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Abstract: A UAV infrared target detection model ITD-YOLOv8 based on YOLOv8 is proposed to
address the issues of model missed and false detections caused by complex ground background and
uneven target scale in UAV aerial infrared image target detection, as well as high computational
complexity. Firstly, an improved YOLOv8 backbone feature extraction network is designed based
on the lightweight network GhostHGNetV2. It can effectively capture target feature information
at different scales, improving target detection accuracy in complex environments while remaining
lightweight. Secondly, the VoVGSCSP improves model perceptual abilities by referencing global
contextual information and multiscale features to enhance neck structure. At the same time, a
lightweight convolutional operation called AXConv is introduced to replace the regular convolutional
module. Replacing traditional fixed-size convolution kernels with convolution kernels of different
sizes effectively reduces the complexity of the model. Then, to further optimize the model and
reduce missed and false detections during object detection, the CoordAtt attention mechanism is
introduced in the neck of the model to weight the channel dimensions of the feature map, allowing
the network to pay more attention to the important feature information, thereby improving the
accuracy and robustness of object detection. Finally, the implementation of XIoU as a loss function for
boundary boxes enhances the precision of target localization. The experimental findings demonstrate
that ITD-YOLOv8, in comparison to YOLOv8n, effectively reduces the rate of missed and false
detections for detecting multi-scale small targets in complex backgrounds. Additionally, it achieves a
41.9% reduction in model parameters and a 25.9% decrease in floating-point operations. Moreover,
the mean accuracy (mAP) attains an impressive 93.5%, thereby confirming the model’s applicability
for infrared target detection on unmanned aerial vehicles (UAVs).

Keywords: infrared target detection; YOLOv8; UAVs; multi-scale small target; lightweight network structure

1. Introduction

Infrared target detection has the benefits of all-weather, long-range, and strong anti-
interference [1], so UAV-based infrared target detection has an important role in military [2],
accident search and rescue [3,4], and traffic monitoring [5–7]. However, the aerial images
captured by UAVs often contain numerous multi-scale, small targets, which typically
have limited features available for extraction [8]. In addition, the actual flying height of
unmanned aerial vehicles often changes greatly, and the target proportion in the image
changes dramatically, which affects the target detection accuracy [9]. Meanwhile, the
aerial environment during UAV flying is typically intricate, with potential occurrences of
extensive occlusion among compact targets. Additionally, infrared imagery lacks distinctive
attributes such as texture and color [10], thereby intensifying the challenges associated
with detecting infrared targets for UAVs. Hence, the investigation of UAVs’ infrared
target detection technology in intricate scenarios [11,12] holds immense importance and
practical implications.
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Given that the majority of targets in UAV aerial images are known for their com-
pact size, typically less than 32 × 32 pixels [13], this leads to a limited number of target
features and presents difficulties in acquiring sufficient informative data. Consequently,
UAV infrared target detection faces a significant challenge. Compared to traditional al-
gorithms, target detection algorithms powered by deep learning provide advantages in
terms of improved accuracy in detection and scalability [14]. These advantages contribute
to improving the precision of infrared target detection and achieving automated detection,
thereby enhancing operational efficiency and cost-effectiveness [15]. At present, there
are generally two types of target detection algorithms in deep learning: those that use a
two-stage approach and those that use a one-stage approach. The two-stage algorithm is to
divide the feature extraction and detection into two stages: first finding out the candidate
target region, and then adjusting the candidate region to get the detection result. The two-
stage algorithms include R-CNN [16] and faster RCNN [17,18], etc. Several studies suggest
that two-step algorithms are suitable for applications requiring accurate detection [19,20].
Single-stage algorithms, on the other hand, directly generate the category probabilities
and the location of the bounding box to get the detection results. Single-stage detection
algorithms include SDD [21] and YOLO [22–25], etc. Compared to the two-step algorithm,
the single-step algorithm offers faster detection speed and is better suited for detecting
targets under UAV platforms because it eliminates the need to generate candidate regions.
The YOLO algorithms are popular in the domain of UAV infrared target detection due to
their exceptional target detection capabilities. Therefore, they are extensively used in this
field. Zeng et al. [26] presented an improved YOLOv7-based target detection algorithm
for UAV images. This algorithm efficiently captures feature information at various scales
and enhances model accuracy by incorporating the DpSPPF module. Zhao et al. [27] sug-
gested a YOLO-ViT grounded infrared target detection method for UAVs. This method
improved the YOLOv7 backbone feature extraction network based on a lightweight Mo-
bileViT network, enhancing the ability to extract target feature information and enhancing
the detection performance of the model. However, detecting targets with UAV infrared
technology in complex scenes presents significant challenges due to the features of aerial
infrared images trapped by UAVs. These challenges include low resolution, multi-scale
imaging, and sensitivity to environmental factors.

In an effort to enhance the precision of detecting multi-scale infrared small targets
amidst complex environments encountered by UAVs while simultaneously reducing com-
putational complexity, a novel model named ITD-YOLOv8 is introduced. By implementing
the lightweight GhostHGNetV2 network structure to enhance the YOLOv8 backbone net-
work, the model’s detection capability is improved while reducing computing resource
consumption and accelerating inference speed. The neck structure is improved with the use
of the VoVGSCSP module by fusing feature images from different layers to obtain richer
feature information about the target. The AKConv module replaces the Conv module
to reduce computational and parametric quantities in the model. Meanwhile, the neck
structure is further optimized using the attention mechanism, CoordAtt aims to improve
network focus on key information and reduce misdetection and omission during model
detection. Finally, by incorporating the XIoU loss function, the model gains enhanced
capability for acquiring precise details regarding both bounding box location and object
class. As a result, this results in an enhancement of the target detection capability. The key
findings of this study are outlined below:

1. This paper presents enhancements to the GhostHGNetV2 module for the object detec-
tion backbone network. The newly developed network backbone utilizes a combina-
tion of the Ghost and HGNetv2 modules. It achieves this by dividing input features
into smaller subchannels, performing convolution operations on each subchannel, and
then merging the results to produce the final output. And through downsampling,
hourglass modules, and upsampling operations, features are extracted and fused at
different scales. This enables the model to reduce computation and complexity while
enhancing the model’s multi-scale target detection performance.
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2. By improving the neck structure through the VoVGSCSP module, different stage
feature maps are effectively fused to reduce computational complexity and improve
inference speed while maintaining the accuracy of the model detection. Replacing
the Conv module with the AKConv module provides more efficient and flexible
convolution operations in the model by dynamically changing the shape and size of
the convolution kernel to adapt to different input data and task requirements. The
attention mechanism known as CoordAtt is proposed to enhance the model’s ability
to identify objectives by learning the spatial relationships between target objects and
improving its attention towards various positional features.

3. The utilization of the XIoU loss function enhances the precision of matching between
the prediction frame and real frame by addressing their overlap, reaching enhanced
detection accuracy for diminutive and compact targets.

2. Related Work

Due to its fast processing speed, high accuracy, and excellent performance in real-
world scenarios, the YOLO Series algorithm is widely used for real-time object detection.
Consequently, it has been widely used for detecting objects. A deep learning approach
based on channel pruning was introduced by Wang et al. [28] to enhance the speed and
precision of apple fruit detection in YOLOv5s. ASFF-YOLOv5 is a UAV road detection
method introduced by Qiu et al. [29] that utilizes multi-scale feature fusion. The goal is to
integrate the ASFF sensor head with the SPPF spatial pyramid pooling structure to improve
target detection accuracy by increasing feature scale invariance. Liu et al. [30] proposed
CAFFNet, a technique for traffic sign detection. This method employs multi-channel atten-
tion and multi-feature fusion in a detection strategy that integrates contextual information
at different scales to minimize feature inconsistencies and improve detection accuracy.
O. Sahin et al. [31] suggested an enhanced YOLO algorithm, YOLODrone, to address the
low detection performance of existing target detection algorithms on UAV aerial images
and improve UAV target detection performance; D. Padilla Carrasco et al. [32] presented
T-YOLO, a concise vehicle detection model that uses YOLO and multiscale conjunctive
neural networks. This model is an enhanced lightweight deep target detection approach
based on the YOLOv5 architecture, demonstrating excellent performance in detecting
small-sized vehicle targets. Zuo et al. [33] proposed a pyramid network model known as
AFFPN, which utilizes an attentional feature fusion mechanism that enhances the shallow
and deep positional and semantic information of the model, thereby improving the target
detection performance; furthermore, Zhang et al. [34] introduced an innovative technique
for detecting infrared targets, known as CHFNet. This method leverages the HLF cross-
feature fusion module to enhance the model’s expressive capacity, enabling it to better
perceive distinct features while minimizing redundancy between them. Consequently, the
model’s effectiveness is greatly enhanced. To boost the detection capabilities of the model,
Dai et al. [35] suggested a novel approach for detecting infrared targets by incorporating
asymmetric contextual modulation (ACMM) into their model. The ACMM is designed
to improve the extraction of target features. In their study, Liu et al. [36] incorporated
GhostNet as an alternative to the conventional convolutional layer. The final backbone
layer was enhanced with the SepViT module, and the channel attention mechanism (ECA)
was integrated into the YOLOv5 feature extraction network. Guo et al. [37] suggested an
LMSD-YOLO model for the one-step detection of the SAS target. This model incorporates
a DBA module, an enhanced S-MobileNet module, and a DSASFF module to improve the
capability of the network to extract features and decrease its complexity. Wang et al. [38]
proposed an improved YOLOv7-tiny method for detecting targets in UAV aerial images.
They introduced a bi-directional feature pyramid network (BiFPN) in the neck to enhance
the fusion capability of features. Additionally, they incorporated a global attention mecha-
nism (GAM) in the neck to enhance target detection accuracy, specifically for UAV aerial
images. Zhong et al. [39] developed a UAV image target detection algorithm utilizing
YOLOv7. The algorithm includes a high-level feature-focusing layer (M-FLAM) to im-
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prove focus on smaller targets and a low-level feature-focusing layer (M-ELAN) to reduce
parameters while maintaining target detection accuracy.

3. Proposed Methodologies, Tools, and Techniques

This section is composed of three parts: an introduction to the overall framework and
principles of the ITD-YOLOv8 model, a review of the HiT-UAV dataset [40,41], and an
examination of the assessment techniques utilized to verify this paper’s methodology.

3.1. ITD-YOLOv8

This research paper presents the ITD-YOLOv8 model for detecting infrared targets
using UAVs. This model is visually depicted in Figure 1. The ITD-YOLOv8 model incorpo-
rates the GhostHGNetV2 network architecture, which synergistically combines the Ghost
module and HGBlock module to accomplish efficient feature extraction and fusion. To
enhance our model’s detection capabilities, we used the VoVGSCSP module in the neck
network to supplement the original C2f module with abundant feature data. Additionally,
we replaced the Conv layer in the Neck module with an AXConv layer to enable more
efficient and flexible convolutional operations. To optimize network performance, we
introduced a CoordAtt module in the neck that assigns weights to feature images, enabling
better focus on crucial features. Furthermore, for improved detection accuracy in our
model, we incorporated the XIoU loss function into the detection header. This loss function
accurately measures the overlap between target frames and prediction frames, thereby
enhancing target detection precision.
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3.1.1. Enhanced Core Network Utilizing GhostHGNetV2 Architecture

In April 2023, Baidu proposed RT-DETR [42], the first real-time DETR model. As
depicted in Figure 2, GhostHGNetV2 is formed by merging the Ghost module and the
HGNetv2 module. By optimizing the HGBlock with the GhostConv module, we obtained
the Ghost_HGBlock module. This module reduces model parameters and computational
requirements while maintaining high detection accuracy. However, the GhostHGNetV2
module consists of multiple Ghost_HGBlock modules to improve the YOLOv8 backbone
network. While maintaining good detection performance, this technique reduces the
number of model parameters and computations required.
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The accuracy and lightweighting of target detection models are important evaluation
indicators for UAV infrared target detection models. Due to the restricted resources of
UAV platforms, this model needs to achieve lightweighting to a certain extent. Finding a
balance between enhancing model detection accuracy and achieving lightweight models
can be challenging. Nevertheless, YOLOv8 models may not be ideal for mobile hardware
deployment due to their tendency to produce excessive parameters during training. As a
solution to this problem, RT-DETRs [42], a lightweight target detector according to Baidu,
effectively reduce the model parameters and computation by combining the Ghost module
with HGNetv2 and maintaining good target detection performance.

3.1.2. The VoVGSCSP Module

The VoVGSCSP module [43] is a module used for image processing that improves the
learning ability of the model by using GSConv and GSbottleneck and designs cross-level
partial networks using a one-time aggregation method. The design of this module aims to
reduce computational complexity and network structure while maintaining sufficient accuracy.

As depicted in Figure 3, the incorporation of the Bottleneck module builds upon
GSConv to improve the model’s capacity for learning. The VoVGSCSP module replaces the
Cf2 module in the model neck, while the VoVGSCSP module uses lightweight convolution
GSConv to replace standard convolution, thereby reducing computational costs. In addition,
GSConv also provides model-learning capabilities comparable to standard convolution.
Hence, the utilization of the VoVGSCSP module led to a decrease in model complexity
without compromising on accuracy.
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3.1.3. The Lightweight Convolution Module AXConv

To enhance the efficiency of resource utilization on the UAV platform, we have in-
tegrated the AXConv convolution module into our model. This integration significantly
reduces both parameter counts and computational demands while maintaining optimal
detection performance. The AXConv module replaces traditional fixed-size convolution
kernels with convolution kernels of different sizes, thereby achieving model lightweighting.

As shown in Figure 4, the AXConv module [44] uses two convolution kernels of
different sizes, namely 1 × 1 and 3 × 3. These two convolution kernels are used for
dimensionality reduction and dimensionality enhancement operations, respectively. To
begin, the input feature map undergoes dimensionality reduction through the use of a 1 × 1
convolution kernel. The result is a reduction in the number of parameters and calculations.
Next, a 3 × 3 convolution kernel is utilized to extract richer feature information through
convolution operations on the reduced feature map. Finally, a 1 × 1 convolutional kernel is
applied to restore the feature map’s initial dimensionality and enhance its features.
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3.1.4. The Attention Mechanism CoordAtt

By incorporating the CoordAttention mechanism within the network’s neck, it en-
hances the network’s ability to effectively capture target location information, resulting
in improved object detection performance. While traditional attention mechanisms, such
as SE attention, only consider information between encoded channels, CoordAttention
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considers both inter-channel and positional information. CoordAtt improves object detec-
tion accuracy by utilizing positional information to better capture the structure and spatial
relationships of objects.

As illustrated in the diagram shown in Figure 5, once the feature map undergoes
convolution across multiple layers, a single point encompasses details about a specific
region on the original map. To capture extensive long-range information, CoordAtt is
devised by performing average pooling both horizontally and vertically. Subsequently, this
pooled data is transformed to encode spatial characteristics before being integrated with
channel-wise weights for fusion purposes.
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The CoordAtt [45] module is designed to improve the representation of features in
mobile networks. An attention matrix is generated by applying a convolution to the feature
map, which assigns weights to the coordinates of the bounding box. This matrix matches the
size of the feature map. utilizes accurate positional details to encode relationships between
channels and dependencies over a long period of time. This procedure consists of two
stages: embedding coordinate information and producing coordinate attention. Although
pooling is a common method to encode spatial information using channel attention, it can
result in losing positional detail by compressing spatial information into channel descriptors.
To overcome this limitation, we propose to transform global pooling into a set of one-
dimensional feature encoding operations using the following equation decomposition to
accurately capture remote spatial interactions with precise position information:

zc =
1

H × W

H

∑
i=1

W

∑
j=1

xc(i, j). (1)

The output location related to the cth channel is determined by encoding each channel’s
input X using two spatial domains (H,1) or (1,W) along the vertical and horizontal directions of
the pooled kernel. Therefore, we can express the output of the cth channel at height h as follows:

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i). (2)
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Similarly, the outcome of the c channel having a width of w can be represented as:

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w). (3)

This section combines the above transformations and applies convolutional transform
functions to modify them after the information embedding has been transformed. The
[−,−] operation is a sequential process conducted along the spatial dimension and incorporates
a non-linear function of the activation. The spatial dimension of tensor f is used to create two
different tensors: f h ∈ RC/r×H and f w ∈ RC/r×W, where f h represents the feature map in
the height direction, and f w represents the feature map in the width direction. gh denotes
the attention weight in the horizontal direction, and gw denotes the attention weight in the
vertical direction. To introduce spatial information in horizontal and vertical dimensions, as an
intermediate step, a feature map called f ∈ RC/r×(h+W) is generated:

f = δ
(

F1

([
zh, zw

]))
, (4)

gh = σ
(

Fh

(
fh
))

, (5)

gw = σ(Fw(fw)). (6)

The two 1 × 1 convolutional operations are employed to convert and into tensors with
identical channel dimensions as the input X. gh

c denotes the position encoding parameter in
the horizontal direction, and gw

c denotes the position encoding parameter in the vertical
direction. Σ denotes a sigmoid function, which helps in simplifying the complexity of the
overhead model. Finally, the output Y of the attention block can be expressed as follows:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j). (7)

3.1.5. The Loss Function XIoU

The XIoU loss function is a loss function utilized in target detection tasks to assess
the level of overlap between the predicted and actual boxes. It represents an enhancement
over the IoU (Intersection over Union) loss function, which quantifies the extent of overlap
between the predicted and ground-truth boxes through this calculation:

IoU =
A ∩ B
A ∪ B

(8)

In this given scenario, A symbolizes the anticipated box, whereas B signifies the real
frame. The XIoU loss function can be formulated as:

XIoU = IoU − (C1 - C2)
σ

(9)

where IOU denotes the intersection and concurrency ratio of the two boxes, C1 and C2
denote the distance between the centers of the two boxes, respectively, and σ denotes the
sum of the areas of the two boxes. To improve target detection accuracy, the XIoU loss
function can better penalize the offset between the predicted and real boxes.

3.2. Datasets

In order to conduct model validation experiments, the HIT-UAV dataset is selected
for analysis in this study. The HIT-UAV dataset is specifically designed for UAV infrared
target acquisition. As shown in Figure 6, this dataset contains a variety of UAV infrared
images covering targets in different scenes and weather conditions. The reduced dataset
consists of 2898 infrared images, each of which has a resolution of 640 × 512 and consists
of three different classes: people, bicycles, vehicles, etc. The HIT-UAV dataset consists
of infrared images captured by UAVs at high altitude, which are captured from different
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heights, viewing angles, and object classes and have different sizes and shapes at different
scales. This allows the model to better understand and capture the diversity and complexity
of the dataset, which results in more comprehensive information. In addition, the model
can be exposed to various scales of data to improve its generalization ability so as to better
adapt to different scales of input and enhance its robustness.
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In this research paper, we have partitioned the HIT-UAV dataset into three segments
with a distribution ratio of 7:2:1. The dataset contains 2008 pictures for training, 571 pictures
for testing, and 287 pictures for validation. According to Table 1, the HIT-UAV dataset
consists of 17,118 small target labels smaller than 32 × 32 pixels, 7249 medium target labels
smaller than 96 × 96 pixels, and 384 large target labels. Among them, the smallest target
only accounts for 0.01% of the image pixels, and this dataset is important for the research
and application of UAV infrared target detection and recognition.

Table 1. HIT-UAV dataset label classification.

Small
(0, 32 × 32)

Medium
(32 × 32, 96 × 96)

Large
(96 × 96, 640 × 512)

HIT-UAV 17,118 7249 384
Train set 12,045 5205 268
Test set 3331 1379 70

Validation set 1742 665 46



Drones 2024, 8, 161 10 of 17

3.3. Evaluation Indicators

To assess the efficiency of the proposed improved ITD-YOLOv8 model, various evalua-
tion metrics are used, including Precision (P), Recall (R), F1 (F1 Score), AP (Average Precision),
mAP (Mean Average Precision), FLOPs, and FPS. F1 scores are combined measures of confi-
dence and recall, while both AP and mAP are final measures of model recognition accuracy.
FLOPs is a measure of computer hardware performance and algorithm complexity, while
FPS is used to evaluate the real-time performance and efficiency of the target detection
algorithm by measuring the number of image frames processed per second. Below is the
equation for evaluating these parameters:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 =
P ∗ R
P + R

(12)

P stands for precision, R stands for recall, TP indicates true positives, FN indicates false
negatives, and FP indicates false positives. The equations for AP and mAP are the following:

AP =
∫ 1

0
P(r)dr (13)

mAP =
1
c ∑c

j=1 APi (14)

4. Experimental Findings
4.1. Platform for Conducting Experiments and Configuring Parameters

This study was carried out using a Windows 10 operating system, and the specific
specifications of the platform can be found in Table 2.

Table 2. Configuring the experimental platform.

Name Related Configurations

Graphics processor NVIDIA Quadro P6000
Central processor Intel(R) Core(TM) i9-9900k

Graphic processor memory size 32 G
OS name Win 10

The computing platform CUDA10.2
Architecture for deep learning Pytorch

4.2. Comparison of Experiments

To assess the feasibility and effectiveness of ITD-YOLOv8 in detecting infrared targets
in complex UAV scenes, it is compared to the most advanced target detection algorithms
currently available under similar conditions. No pre-training weights were used in all
the models training processes. The dimensions of the input image for the model were
configured as 640 × 640, while a batch size of 16 was used. The training process consisted
of 300 epochs. Table 3 shows the results of the experiments comparing the performance
of ITD-YOLOv8 and YOLOv8n. Compared to YOLOv8n, the ITD-YOLOv8 parameter
set is decreased by 41.9%, the model complexity is decreased by 25.9%, and the vehicle
AP is improved by 0.2% with an average accuracy of 93.5%. The ITD-YOLOv8 model
effectively maintains target detection accuracy and significantly reduces model complex-
ity. The ITD-YOLOv8 model is implemented on the basis of YOLOv8 by improving the
backbone network, neck, and detection head. ITD-YOLOv8 is similar to YOLOv8 in that
the ITD-YOLOv8 model adopts a modular design, which can choose different network
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structures according to requirements, and hardware acceleration calculations such as GPUs
can be used to improve the speed of the algorithm. In addition, the network structure
can be optimized by compression and distillation to improve performance. Therefore,
ITD-YOLOv8 has good scalability and has a good application prospect for UAV infrared
target tasks.

Table 3. Performance comparison between ITD-YOLOv8 and YOLOv8n.

Parameters GFLOPs/G Precision (%) Recall (%) F1 (%) APVehicle (%) mAP50 (%)

YOLOv8n 3.1 M 8.1 91.6 90.3 90.9 98.0 94.6
ITD-YOLOv8 1.8 M 6.0 90.3 88.6 89.4 98.2 93.5

To evaluate the performance of ITD-YOLOv8, we selected other YOLO models as
benchmarks for experimental validation on the HIT-UAV dataset. The dataset consists of
images captured at heights ranging from 60 m to 130 m, resulting in diverse and complex
backgrounds as well as significant variations in target sizes. Moreover, most targets are
small in size, posing a considerable challenge for detection. Table 4 showcases the compar-
ative results of ITD-YOLOv8 against other models. The results show that, compared to the
lightweight target detection algorithms within the YOLO series, ITD-YOLOv8 exhibits re-
markable reductions in parameters and FLOPs metrics while achieving a vehicle detection
accuracy AP of 98.2%. Specifically, it reduces model parameters by 28.0%, 70.5%, and 41.9%
compared to YOLOv5n, YOLOv7-tiny, and YOLOv8n, respectively, additionally reducing
computational complexity by 15.5%, 38.6%, and 25.9%, respectively, for each model men-
tioned above. The experimental evaluation results indicate that the designed ITD-YOLOv8
model achieved a significant level of accuracy and precision in infrared vehicle target
identification in complex environments while maintaining a lightweight structure.

Table 4. Comparison of performance between ITD-YOLOv8 and other algorithms.

Model Size Parameters F1
(%)

APPerson
(%)

APVehicle
(%)

APBicycle
(%)

mAP50
(%)

FLOPs
/G

YOLOv5s 640 9.1 M 91.1 93.2 98.3 93.1 94.9 23.8
YOLOv5m 640 25.0 M 90.3 92.7 97.9 91.4 94.0 64.0
YOLOv5l 640 53.1 M 91.2 92.5 98.1 91.1 93.9 134.7
YOLOv7 640 36.5 M 86.2 88.2 94.2 88.3 90.2 103.2
YOLOv8s 640 11.2 M 91.1 93.0 98.2 91.4 94.2 28.4
YOLO-ViT 640 17.3 M 90 91.3 98.1 90.6 94.5 33.1

YOLOv5n 640 2.5 M 92.7 92.2 98.0 93.4 94.6 7.1
YOLOv7-tiny 640 6.1 M 89.8 92.5 97.0 91.3 93.6 13.2

YOLOv8n 640 3.1 M 90.9 92.4 98.0 93.4 94.6 8.1
ITD-YOLOv8 640 1.8 M 90.3 91.7 98.2 90.7 93.5 6.0

The visualization comparison experiment results of ITD-YOLOv8 and other YOLO
series models in complex scenes are shown in Figure 7. The detection scenes of the model
include roads, fields, forests, etc. Among them, the targets in the red detection box represent
vehicles, the targets in the blue box represent bicycles, and the targets in the green box
represent people. From the third column graph, it can be seen that most models have
the problem of missing detection for occluded vehicle targets, while ITD-YOLOv8 and
YOLOv7 can accurately detect the occluded vehicle targets. However, from the first column
of the graph, it can be seen that YOLOv7 has insufficient ability to detect vehicle targets in
the jungle, while ITD-YOLOv8 can accurately detect various occluded vehicle targets.
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Furthermore, the second column of graphs shows that the model improves well on the
missed detection of bicycle targets in roadway scenarios. From the fourth column graphs,
it can be seen that ITD-YOLOv8 has greatly improved the missed and false detections of
people. The model has achieved good detection results in woods, roads, playgrounds, and
other environments and can be applied to detection tasks in various environments.

4.3. Ablation Experiments

To assess the individual impact of each component on ITD-YOLOv8, a range of
experiments were performed on the HIT-UAV dataset. Ablation experiments have been
performed with an input image size of 640 × 640, a batch size of 16, and 300 epochs
of training for each network. The trial results are presented in Table 5. It seems that
the model backbone network improved based on the GhostHGNetV2 module, which
reduced the model parameter count by 22.6% and mAP by 0.9%. After improving the
neck with the VoVGSCSP module, the model parameters decreased by 0.1 M, while F1
increased by 0.3% and mAP decreased by 0.3%. Furthermore, by substituting the initial
convolutional layer with a lightweight convolutional module, AXConv, in the neck, the
parameter count was reduced by 0.2 M, F1 was increased by 0.3%, and mAP was not
decreased. The introduction of the attention mechanism module, CoordAtt, in the neck
reduced the number of parameters by 0.5 M but only decreased mAP by 0.8%. Finally,
the introduction of the XIoU loss function increased the model’s mean average precision
(mAP) by 0.4% and frames per second (FPS) by 5. The number of ITD-YOLOv8 model
parameters is drastically reduced compared to YOLOv8n, with 58.1% of the number of
model parameters for YOLOv8n under the same settings. The experiments illustrate that
each improved module contributes well to the model.
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Table 5. Results from the HIT-UAV vehicle infrared dataset of ablation experiments.

YOLOv8 GhostHGNetV2 VoVGSCSP AKConv CoordAtt XIoU Parameters FLOPs/G F1
(%)

mAP
(%) FPS

√
3.1 M 8.1 90.9 94.6 123

√ √
2.4 M 6.9 90.1 93.7 111

√ √
3.0 M 7.8 91.2 94.3 115

√ √
2.9 M 8.0 91.2 94.6 87

√ √
2.6 M 7.8 91.0 94.5 114

√ √
3.1 M 8.1 90.9 94.6 111

√ √ √
2.3 M 6.6 90.1 93.9 102

√ √ √ √
2.2 M 6.3 90.1 93.6 75

√ √ √ √ √
1.8 M 6.0 89.3 93.1 71

√ √ √ √ √ √
1.8 M 6.0 89.4 93.5 76

Figure 8 demonstrates the enhancement effect of the ITD-YOLOv8 method for each
module in the ablation experiment. The individual modules therein effectively reduce the
complexity and number of parameters of the original model and retain good detection
accuracy. By incrementally incorporating experimental modules into the original model to
evaluate its performance under varying conditions, it has been confirmed that ITD-YOLOv8
maintains high detection accuracy, enhances the model’s robustness and efficiency, and
dramatically reduces the number of parameters and the complexity of the model.
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5. Conclusions

This paper proposes a UAV Infrared Target Detection Model, ITD-YOLOv8, for multi-
scale infrared target detection in complex scenes. In the default method, firstly, a backbone
feature extraction network is designed based on the GhostHGNetV2 module, which is used
as the backbone network module of YOLOv8 to enhance multi-scale feature extraction
capability and reduce computational complexity. Secondly, by combining the AKConv
module, VoVGSCSP module, and CoordAtt attention mechanism to improve the neck
structure, the parameter and computational complexity are effectively reduced while
enhancing the model’s ability to detect infrared-occluded targets in complex environments.
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Finally, to improve the detection accuracy and efficiency of the model, the XIoU loss
function is introduced to better measure the degree of matching between detection results
and real targets. The experimental results show that the ITD-YOLOv8 model can effectively
improve the detection performance of multi-scale small targets in complex environments
while significantly reducing model complexity and parameter quantity and reducing the
missed detection rate and false detection rate. Compared with YOLOv8n, the number of
model parameters decreased by 41.9%, the number of floating-point operations decreased
by 25.9%, and the average accuracy (mAP) reached 93.5%. The ITD-YOLOv8 model is a
lightweight infrared target detection model that has a good detection effect on multi-scale
infrared small targets in complex scenes. It can be deployed on the UAV platform for
real-time detection and can implement infrared target detection tasks in scenes such as
roads, fields, woods, etc. It has a good application prospect in the multi-scale infrared
target detection task of unmanned aerial vehicles in complex scenes.
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