (DH) convention. The assembly errors were
considered as the additional geometric parameters in DH transformation matrices in order to present
the imperfect tool position in absolute reference system; therefore, the developed methodology can be
applied to precisely estimate the dimensional errors of a manufactured workpiece. Based on the DH
convention, Díaz–Tena et al. [23] developed a methodology for the geometric accuracy assessment of a
multitasking machine consisting of a swivel tool-spindle head, two spindles, and a turret. Assembly
errors were also considered as additional geometric parameters in transformation matrices in order to
analyze the propagation and influence of assembly errors on the tool position and orientation in detail.

While there are high-end machine tool controllers with volumetric error compensation
functionalities, it is expensive, which limits the generality of volumetric error compensation.
To make the conventional machine tool controller have volumetric error compensation functionalities,
the software compensation methods of part-program generation and modification have become
an important trend to improve the influence of the volumetric error of machine tools [24–27].
Eskandari et al. [28] utilized a neuro-fuzzy algorithm to model the geometric errors of a machine tool
using a laser interferometer, and then, developed a compensation method to modify the Numerical
Control (NC) part program with G-codes, which consider the developed error model and the
volumetric errors calculated through kinematic analysis of the machine tool.

Among numerous volumetric error software compensation methods, using CAD/CAM to
generate part programs with volumetric error compensation generally has excessive complexity
and difficult operation. The design of the modifying part program calculates the volumetric error and
makes compensation according to the part program characterized tool moving path. While the method
is simple, its volumetric error compensation effect is limited. As the volumetric errors induced by the
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tool moving process cannot be neglected, some studies segmented and compensated the tool moving
path [29–31]. Zhu et al. [32] employed statistical analysis methods to extract the component errors of a
machine tool, and then, a B-Spline mathematical model was further developed to represent component
error functions using the least-squares fitting method. Here, the NC part program with initial G-codes
was recursively subdivided and segmented according to the developed component error functions
with the calculated deviation errors. In addition, in order to improve the volumetric error induced by
the compensated tool path, some studies used the iteration method to compute more accurate tool
moving paths for machine tools [29,30]. Based on the measurement and modeling of volumetric errors,
Wang and Lin [27] developed a software-based error compensation method with an error interpolation
scheme to improve machining accuracy of a machine tool by recursively compensating the cutting
path and machining trajectory. Tool path deviation, as induced by the kinematic and geometric errors
of a CNC machine tool, usually corrupts the dimensional accuracy of the machined mechanical parts;
therefore, based on the developed error estimation model, Vahebi Nojedeh et al. [26] developed NC
program editor software to modify and generate the errors the compensated NC program by recursively
computing the compensated positions along the modified tool path. Lee et al. [33] developed a kind
of capacitance-sensor to measure the five geometric errors of a miniaturized machine tool, and then,
a volumetric error model was developed to synthesize and recursively compensate the geometric
errors of the machine tool to efficiently improve its positioning accuracy.

While the iterative computation of the volumetric error-compensated tool moving path can
effectively improve the influence of the volumetric errors in the tool moving process of a machine tool,
the unit recursive gain may fail to effectively converge to appropriate compensated tool path positions
due to the machine tool working volume error distribution. Therefore, this study refers to the measured
and established table of volumetric errors, as based on the part-program modification method, to
segment the tool moving path, and uses the concept of ILC (iterative learning control) adjustment
to design a segmented compensation method for the volumetric error of the part program, meaning
the part program can be modified to have volumetric error compensation effect with higher tool
moving accuracy. This study uses the Laser Doppler Displacement Meter (LDDM) laser displacement
measurement system and volumetric error analysis software to establish a table of the volumetric
errors of the machine tool [34,35], and then, performs path segmentation according to the part program
characterized tool moving path. Finally, the segmented tool moving path of the part program is
iteratively adjusted according to the concept of ILC. The ILC registers the actuation input, system
output, and output error information of the control system execution process through an iterative
computation process as reference for adjusting the control system actuation input of the next iteration,
in order that the output error can converge to a limited range within a limited number of iterative
learning. According to the segmented tool moving path of the part program, this study uses the
interpolation table of volumetric errors to compute the volumetric errors induced by the tool moving
path, and modifies the segmented tool moving path according to the volumetric errors. At this point,
to reduce the volumetric errors induced by the execution of the segmented tool moving path after
modification, the segmented tool moving path is adjusted by ILC iteratively till it converges to the
optimal segmented tool moving path.

The structure of this paper is described, as follows. Section 2 describes the experimental and
measuring equipment used in this study. Section 3 describes the volumetric error compensation
and calculation method proposed in this study, including computation for error compensation and
application of the iterative learning control method. Section 4 tests volumetric error compensation and
discusses the results, thus, the feasibility of the volumetric error compensation method, as proposed in
this study, can be validated. Section 5 summarizes this paper.

2. Introduction to Experimental System and Architecture

The three-axis CNC milling machine tool used in this study is shown in Figure 1. Its working
volume is 560 × 410 × 450 mm3, the controller is a FANUC 32i series controller, which is suitable for
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the application of a high-speed CNC machine tool [36]. The machine tool uses a C-shaped mechanical
structure; the Y-axis feed drive servomechanism is installed on the base, and the ballscrew drives
the saddle. The X-axis feed drive servomechanism for driving the working table is installed on the
Y-axis feed drive servomechanism, and the workpiece to be machined is fixed to the working table.
The Z-axis feed drive servomechanism, which is perpendicular to the working table, is installed on
the column to control the vertical movement of the spindle. The cutting tool used for machining is
installed on the spindle.
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Figure 1. Experimental CNC machine tool.

The LDDM™ laser displacement measurement system used in this study is shown in Figure 2,
which measures the volumetric error of machine tool working volume and generates the forward
and reverse table of volumetric errors on each motion axis. The laser Doppler displacement meter,
LDDM™, is an instrument system with 1/1,000,000 (1 ppm) displacement measurement accuracy.
The maximum measurement range is 15 m, the standard resolution is 0.01 ìm, the highest measurement
speed is 3600 mm/s, and the temperature range is 15.5 ◦C to 32 ◦C. In this study, all measurements
and compensation processes were performed under similar temperature (approximately 20 ◦C) and air
humidity (relative humidity approximately 50%) for a fair comparison. The measurement instrument
for the cutting test is the NVC322 fully automatic vision measuring machine produced by 3DFAMILY
Technology for workpiece straightness error measurement. The TESA MICRO-HITE Plus M350 height
gauge produced by Chiyeung, is used for height error measurement.
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3. Volumetric Error Calculation and Compensation

As CNC machine tools have many coordinate systems, the part-program coordinate system
used in part program, as well as the machine coordinate system used in machine tool motion, are
described in this study. Generally speaking, for convenient workpiece machining, the operator
usually uses the part-program coordinate system for programming the part program according to
the engineering drawing. The original setting of the coordinate system varies with the tool moving
process or machining process. The machine coordinate system is the referential coordinate system
for mechanical system motion and is a real coordinate system. The origin of the coordinate system
(machine origin) is the reference point of the machine tool, which is usually determined by the
machine tool manufacturer. In the workpiece machining process, the part-program coordinate system
is sometimes different from the machine coordinate system. As the machine tool volumetric error
measurement refers to the machine coordinate system, the measured values of errors are represented by
their positions in the machine coordinate system, thus, this study performs segmented compensation
of volumetric errors by the part-program modification method. The part program characterized tool
moving path must be transformed from the part program coordinate system to the machine coordinate
system, and then, the machine coordinate system refers to the measured and established table of
volumetric errors to compute the appropriate volumetric error compensation positions and values.
The general transformation of coordinate systems is applicable to the tool moving path transformation
between part-program coordinate system and machine coordinate system [37].

When the part program characterized tool moving path is transformed from the part program
coordinate system to the machine coordinate system, the calculation and compensation of volumetric
error in the tool moving process are performed. As shown in Figure 3, if the tool is to move from

current position R (machine coordinate system represented
→
R) to target position T (machine coordinate

system represented
→
T), due to the influence of the volumetric error of the machine tool, the cutting

tool moves to actual position P (machine coordinate system represented
→
P), which leads to

→
PT tool

moving position error. As the table of the volumetric errors of the machine tool has been measured

and established, the tool moving position error
→
PT can be calculated by the table of volumetric errors,

which can be used as the reference for the calculation of volumetric error-compensated position Q

(machine coordinate system represented
→
Q). The volumetric error-compensated position Q can be

calculated according to the following steps:

(S1) The tool moving direction from position R to position T (direction of
→
RT vector) determines the

load of the table of the forward volumetric errors or table of the reverse volumetric errors.
(S2) The volumetric error vector

→
E (=

→
PT) of the tool moves from position R to position T and is

calculated by the loaded table of the volumetric errors.

(S3) The tool moving T position and the calculated volumetric error vector
→
E are added up to generate

the volumetric error-compensated position Q.

The volumetric error vector
→
E is calculated by interpolation according to the table of volumetric

errors and
→
RT vector. For example, as shown in Figure 4, if the

→
RT vector means the X-axis moves from

the origin position to the A position in the machine coordinate system, and it is 0 mm to 15 mm in the
table of volumetric errors on X-axis, the X-axis movement results in the volumetric error on X-axis
direction Dxx(A), expressed as Equation (1):

Dxx(15)−Dxx(0)
15− 0

=
Dxx(15)−Dxx(A)

15−A
(1)

Dxx(15) represents the volumetric error on the X-axis direction when the X-axis moves to 15 mm
in the table of volumetric errors. Dxx(0) represents the volumetric error on the X-axis direction
when X-axis is at 0 mm in the table of volumetric errors. Therefore, when volumetric error vector
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→
E is calculated, the volumetric error-compensated position Q can be calculated (machine coordinate

system represented
→
Q), which is equal to position T (machine coordinate system represented

→
T) plus

volumetric error vector
→
E: →

Q =
→
T +

→
E (2)

While the volumetric error-compensated position Q can be calculated by Equation (2), there are
two principal problems in practical application:

• The compensation and calculation of Equation (2) only consider the error compensation of target
position T, while the position error compensation of a tool moving from R to T is not considered.
In other words, the position accuracy of the tool moving process cannot be guaranteed.

• The compensation and calculation of Equation (2) disregard the effect of the volumetric error of
the machine tool when the tool moves from position R to position Q. In other words, the actual
position of the tool cannot be guaranteed, and the target position to be reached has position error.
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To overcome the above problems, the original tool moving path is segmented. Figure 3 shows that
target position T becomes the intermediate target position on the segmented tool moving path, meaning
the position accuracy of the original tool moving process can be improved by the volumetric error
compensation of the segmented tool moving path. To make the actual tool position and intermediate
target position on the segmented tool moving path have small position error, differing from the present
iterative computation method, this study uses the ILC concept to iteratively compute the volumetric
error-compensated position.
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ILC was proposed by Uchiyama [38], which adjusts or modifies the actuation input of a controlled
plant by the iterative approaching control method, in order that the actual output of the controlled
plant can converge to the referenced output within limited numbers of iterative, thus, it can be
implemented in the manipulators and machine tools for executing repeated machine motions [39,40].
The development of the ILC theory receives the interest and attention of control field scholars; as
its control structure is simple, it is applicable to both linear systems and nonlinear systems and can
provide effective and practical solutions for repetitive tracking control and repetitive disturbance
rejection problems [41–43]. ILC uses the current actuation input of a controlled plant and the execution
output error as the calculation reference for next actuation input of the controlled plant, thus, there
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is appropriate control system execution output error correction ability, and the error decreases as
the numbers of iterative learning increases. When the numbers of iterative learning approaches
to infinity, the theoretical error approaches to zero. In this study, ILC is used for the iterative
computation of the volumetric error-compensated tool position for the part program characterized
tool moving path. When the calculated tool moving position error converges, the high-accuracy
volumetric error-compensated tool position can be obtained, to modify the tool moving path of the
part program. By referring to the volumetric error-compensated position computing equation, as
shown in Equation (2), the iterative computation of the ILC volumetric error-compensated position is
designed and expressed as Equation (3).

→
Qi+1 =

→
Qi + γ ·

→
E i, i = 0, 1, . . . , n (3)

where position Qi (machine coordinate system represented
→
Qi) represents No. (i) calculated volumetric

error-compensated position, position Qi+1 (machine coordinate system represented
→
Qi+1) represents

No. (i + 1) calculated volumetric error-compensated position,
→
E i represents the calculated volumetric

error of a tool moving from the current position to No. (i) volumetric error-compensated position Qi,

γ represents the learning factor, 0 < γ < 1.
→
Q0 equals target position T (machine coordinate system

represented
→
T), and

→
E0 represents the calculated volumetric error of the tool moving from the current

position to target position T (machine coordinate system represented
→
T). The setting of learning factor

γ affects the convergence of volumetric error-compensated position calculation. When the learning
factor value is large, the volumetric error-compensated position calculation converges rapidly, and
there is fluctuation, thus, it fails to achieve stable calculation results. When the learning factor value is
small, while the volumetric error-compensated position calculation result is stable, the convergence rate
is low. When learning factor γ is larger than 1, the volumetric error-compensated position calculation
may fail to converge. As this study uses the offline computing method of Equation (3), a small learning
factor value is used to guarantee stable volumetric error-compensated position calculation results.
The calculation convergence of Equation (3) is judged based on whether the Euclidean norm of No. (i)

calculated volumetric error
→
E i decreases as the number of iterative computation increases. In other

words, this study uses Equation (3) for the iterative computation of volumetric error-compensated

position Qi, and checks whether the Euclidean norm (‖
→
E i‖) of calculated volumetric error

→
E i decreases

as the number of iterative computation (i) increases. When Equation (3) calculates convergence
iteratively, the converged volumetric error-compensated position is used as the tool moving path of
the modified part program.

4. CNC Volumetric Error Compensation Experiment Results and Discussion

The machine tool is often provided with compensation parameters for general pitch error
compensation; however, this pitch error compensation only compensates the displacement error
induced by axial motion and neglects the displacement errors induced by other motion axes. Therefore,
this study discusses the displacement error due to axial motion Exx, Eyy, Ezz, and considers the
displacement errors induced by other motion axes Exy, Exz, Eyx, Eyz, Ezx, Ezy. Where Eij represents the
displacement error on j-axis during i-axis movement. This study considers the aforesaid displacement
errors and generates the error-compensated part program. The table of the volumetric errors of the
experimental machine tool is measured by the LDDM laser Doppler displacement meter. The error
distributions of the forward and reverse motions on each motion axis are shown in Figure 5.



J. Manuf. Mater. Process. 2018, 2, 53 8 of 15

J. Manuf. Mater. Process. 2018, 2, x FOR PEER REVIEW  8 of 15 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5. Volumetric errors of the experimental machine tool measured by LDDM. (a) X-axis forward 
error; (b) X-axis reverse error; (c) Y-axis forward error; (d) Y-axis reverse error; (e) Z-axis forward 
error; (f) Z-axis reverse error. 

4.1. Simulation Results and Discussion 

This study designs two different tool moving path simulations for observation, segmentation, 
and compensation for the circular path, and segmentation and compensation for the spiral path. 
Simulation 1 sets the tool movement path as a circle with a diameter of 20 mm, which is divided into 
20 segment and 30 segment moving paths, as shown in Figures 6 and 7, respectively. Simulation 2 
sets the path as a spiral path with a diameter of 20 mm and a pitch of 1 mm, which is divided into 60 
segments of moving paths, as shown in Figure 8. Table 1 shows the numerical analysis results of 
simulation. It is obvious that the segmented tool moving path position error root-mean-square value 
is improved after ILC compensation, where the rate of improvement is higher than 70%, 
demonstrating the feasibility and effect of the ILC volumetric error compensation computation 
method, as designed in this study, on the volumetric error compensation of a three-axis CNC milling 
machine tool. In addition, according to the analysis of the number of segments on the tool moving 
path, the larger the number of segments, the better the volumetric error compensation effect. 
However, many segments have limited compensation effect on the volumetric error, as it prolongs 
the computation time of compensation method on the contrary. Therefore, the position of a single 
block of the part program shall not be excessively segmented in practical application. 

Figure 5. Volumetric errors of the experimental machine tool measured by LDDM. (a) X-axis forward
error; (b) X-axis reverse error; (c) Y-axis forward error; (d) Y-axis reverse error; (e) Z-axis forward error;
(f) Z-axis reverse error.

4.1. Simulation Results and Discussion

This study designs two different tool moving path simulations for observation, segmentation,
and compensation for the circular path, and segmentation and compensation for the spiral path.
Simulation 1 sets the tool movement path as a circle with a diameter of 20 mm, which is divided into
20 segment and 30 segment moving paths, as shown in Figures 6 and 7, respectively. Simulation 2
sets the path as a spiral path with a diameter of 20 mm and a pitch of 1 mm, which is divided into
60 segments of moving paths, as shown in Figure 8. Table 1 shows the numerical analysis results of
simulation. It is obvious that the segmented tool moving path position error root-mean-square value is
improved after ILC compensation, where the rate of improvement is higher than 70%, demonstrating
the feasibility and effect of the ILC volumetric error compensation computation method, as designed in
this study, on the volumetric error compensation of a three-axis CNC milling machine tool. In addition,
according to the analysis of the number of segments on the tool moving path, the larger the number of
segments, the better the volumetric error compensation effect. However, many segments have limited
compensation effect on the volumetric error, as it prolongs the computation time of compensation
method on the contrary. Therefore, the position of a single block of the part program shall not be
excessively segmented in practical application.
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Table 1. Comparison of simulation results.

Tool Moving Path Circular
20 Segments

Circular
30 Segments

Spiral
60 Segments

Euclidean norm root-mean-square value of position errors of the segmented tool moving path (µm)

Volumetric error
(before ILC compensation) 3.39 3.41 3.31

ILC compensation
(after ILC compensation) 0.77 0.72 0.71

Rate of improvement (%) 77.28 78.89 78.55

4.2. Discussion of the Results of Cutting Tests

This study uses three-axis CNC milling machine tool slot machining to detect the straightness error
and height error of a workpiece to develop technical identification. The machining results are shown in
Figure 9 and Table 2. The cutting tool for experimentation is a ø10 mm end mill with two flutes, and the
workpiece material is aluminum alloy A6061. According to the data plot of the machining results, the
degree of error convergence is known, and the relationship between the table of volumetric errors and
the actual machining results can be observed. Figure 10 shows the side edge straightness measurement
data distribution of three machined slots. Figure 11 shows the height measurement data distribution of
the bottom surface of three machined slots. The experimental results show that the compensated tool
moving path has better machining results, the optimum rate of improvement of the straightness error
is 79.03%, the minimum rate of improvement is 62.57%, and the average rate of improvement is 68.87%.
The optimum rate of improvement of height error is 83.62%, the minimum rate of improvement is
80.21%, and the average rate of improvement is 81.90%. In addition, the workpiece measurement
result shows that the position error of straight cutting increases gradually. However, after volumetric
error compensation, the distribution of position errors diminishes obviously, and fluctuates nearby
the zero-error value in the smaller error range. Therefore, the volumetric error compensation method
designed in this study can effectively reduce the volumetric errors in the tool moving of a three-axis
CNC milling machine tool.
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Table 2. Comparison of results of cutting tests.

Slot Number 1 2 3

Straightness error root-mean-square value comparison (unit: mm)
Without compensation 0.0179 0.0186 0.0160
With ILC compensation 0.0067 0.0039 0.0056
Rate of improvement (%) 62.57 79.03 65.00

Height error root-mean-square value comparison (unit: mm)
Without compensation 0.0177 0.0187 0.0193
With ILC compensation 0.0029 0.0037 0.0035
Rate of improvement (%) 83.62 80.21 81.87
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Figure 10. Straightness error measurement data distribution. (a) Slot 1 straightness error measurement;
(b) Slot 2 straightness error measurement; (c) Slot 3 straightness error measurement.
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5. Conclusions

This study proposed the use of ILC to adjust the compensated tool path for the 21 volumetric
errors in three-axis CNC milling machine tools, to increase the error compensation accuracy of the
modified part program. The main conclusions of this study are as follows.

• The volumetric error of the working volume of the three-axis CNC milling machine tool strongly
influences the geometric dimension accuracy of the workpiece. The volumetric error compensation
therefore becomes an issue that high-precision mechanical parts manufacturers must consider.

• Existing part-program modification methods only consider the compensation of the position of a
single block of a part program but neglect the movement bias induced by volumetric error in the
tool moving process, which leads to limited volumetric error compensation effect.

• In this study, the position of a single block of a part program was segmented, and volumetric error
compensation was implemented for the tool moving position in each segment to generate a part
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program with multiple compensated blocks. The proposed compensation method can effectively
compensate for volumetric errors in the tool moving process.

• In addition, this study used the ILC concept and referred to the present compensated tool path
and volumetric error induced by the compensated tool path to calculate the next compensated tool
path. Therefore, the optimum compensated tool path can be obtained by the iterative computation
of the compensated tool path.

• To validate the effect of the proposed segmented volumetric error compensation, the measured
and established table of volumetric errors was used for path simulation and cutting tests.
Both the simulation and experimental results prove the feasibility of using the ILC method
for the segmented modification of the volumetric error-compensated tool path.

• Several cutting tests were performed on a three-axis CNC milling machine tool. The experimental
results showed that the average rate of improvement of the straightness error of the proposed
volumetric error compensation method is higher than 60% while the rate of improvement of the
height error is higher than 80%.
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