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Abstract: Peatland restoration projects are being employed worldwide as a form of climate change
mitigation due to their potential for long-term carbon sequestration. Monitoring these environments
(e.g., cover of keystone species) is therefore essential to evaluate success. However, existing studies
have rarely examined peatland vegetation at fine scales due to its strong spatial heterogeneity and
seasonal canopy development. The present study collected centimetre-scale multispectral Uncrewed
Aerial Vehicle (UAV) imagery with a Parrot Sequoia camera (2.8 cm resolution; Parrot Drones SAS,
Paris, France) in a temperate peatland over a complete growing season. Supervised classification
algorithms were used to map the vegetation at the single-species level, and the Maximum Likelihood
classifier was found to perform best at the site level (69% overall accuracy). The classification accuracy
increased with the spatial resolution of the input data, and a large reduction in accuracy was observed
when employing imagery of >11 cm resolution. Finally, the most accurate classifications were
produced using imagery collected during the peak (July–August) or early growing season (start of
May). These findings suggest that despite the strong heterogeneity of peatlands, these environments
can be mapped at the species level using UAVs. Such an approach would benefit studies estimating
peatland carbon emissions or using the cover of keystone species to evaluate restoration projects.

Keywords: UAV; multispectral imagery; peatland; supervised classification; single species; Parrot
Sequoia; centimetre-scale resolution

1. Introduction
1.1. Peatland Environments and Their Significance

Northern peatlands (>45◦ N) are historical carbon sinks of global importance, esti-
mated to store twice as much carbon as the world’s forest biomass [1,2]. The cool, wet
climate experienced by these ecosystems maintains a high water table and inhibits the
decomposition of organic matter [3,4], resulting in the accumulation of carbon in the form
of peat. At present, many of these ecosystems are severely degraded, having been drained
for agriculture or forestry over the past millennium. The exploitation of these environ-
ments has released significant quantities of historical carbon into the atmosphere and
negatively impacted ecosystem functioning [5]. Over the past decade, however, peatlands
have become increasingly recognised in climate change mitigation, with the protection and
restoration of these ecosystems now forming a key part of many climate agreements [6–9].
In terms of restoration projects, a number of indicators, such as the water-table depth and
the presence and cover of keystone species such as Eriophorum (cotton-grass) and sphagnum
mosses, can be used to evaluate project success [10–12]. Furthermore, as plant functional
types (PFTs; e.g., shrubs, bryophytes, graminoids) are known to influence ecological pro-
cesses, including emissions of carbon dioxide and methane [13–15], vegetation surveys and
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maps can be used to estimate carbon emissions [16]. These two approaches demonstrate
the large potential for UAV-based monitoring of peatlands and their vegetation.

1.2. Monitoring Peatland Vegetation

Despite the global significance of peatlands, the monitoring of these ecosystems
has been rather limited. Peatland environments are often inaccessible, being located in
geographically remote areas. In addition, their ‘boggy’ nature means that peatlands can be
impassible and require extensive boardwalks for frequent monitoring. As a result, detailed
ground-based botanical surveys are rare and expensive to conduct. Vegetation mapping
has instead often been conducted by remote sensing, via the use of satellite and airborne
imagery [17–19]. Advancements in sensor technology have made monitoring possible at
increasing spectral and spatial resolutions. Satellites such as QuickBird, IKONOS, and
PlanetScope, for example, can view peatlands at spatial scales in the order of metres or
less [20–22]. However, the frequent presence of cloud cover in boreal and temperate regions
(where many peatlands are located) makes it difficult to conduct frequent vegetation
mapping based on optical satellite data (e.g., [23,24]). The development of Uncrewed Aerial
Vehicle (UAV) platforms and innovations in sensor technology have therefore been key
for the remote sensing of peatlands. As such, UAVs now offer an affordable, repeatable
and flexible method for examining peatland vegetation at ultra-high (centimetre-scale)
resolution [25,26].

Despite these advancements in the spatial resolution of data, much work has focused
on the mapping of distinct habitat types at the landscape level. Anderson et al., for
example, mapped peatland biotopes across a raised bog in the UK using IKONOS data
(4 m resolution), with classes ranging from ‘active raised bog’ to ‘drained’ and ‘degraded
bog’ [20]. Similarly, Palace et al. used 3 cm resolution UAV data to classify broad vegetation
cover (e.g., ‘hummock’, ‘wet’, and ‘tall shrub’) in northern Sweden [27]. At a smaller scale,
research has been conducted to map individual PFTs (e.g., [28,29]). Although changes in
the distribution of PFTs over time may be useful for indicating long-term changes in carbon
storage for example [30,31], PFT-level classifications mask a large amount of heterogeneity.
Few studies have examined the feasibility of species-level classifications, and those that
have done often focused on a single species of interest only [29,32,33].

1.3. Challenges for Remote Sensing in Peatland Environments

Peatland environments are complex and display variability across spatial scales.
Hence, despite appearing homogeneous at the landscape scale (100–106 m2), at the mi-
crosite scale (0.1–1 m2) they display strong heterogeneity. This complexity makes peatlands
challenging environments for remote sensing [26], particularly when mapping at fine spa-
tial scales. Firstly, peatland vegetation is characterised by a multi-layer canopy, which
makes it problematic to sense from above [34,35]. Secondly, the characteristic hummock–
hollow terrain in these environments creates a topographic shadow in remote sensing
imagery. This shadow affects the spectral reflectance measured by sensors and can reduce
the classification accuracy [36–38]. Finally, peatlands are not static environments. Many
vegetation species display a clear phenological cycle over the growing season: greening
during the spring, flowering, and then senescing in the autumn. This phenology can have
a strong impact on the spectral signatures of individual species [39] and poses a challenge
for accurate mapping if using single time frames.

1.4. Study Overview and Objectives

This study examines the use of ultra-high-resolution UAV imagery to classify veg-
etation in a temperate peatland. For this purpose, we collected true-colour (RGB) and
multispectral imagery at monthly intervals over a complete growing season. With regard to
the current literature, ours appears to be one of the highest spatial and temporal resolution
datasets available for a peatland environment, and one of only a handful of remote-sensing
studies mapping peatland vegetation at the species level [29,40,41]. The objectives of this
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study are: (1) to explore the accuracy of supervised techniques for classifying vegetation at
the species level; and (2) to examine the impact of the temporal sampling date and spatial
resolution on the classification accuracy.

2. Materials and Methods
2.1. Study Area

This study examines the vegetation at Auchencorth Moss, a low-lying ombrotrophic
peatland located in south-east Scotland, UK (55◦47′33 N, 3◦14′37 W; 267 m a.s.l.). The
peatland covers an area of around 10 km2 and was historically affected by drainage.
Over time, the site has naturally rewetted and the old drainage ditches are now largely
overgrown. The peatland is currently used for low-density sheep grazing (~1 per ha)
and hosts a long-term atmospheric observatory and monitoring site for greenhouse gas
emissions [42,43].

Blanket bog characterises the site, which exhibits a strong hummock–hollow micro-
topography typical of many peatlands. The hummocks are around 40 cm in diameter and
30 cm tall. These raised features are dominated by vascular plants, which form the upper
canopy, consisting of sedges (e.g., Eriophorum vaginatum), rushes (e.g., Juncus effusus) and
grasses (e.g., Deschampsia flexuosa), and are underlain by a carpet of mosses (e.g., Polytrichum
commune, Sphagnum spp.). The hollows, in contrast, are characterised by predominantly wet
conditions due to their lower elevation. These features have a lower coverage of vascular
plants and are often dominated by mosses.

2.2. UAV Data Collection and Processing

UAV data were collected at Auchencorth Moss at least monthly from May to October
2021, covering an area of around 0.05 km2. Before the growing season commenced, a series
of markers were placed within the survey area. These included ten Ground Control Points
(GCPs) to aid in geo-referencing the acquired imagery during processing, and five Check
Points (CPs) to assess the geolocation accuracy of the produced maps. All the markers were
surveyed using a high-precision Global Navigation Satellite System (GNSS; GPS500, Leica
Geosystems AG, Heerbrugg, Switzerland) to compute their coordinates with a horizontal
accuracy of <2 cm.

Two types of UAV data were collected: (1) RGB data using a Mavic Pro 2 (SZ DJI
Technology Co., Ltd., Shenzhen, China); and (2) multispectral data using a Parrot Sequoia
sensor (Parrot Drones SAS, Paris, France). More detail on each type of data collected is
provided in Table 1.

Table 1. Overview of the types of UAV data collected at Auchencorth Moss during the 2021 growing
season. Ground sampling distance (GSD) describes the physical distance between adjacent pixel
centres in the imagery, i.e., for a 2 cm GSD each pixel corresponds to a 2 cm distance on the ground.
The accuracy of each dataset is indicated by the calculated root mean square error (RMSE) values.
Hereby, the observed locations of five Check Points (CPs) in the processed imagery were compared
against their corresponding ground-surveyed GNSS (Global Navigation Satellite System) coordinates.
Note that these CPs were not used during image processing and hence provide an independent
assessment of the geolocation accuracy in the processed imagery. For the multispectral data, the GSD
and RMSE represent mean values (averaged over all flights during the growing season); for the RGB
imagery, data were employed from a single survey conducted on 18 May 2021.

Sensor Data Type Survey Height (m) Image Overlap (% Front, Side) GSD (cm) RMSE [x, y, z] (cm)

Mavic Pro 2 RGB 65 70, 80 1.46
1.12
0.97
4.07

Parrot Sequoia Multispectral 25 80, 80 2.80
1.35
1.47
6.50
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Data collection was restricted to dates with low average wind speed (<5 m s−1), which
were either consistently overcast or clear to minimise variation in the scene illumination
during image acquisition. The meteorological conditions were logged on the flight dates
and all the UAV surveys were conducted within 2 h of solar noon to reduce the impact of
shadow on the imagery collected. Both the RGB and multispectral flights surveyed the
same ground area. For the latter, the Mission Planner software (v1.3.5, ArduPilot, http:
//www.ardupilot.org, accessed on 15 October 2017) was used to design an autonomous
flight plan for repeat surveys to ensure the comparability of the collected data throughout
the growing season. The Mavic 2 Pro RGB missions were planned and flown using the DJI
Ground Station Pro app for iOS (https://www.dji.com/se/ground-station-pro, accessed
on 24 January 2019).

2.2.1. Multispectral Data

Multispectral data were collected by a Parrot Sequoia sensor mounted on a Tarot
T680 Pro frame (Wenzhou Tarot Aviation Technology Co., Wenzhou, China). This custom-
built hexacopter ran the open-source Arducopter autopilot firmware on a PixHawk flight
controller, and it is shown in Figure 1 alongside photographs of the survey area. The Parrot
Sequoia sensor consists of two components. The first is a downward-facing multispectral
camera, which measures spectral reflectance in the green (530–570 nm), red (640–680 nm),
red-edge (730–740 nm), and near-infrared (NIR; 770–810 nm) bands. This camera was
mounted on a Tarot 2D gimbal to provide stabilisation of the pitch and roll axes. The
second component is the ‘sunshine’ or irradiance sensor, which was installed on a fixed
mount on the top surface of the UAV above the level of the aircraft’s GNSS antennae, with
a clear sky view. This upward-facing incident light sensor records changes in incoming
irradiance over the period of image capture and automatically corrects the measured
reflectance from the downward-facing multispectral camera.
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Figure 1. UAV surveying at Auchencorth Moss. Shown in (a) is the custom-built Tarot T680 Pro
(Wenzhou Tarot Aviation Technology Co., Wenzhou, China) and mounted Parrot Sequoia camera
positioned over a spectral calibration panel (photo credit: G. Simpson). Shown on the right are
photographs taken with the Mavic 2 Pro (SZ DJI Technology Co., Ltd., Shenzhen, China): (b) is an
aerial photograph of the survey area; and (c) shows one of the individual images acquired during the
RGB survey, which highlights the strong spatial heterogeneity of the site.

The four bands sampled by the multispectral camera are well-suited for detecting the
characteristic spectral features of vegetation, including a reflectance peak in the green band
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and a well-known chlorophyll absorption feature in the red band [44,45]. The red-edge and
NIR bands in particular are known to be important for discriminating between peatland
vegetation communities (e.g., [46]). The reflectance in the red-edge, for example, is related
to the chlorophyll content and leaf area [47–49], whereas the reflectance in the NIR band is
a good indicator of the leaf water content [50]. Multispectral surveys were conducted on
seven days during the 2021 growing season: 14 May, 2 June, 23 July, 3 August, 25 August,
20 September, and 15 October. An overview of the solar conditions on each survey day is
provided in Figure 2.
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Figure 2. Diurnal overview of the solar conditions on the multispectral survey days. Shown are: the
period of UAV image acquisition (yellow shaded areas); half-hourly incoming photosynthetically
active radiation (PAR) measured at the site (black dots; SKP215, Skye Instruments Ltd., Llandrindod
Wells, UK), and solar zenith angle (blue line) calculated using the NOAA Solar Calculator (https:
//gml.noaa.gov/grad/solcalc/, accessed on 21 January 2022). From top to bottom are the survey days:
14 May (overcast), 2 June (clear), 23 July (clear), 3 August (overcast), 25 August (clear), 20 September
(clear), and 15 October 2021 (clear).

The acquired multispectral imagery was processed using the ‘Ag multispectral’ tem-
plate in the photogrammetry software Pix4DMapper (v4.4.12, Pix4D S.A., Prilly, Switzer-
land). The initial processing produced a rough model from the imagery based on the
identification and matching of key points. This model was then geo-referenced (aligned to
a geographic coordinate system) through the marking of ten GCPs to improve estimation
of the camera positions and lens parameters. As a next step, radiometric correction of the
imagery was conducted using images from a calibrated reference panel (50% reflectance,
SphereOptics GmbH, Herrsching am Ammersee, Germany) taken during each flight, before
a separate reflectance map was produced for each of the four bands. Finally, shadow
was removed from the processed imagery prior to classification. For this purpose, a new
green–red band (GRav) was created as follows:

GRav =
ρred + ρgreen

2
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where ρ is the measured reflectance in the red and green bands, respectively. For each
survey date, ‘shadow’ was defined as all the pixels with GRav less than 1 standard deviation
below the mean, and it was masked from all the vegetation classifications.

2.2.2. RGB Data

The RGB imagery was collected on 3 August 2021 using the Mavic Pro 2 and processed
using the Pix4D ‘3D Maps’ template. Hereby, the Structure from Motion (SfM) technique
was used to generate an RGB orthomosaic and top-of-canopy Digital Surface Model (DSM)
of the survey area. Again, the ten surveyed GCPs were used to geo-reference the model,
and an overview of its accuracy is provided in Table 1.

The DSM highlighted the strong micro-topography at Auchencorth Moss and the
small E–W elevation gradient (5 m) over the surveyed area. As such, and in preparation for
the classification analysis, two additional elevation datasets were created so that the pixels
could be compared across the image at random. The first of these was a detrended elevation
map, created using a low-pass filter to smooth out any micro-topography. The second was
a normalised DSM, calculated as the difference between the detrended elevation map and
the original DSM. This normalised dataset allowed for the differentiation of hummocks
(local high-points) and hollows (local low-points), regardless of the pixel location.

2.3. Ground Validation Data

The ground validation data provided an independent measure for accuracy assessment
and allowed for the training and validation of classifications based on the UAV data. Two
types of ground validation data were employed in the present study based on: (i) ground-
level spectral reflectance measurements of individual species in the field; and (ii) high-
accuracy GNSS measurements of dominant vegetation patches within the UAV survey
area. GNSS point data were employed for ground validation across all the UAV survey
dates. In contrast, the use of spectral reflectance measurements as ground validation data
was restricted to two instances when UAV surveying was conducted within 1 week of the
ground spectral measurements. The classification analyses presented in the Results section
(Section 3) therefore employ GNSS point data as ground validation unless stated otherwise.

2.3.1. Spectral Reflectance Measurements

An ASD field spectroradiometer (FieldSpec Pro, Analytical Spectral Devices, Inc.,
Longmont, CO, USA) was used to measure the reflectance of vegetation at Auchencorth
Moss in the range 350–2500 nm on 2 June and 23 July 2021. Both dates were characterised
by clear skies and low wind speeds (<5 m s−1), and (as with the UAV surveys) the ASD
measurements were conducted within two hours of solar noon. The ASD was operated
in ‘White Reference’ mode, whereby the reflectance of a target was calculated relative to
a calibrated white reference standard (Spectralon target; Labsphere, Inc., North Sutton,
NH, USA) to allow the spectral measurements to be visualised in real time. Hand-held
measurements were performed using the bare fibre in a mounting block (23◦ field of view),
which was positioned close to the nadir ca. 30 cm above each target, corresponding to a
field of view on the ground of around 12 cm. Each measurement consisted of 50 scans
averaged by the spectrometer to minimise the signal-to-noise ratio in the collected spectra.
Finally, to facilitate comparison with the multispectral UAV data, spectra in the range of
the four Parrot Sequoia bands were extracted from the processed ASD spectra.

2.3.2. GNSS Measurements

Due to the patchy and heterogeneous nature of the vegetation at Auchencorth Moss
and despite expert knowledge of the site, it was not possible to identify individual species
based on visual inspection of the UAV imagery alone. To remedy this, a detailed field
survey of vegetation across the UAV survey area was conducted over four days from
October–November 2021. The purpose of this survey was to provide areas of spatial
training data for classification and validation data against which to assess accuracy. These
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GNSS point data were employed throughout the study period. It was hence assumed that
the spatial location of individual vegetation species in the peatland was not affected by
their phenological cycle.

Restricting the vegetation survey to the upper canopy (i.e., the portion of vegetation
observed in the UAV imagery), eleven dominant species were identified in the UAV survey
area. These are depicted in Figure 3 and span multiple PFTs, from mosses (Pleurozium
schreberi, Sphagnum spp., Polytrichum commune) to sedges (Eriophorum vaginatum), rushes
(Juncus effusus), grasses (Molinia caerulea, Deschampsia flexuosa), forbs (Potentilla erecta) and
shrubs (Vaccinium spp., Calluna vulgaris, Erica tetralix). Although it was uncommon to find
‘pure’ patches of vegetation for each species, with grasses often emerging through shrub
patches for example, many patches were dominated by a single species (defined as average
upper canopy cover >80%). The point coordinates around these patches were surveyed
to create single-species polygons (i.e., regions of interest, ROIs). The ROIs comprised
a total of 256 polygons spanning the eleven species (Table 2). Species such as J. effusus
often formed extensive patches (>25 m2), whereas others were less abundant, with a much
smaller patch size (e.g., E. tetralix, P. erecta; ca. 0.01–0.02 m2). As such, although this ‘on
the go’ sampling design achieved relatively good coverage of species over the UAV survey
area, time constraints and the heterogeneous nature of the vegetation at Auchencorth Moss
meant it was not possible to collect the same number or size of ROIs for each vegetation
species (see Table 2). These single-species ROIs were divided into training (~70%) and
validation datasets (~30%), each containing a similar ratio of image pixels and polygons
for each single-species ROI. For each flight day, the spectral properties of the ROIs were
extracted by overlaying their coordinates on the produced reflectance maps.
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Table 2. Size of the ‘dominant species’ regions of interest (ROIs) collected for training the classification
models and validating the outputs. Shown are the total number of polygons surveyed for each ROI
and the total number of pixels contained therein.

ROI Class Total No. Polygons Total No. Pixels

Eriophorum vaginatum 39 11,361

Juncus effusus 18 27,887

Deschampsia flexuosa 23 7118

Molinia caerulea 25 25,284

Erica tetralix 20 3442

Calluna vulgaris 19 8358

Vaccinium spp. 16 3524

Potentilla erecta 19 882

Sphagnum spp. 11 2157

Polytrichum commune 32 7264

Pleurozium schreberi 34 8666

SUM 256 105,943

2.4. Vegetation Classification
2.4.1. Pixel-Based Classification

The pixel-based classifications were conducted using the ENVI software (v5.5.3, Harris
Geospatial Solutions, Inc., Boulder, CO, USA). This type of classification uses the concept of
feature space to group pixels into classes based on the similarity of their spectral signature.
As such, geospatial patterns in the image data are ignored, and pixels are assumed to
be independent of each other. All the classifications conducted were supervised, in that
the spectral properties of the training data (pre-defined classes) were used to classify
each image pixel based on its proximity to the mean of the training classes. This study
explored the performance of the Minimum Distance, Mahalanobis Distance and Maximum
Likelihood (ML) algorithms. These were run using the collected GNSS points to extract
training and validation data. The ENVI ‘Spectral Angle Mapper’ tool [51] was also used
for image classification based on the (i) field-spectroscopy measurements from the ASD
(temporally limited); and (ii) average spectra from the single-species ROIs in the imagery
(not temporally limited). Hereby, the reference spectra for each class are assigned a given
vector denoting their position in the n-D feature space (where n is the number of bands, D
is the dimension). Pixels were then assigned to a given class based on their similarity to the
reference spectra, defined by the user as an angle from the class-vector to each pixel-vector
in the n-D space. Here, a smaller angle denotes a stronger similarity to the reference spectra
and vice versa.

2.4.2. ROI Separability and Classification Accuracy

The spectral separability of the ROIs was examined using the Jeffries–Matusita dis-
tance and Transformed Divergence measures [52,53]. The accuracy of the classifications
was assessed using a confusion matrix, whereby the classification output classes were
compared against the validation ROIs. At the image level, the accuracy was reported
using two metrics: (i) the overall accuracy (OA, i.e., the percentage of correctly classified
pixels; [54]); and (ii) the Kappa coefficient, or ‘Kappa’ [55], which is a measure of agreement
between the classification output and the ground validation ROIs. The values of the Kappa
coefficient range from zero (i.e., no agreement) to one (i.e., perfect agreement). Finally,
for the individual classes, the Producer- and User accuracy (PA, UA, respectively) are
reported, where PA indicates how much of the validation data were classified correctly by
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the classification algorithm (i.e., errors of omission), and UA indicates how often classified
pixels were actually present in the ground validation data (i.e., errors of commission).

2.4.3. Examining the Impact of Spatial and Temporal Sampling

The impact of the spatial resolution and UAV survey date on the image classification
was assessed, as outlined in Figure 4. Firstly, the influence of the spatial resolution on
the image classification was examined for a single day during the peak growing season
(3 August 2021). Here, the original imagery was used (2.8 cm ground sampling distance;
GSD) and re-sampled to create three coarser datasets of 5.6 cm, 11.2 cm and 22.4 cm
GSD using the nearest neighbour method. The classification outputs from these four
spatial datasets were compared to quantify the impact of the spatial resolution on the
classification accuracy.
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Figure 4. Outline of the data used to explore the impact of the spatial and temporal resolutions of the
UAV imagery on the classification accuracy.

The impact of the sampling date on the vegetation classification was examined by
conducting analyses on the original (2.8 cm GSD) UAV imagery collected on seven dates
over the growing season (14 May–15 October 2021). Separate classifications were produced
for each flight day, before the classification accuracy and the separability of the training
data were compared for each species over the seven flight dates.
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3. Results
3.1. Processed UAV Imagery and Spectral Data

A processed RGB and multispectral orthomosaic of the study area, flown at 65 and
25 m, respectively, are presented in Figure 5. The hummock–hollow micro-topography is
evident from the imagery as well as the historic drainage ditches, which are identifiable
as parallel line features running diagonally across the site. The differences between the
two image sets highlight the strong ability of multispectral data to capture the spatial
heterogeneity of vegetation at the site.
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Figure 5. RGB (true-colour composite, (a)) and multispectral (false-colour composite, (b); RGB = b4-b2-b1)
orthomosaics of the study area taken on 3 August 2021. The RGB image on the left (a) shows the
location of training (red) and validation (grey) data points used in the classification analysis.

The spatial resolution of the generated multispectral reflectance maps (i.e., GSD)
ranged from 2.71 to 2.93 cm and was influenced by the meteorological conditions (wind
speed and direction) on each survey date. All the reflectance maps displayed a high
accuracy for the geolocation, with an RMSE in the x–y direction of <1.5 cm (see Table 1).
The processed RGB orthomosaic had a spatial resolution of 1.46 cm and again had a high
geolocation accuracy (RMSE <1.2 cm in the x- and y-directions). The DSM had a vertical
accuracy of 4 cm. Image analysis found that around 14% of the scene consisted of shaded
areas, defined by a manufactured GRav band threshold. Finally, the normalised DSM
and multispectral image stack were combined to create a 5-band image used in all the
subsequent classification analyses. Note that because of the differences in the GSD of the
two datasets, the normalised DSM was resampled to match the spatial resolution of the
multispectral Parrot Sequoia imagery.

The field spectral reflectance measurements taken of vegetation at the site displayed
considerable overlap between the dominant species and are presented in Figure 6. These
measurements show the unique spectral signature and strong reflectance observed for
Sphagnum at Auchencorth Moss. Figure 6 also highlights the large amount of detail in
the spectral signature that is lost when extracting only the four bands sampled by the
Parrot Sequoia.
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Figure 6. Spectral signatures of the dominant vegetation species at Auchencorth Moss. The reflectance
data shown are from the field spectroscopy measurements conducted with the ASD on 23 July 2021.
The gaps in the presented spectra result from the removal of bands affected by noise and atmospheric
water absorption features. The wavelengths sampled by the four Parrot Sequoia bands (green, red,
red-edge, and NIR, respectively) are depicted by the vertical grey bars towards the left-hand side of
the plot.

3.2. Classification Analysis and Accuracy

The supervised classification methods examined in the present study varied widely in
their accuracy when mapping the dominant species at Auchencorth Moss. Using original
imagery from the peak growing season (3 August 2021), the overall accuracy (OA) ranged
from as low as 18% to around 70%. On the whole, the ML (OA = 69%, Kappa = 0.63) and
Mahalanobis Distance (OA = 60%, Kappa = 0.54) classifiers produced the most accurate clas-
sification maps. In contrast, the Minimum Distance classifier performed poorly (OA = 47%,
Kappa = 0.39), as did the spectral angle classifier run using the GNSS coordinate training
ROIs (OA = 28%, Kappa = 0.21). Finally, although not directly comparable, considerably
poorer results were obtained when running the Spectral Angle Mapper with the resampled
field spectroscopy data from 23 July (OA = 18%).

A confusion matrix was used to explore the output from the best-performing ML
classifier in more detail (Table 3). The species C. vulgaris, J. effusus and Sphagnum were
classified with the highest accuracy, and all three were associated with a high User- and
Producer accuracy (UA, PA) of around 80–90%. The ML classifier also achieved high
accuracy in mapping the shrub species Vaccinium, as well as the moss P. schreberi. In
contrast, the grass species D. flexuosa and M. caerulea were classified with lower success
(PA~60%). The confusion matrix shows that a large proportion of pixels were incorrectly
classified as D. flexuosa instead of M. caerulea and P. schreberi (UA = 44%). Interestingly,
although the ML classifier had a relatively high User accuracy for the class E. vaginatum, it
had a low Producer accuracy (PA = 32%). In fact, pixels known to contain this species were
more often classified as D. flexuosa or M. caerulea. The classification accuracy of P. commune
was also poor, and this species was often misclassified as J. effusus (PA = 46%). Finally, the
lowest accuracies were observed for the class with the smallest training and validation
datasets, P. erecta (see Table 2). This forb was often misclassified as D. flexuosa or P. commune
and was the class with the lowest UA of only 6%.
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Table 3. Confusion matrix based on a Maximum Likelihood (ML) classification of the peak growing
season imagery (3 August 2021). The analysis was conducted using original resolution data (2.8 cm
GSD) in a 5-band image stack (multispectral and normalised DSM data), and GNSS survey point
data were employed for the ground validation. Columns represent ground validation data, and rows
represent classification output based on the training data. Note, values in the table’s centre denote
the number of pixels, with those in bold along the diagonal indicating the number of pixels for which
the classification predicted the same species as in the ground validation data. The User and Producer
accuracy are given as percentage values for ease of reference, with overall classification accuracy
indicated in bold.

Ground Validation Data
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P. schreberi 1544 54 26 31 0 258 7 23 0 1 267 70%

D. flexuosa 153 1181 240 107 0 1 38 154 1 54 728 45%

M. caerulea 0 0 1023 0 0 0 0 0 50 0 606 61%

P. commune 12 196 71 684 3 190 53 17 0 43 13 53%

Sphagnum spp. 54 1 0 0 462 0 0 0 0 0 8 88%

J. effusus 196 64 0 421 0 6412 0 0 7 23 63 89%

C. vulgaris 0 0 19 35 0 0 1202 17 21 0 0 93%

E. tetralix 10 15 16 0 0 0 195 687 0 0 38 72%

Vaccinium spp. 0 0 23 13 0 0 0 0 897 26 235 75%

P. erecta 114 361 70 160 9 174 34 23 0 85 358 6%

E. vaginatum 130 31 206 38 48 33 9 2 14 29 1091 67%

Producer Acc. 70% 62% 60% 46% 89% 91% 78% 74% 91% 33% 32% 69%

3.3. Impact of Spatial Resolution

The original 2.8 cm GSD imagery was resampled to three coarser resolutions (5.6 cm,
11.2 cm and 22.4 cm GSD) to examine the impact of the spatial resolution on the imagery
itself and the subsequent vegetation classification. A visual comparison is presented in
Figure 7 and shows the large amount of detail captured in the highest resolution mul-
tispectral imagery (2.8 cm GSD), including the structure of individual grass tufts. This
detail, although less sharp, was also present in the mid-resolution imagery (5.6 cm and
11.2 cm GSD). In contrast, the imagery with the coarsest resolution (22.4 cm GSD) appeared
pixelated and individual vegetation features were no longer discernible. It follows that
the classifications produced using higher-resolution imagery were more spatially heteroge-
neous (Figure 7). The ML classification employing the 2.8 cm GSD imagery, for example,
produced classes that varied over short distances (<1 m), whereas in the classification
produced using the coarsest imagery, the distances between class boundaries commonly
spanned >2 m.

The accuracy of the classifications produced with this resampled imagery are provided
in Table 4. Overall, the classification accuracy was found to increase with the increasing
spatial resolution of the input data. Interestingly, although the highest accuracy was
achieved using the original 2.8 cm GSD imagery (OA = 69%, Kappa = 0.63), the accuracy
of the two medium-resolution classifications was only marginally lower. In contrast, a
marked drop in classification accuracy was observed when coarsening the resolution of the
input imagery from the 11.2 to 22.4 cm GSD (>22 percentage points for OA; 40% reduction
in Kappa). Despite the low overall accuracy achieved using this coarse imagery, the success
at the species level was variable. For example, pixels classified as J. effusus, Vaccinium-
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and Sphagnum all had PA > 70%, whereas the PA for all the other classes was below 40%.
Finally, the classification accuracy for species with a smaller patch size exhibited the largest
reductions in accuracy when coarsening the input imagery from 11.2 cm to 22.4 cm GSD.
The producer accuracy for E. tetralix, for example, dropped from 59% to 0%.
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Figure 7. Impact of the spatial resolution on the image classification. Shown are false-colour
composites of the multispectral imagery (left; RGB = b4-b2-b1) used as input for the Maximum
Likelihood (ML) classification (right; see legend). A coarsening image resolution is shown from top
to bottom (2.8 cm GSD to 22.4 cm GSD). Note, these classifications were conducted using the GNSS
survey point data for ground validation.
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Table 4. Impact of the spatial resolution on the classification accuracy. Shown are accuracy statistics
for a Maximum Likelihood (ML) classifier run with imagery collected on 3 August 2021, employing
GNSS point data as ground validation. The original 2.8 cm GSD dataset was resampled to produce
three sets of coarser resolution imagery used in the classification.

Spatial Resolution
Classification Accuracy

Overall Accuracy Kappa Coefficient

2.8 cm GSD 68.5% 0.63

5.6 cm GSD 65.4% 0.60

11.2 cm GSD 64.9% 0.59

22.4 cm GSD 42.8% 0.35

3.4. Impact of Temporal Sampling

Changes in the illumination geometry and phenology were observed over the duration
of the study, which spanned the greening, flowering, and senescence of vegetation. This
seasonal variability was evident in the monthly UAV imagery, with a visible contrast in the
spectral reflectance of vegetation between surveys (see Figure 8). Differences in the location
and areal extent of shadow (defined by our manufactured GRav band) were also visible
between survey dates (black shaded areas, Figure 9), meaning there was some variability
in the image pixels employed for the classification analysis.
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Figure 8. Multispectral imagery of Auchencorth Moss over the 2021 growing season. Shown are false-
colour composites (RGB = b4-b2-b1) of the survey area acquired on three dates: 14 May (a); 3 August
(b); and 15 October (c).

As seen for the spatial resolution, the ML classifier consistently produced the most
accurate classifications across all the dates. The highest overall accuracy was achieved
using imagery collected in late July and early August, when the growing season was at
its peak (OA = 65.4%, Kappa = 0.63; OA = 68.5%, Kappa = 0.59, for 23 July and 3 August,
respectively). In contrast, the least accurate classification was produced using imagery
collected at the end of the growing season (15 October, OA = 38%, Kappa = 0.31), when
senescence had already occurred. Despite these contrasting examples occurring at opposite
stages of the growing season, no consistent trend in the overall accuracy over time was
observed. The classification using imagery from 14 May, for example, was the third most
accurate of all the surveyed dates (OA = 65%, Kappa = 0.58). This relatively high accuracy
was achieved despite the minimal new growth at this point in the growing season.

The analysis highlighted some clear differences in the vegetation maps produced over
the growing season, a selection of which are shown in Figure 9. During the early growing
season, for example, a large portion of the survey area was classified as the graminoid
M. caerulea. However, the predicted cover of this species was substantially lower in the
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classifications employing peak and late growing season imagery. Similarly, the classification
of pixels as the moss species P. commune was widespread using imagery from the peak
growing season (Figure 9b), whereas visibly lower coverage was estimated using imagery
from other dates.
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Figure 9. Temporal vegetation classifications of Auchencorth Moss over the 2021 growing season.
Shown are the results of the Maximum Likelihood (ML) classifier run with imagery acquired on
14 May (a); 3 August (b); and 15 October (c). Note, the presented classifications varied in accuracy
and were conducted using the GNSS survey point data for ground validation.

At the species level, the classification accuracy exhibited seasonal variability over the
course of the phenological cycle. For example, examining data from the training ROIs
showed that Sphagnum was spectrally distinct in the sampled sequoia bands for the majority
of the growing season. During the early growing season (May–June), Sphagnum pixels
from the training data exhibited higher reflectance in the red-edge and NIR bands than all
the other species classes. Then, during the peak growing season (July–August), Sphagnum
pixels exhibited an increased reflectance in the green and (to a lesser extent) red bands.
It follows that the classification accuracy for this species was highest during these time
periods (PA, UA ≥ 80%). The rush J. effusus also appeared distinctive in the red-edge
and NIR bands, where the pixels had substantially lower reflectance values than the other
classes. This species was most separable during the peak growing season (July–August) as,
unlike the other classes, it did not exhibit a reflectance peak in the red-edge and NIR bands.
Other distinctive species in the present study were P. schreberi, which demonstrated a high
reflectance in the green band at the end of the growing season, and M. caerulea, which had
by far the highest reflectance in the green and red bands of all the classes at the start of the
growing season. These differences highlight the strong impact of vegetation phenology on
the classification accuracy at Auchencorth Moss.

4. Discussion
4.1. Classification Analysis
4.1.1. Classification Accuracy

This study used ultra-high-resolution UAV data to map vegetation at the species level
in a temperate peatland. The impact of (i) the chosen supervised classification algorithm;
(ii) the spatial resolution of the imagery (GSD); and (iii) the temporal sampling date on the
classification accuracy was examined. The ML algorithm was found to produce the most
accurate classification results at Auchencorth Moss for all the spatial scales and survey
dates examined. Running this classifier with GNSS point data for ground validation, it was
possible to achieve a relatively high accuracy at the species level (OA = 69%). In contrast,
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the lowest accuracies (OA < 30%) were achieved using a spectral angle classifier run with
GNSS point data or field spectroscopy measurements as validation data.

A number of studies in the existing literature report a higher classification accuracy
than that presented for Auchencorth Moss. Kalacska et al., for example, classified E.
vaginatum with 96% overall accuracy using RGB imagery (4.5 cm GSD) in a pixel-based
supervised classification [32]. A similarly high accuracy (92%) was achieved by Lehmann
et al., who classified vegetation at the species level in a Patagonian bog [56]. Despite the
high accuracies reported above, it is important to note that the studies vary considerably
in terms of their design (e.g., spatial resolution, classification methods, and vegetation
groupings). These differences make it difficult to compare the results from the literature.
In the Patagonian study, for example, the micro-topography was less pronounced than
at Auchencorth Moss, and the authors employed a number of broad groupings, such as
‘pools’, ‘dead vegetation’ and ‘lichens’, in addition to their species-level classes [56]. This
inclusion of strongly contrasting classes may have led to the high accuracy observed.

The present study was unique in that it mapped all 11 dominant species found in
a site with strong spatial heterogeneity. Furthermore, many of the dominant species at
Auchencorth Moss were spectrally similar (see Figure 6) and not clearly distinguishable
from visual observation of the collected imagery alone (Figure 3). In contrast, the commu-
nity types commonly mapped in the literature are often visually distinct in aerial imagery
(e.g., [27]). This strong separability of classes likely leads to higher classification accuracy
in these cases.

4.1.2. Choice of Methodology

The choice of classification methodology employed in the present study is important
to consider when discussing the results, as it can have a large impact on the classification
accuracy. We explored pixel-based classifications, whereas a number of studies in the
literature employed an object-based approach. Object-based image analysis (OBIA) works
on the basis that neighbouring pixels in very-high-resolution imagery often belong to
the same class. This fact is ignored in the pixel-based approach we employed, which
assumes individual pixels are independent of each other. OBIA segments the image into
clusters of neighbouring pixels (i.e., ‘objects’), before classifying each segment based on the
training data. This approach is thought to lead to better results for very-high-resolution
imagery [57,58]. It would be of interest in future research to examine how this approach
performs with the patchy mix of vegetation at Auchencorth Moss.

Secondly, the present study was limited in that it explored only traditional classi-
fication algorithms (e.g., Maximum Likelihood, Minimum Distance). Although these
algorithms achieved a high classification accuracy, another approach receiving a lot of
attention in the literature is geospatial artificial intelligence (GeoAI; [59–61]). GeoAI has
been found to achieve high accuracies in a number of studies (e.g., [46,59,62]) and is a
powerful tool for exploring large datasets. This field is rapidly expanding and encompasses
both machine-learning (e.g., random forest, support vector machines) and deep-learning
algorithms (e.g., convolutional neural networks). That said, in comparison to traditional
algorithms, GeoAI is a novel and developing field [59]. AI methods are often less accessible
than traditional techniques, particularly for UAV-based studies (although frameworks are
starting to be developed, e.g., [63]). At present, there is a lack of published literature com-
paring the two approaches for species-level classifications in peatlands, or even similar (e.g.,
wetland, grassland) ecosystems. We note, however, that machine-learning studies do not
always report accuracies higher than we achieved at Auchencorth Moss using a Maximum
Likelihood classifier (e.g., [22,41,62,64,65]). While a comparison of the performance of the
two approaches was outside the scope of the present study, such work would be of great
value in guiding the design of future classification studies.
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4.1.3. Misclassification of Species

The misclassification of individual species at Auchencorth Moss likely occurred for
multiple reasons. Firstly, species within the same PFT are known to be spectrally similar [66].
Hence, it can be difficult to separate vegetation within a given PFT at the individual-species
level [65]. At Auchencorth Moss, the sedge E. vaginatum and the grasses D. flexuosa and M.
caerulea are all tussock-forming species, and they were observed to have similar spectral
signatures (see Figures 3 and 6). This often led to misclassification. Pixels known to contain
E. vaginatum, for example, were more frequently misclassified as D. flexuosa or M. caerulea
than classified correctly. In contrast, the high classification accuracy observed for moss
species such as Sphagnum reflects their unique spectral signature, especially when compared
to vascular plant species (Figure 6, see also [67,68]). Secondly, it is acknowledged that a
large amount of spectral information was lost by limiting the sampling to the four Parrot
Sequoia bands, and this likely led to the low accuracies achieved with the spectral angle
mapper. In this respect, upgrading the sensor would provide more data for classification.
Intermediate upgrades from the 4-band Parrot Sequoia sensor we utilised include the
5-band MicaSense (RedEdge-Mx, AgEagle Aerial Systems Inc., Wichita, KS, USA), the
6-band Tetracam (Tetracam Inc., Chatsworth, CA, USA), and the 10-band MicaSense Dual
Camera System. At the other end of the scale, upgrading to a hyperspectral sensor would
substantially increase the spectral resolution of the data, although this would substantially
increase both the capital costs (e.g., ~GBP 4000 for our multispectral system vs. ~GBP
300,000 for a hyperspectral system) and the amount of processing required. An alternative
would be to employ a larger range of data types for the classification analysis. Studies have
shown, for example, that the use of multiple sensors (e.g., RGB, thermal, multispectral) can
aid in the identification of species with strong spectral similarity [46]. A simpler approach
using the collected data would be to employ vegetation indices or texture metrics alongside
single-band reflectance to provide additional information for vegetation classification.

The multi-layer canopy of vegetation at Auchencorth Moss and the lack of spectrally
‘pure’ (i.e., 100% single-species) pixels will have introduced error into the present study.
For example, patches of the moss P. commune were observed within the J. effusus canopy
during the ground survey, and subsequently the analysis found that P. commune was often
misclassified as J. effusus. The tall, thin J. effusus stems surrounding these moss patches, in
combination with the viewing angles used in SfM, are likely to have caused J. effusus to be
the dominant spectral signature from these pixels. Finally, it is noted that some species
included for classification in our study had a limited number of training and validation
ROIs (e.g., the forb P. erecta). These species were characterised by a small patch size and less
extensive coverage, making it difficult to obtain sufficient sample points (see Table 2). The
resulting ‘class imbalance’ will have impacted the produced classifications, with low class
accuracy being linked to under-represented classes [54,69]. While a randomly distributed
sampling strategy would in theory have been ideal and less affected by bias, at Auchencorth
Moss the variable areal extent of the chosen classes and time constraints concerning field
data collection mean that this methodology would be unlikely to capture the full variability
in vegetation.

4.2. Impact of Spatial Resolution

Remote-sensing studies collecting imagery at higher spatial resolution provide more
detailed datasets for classification. Such studies allow for data to be coarsened in order
to (i) identify the best resolution for the intended mapping purpose; and (ii) minimise
the processing time for the classification. In the present study, the classification accuracy
improved when using imagery with higher spatial resolution (see Table 4). Using UAV
imagery with <12 cm resolution, vegetation could be mapped at the species level with
relatively high accuracy (i.e., OA ≥ 65%), despite the strong heterogeneity that characterised
the site. In contrast, the coarsest dataset examined (22.4 cm GSD) lacked the resolution to
capture vegetation species with smaller patch sizes (e.g., E. tetralix). These findings highlight
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the need to consider the physical distances characterising the vegetation heterogeneity (e.g.,
patch size) at sites prior to surveying in order to produce the most accurate maps.

Despite its allure, obtaining and working with ultra-high-resolution data can be
problematic. During UAV surveys, for example, wind and propwash (particularly if
flying at low elevations, e.g., <5 m above ground level) can cause the vegetation itself
(i.e., individual stems, flowers) to move between image acquisitions. This movement can
lead to problems with geo-referencing and the matching of key points, and it can affect
the quality of the output [70]. The GSD also has a strong influence on the signal-to-noise
ratio. Vegetation appears more heterogeneous when imaged at spatial resolutions higher
than that of the individual plants, as is often the case with centimetre-resolution imagery.
In this case, rather than a single pixel covering the entire plant, the pixels will capture
different parts of its structure (e.g., with separate pixels covering the leaf, stem, flower)
and cause a higher contrast in the spectral signature [71]. This increased heterogeneity at
finer scales can cause problems for classification referred to as the ‘salt-and-pepper’ effect,
reducing the classification accuracy due to the high amounts of noise in the imagery. This
noise particularly impacts pixel-based classifications, as were conducted in the present
study [72,73], although its impact can be reduced by resampling the data. An alternative
would be to employ object-based image classifications, which are less affected by noise as
they segment image pixels into homogeneous objects [58].

Finally, the presence of shadow in high-resolution imagery can be pronounced, affect-
ing the spectral reflectance measured by sensors and reducing the accuracy of subsequent
classifications [37,38]. The contrast between shaded and illuminated pixels is particularly
pronounced on sunny days, and various methods for masking shadow have been em-
ployed in the literature (e.g., [37,38,74]). The present study adopted a threshold approach
in a manufactured GRav band (see Section 2.2.1), which categorised around 14% of image
pixels as shadow. This thresholding approach likely overestimated the shadow’s extent on
overcast days (e.g., 3 August 2021; Figure 9b) compared to sunny days (e.g., 15 October
2021; Figure 9c). Although these differences may affect the classification accuracy, they are
hard to evaluate, particularly due to difficulties quantifying the shadow fraction in over-
cast conditions. Nevertheless, the ultra-high-resolution imagery collected at Auchencorth
Moss was used to create vegetation classifications of high accuracy, and it highlights the
complexity of the studied ecosystem, with its hummock–hollow micro-topography and
heterogeneous vegetation cover.

4.3. Impact of Temporal Sampling

In the present study, imagery acquired in the peak and very early growing season (late
July–early August, and start of May) produced the most accurate vegetation classifications
(OA ≥ 65%) for Auchencorth Moss. During the peak growing season, the vegetation was
at its greenest and many species exhibited a more unique spectral signature. This increased
level of separability between classes improved the classification accuracy. Examples include
the pink–purple flower heads of E. tetralix and C. vulgaris, and the golden-brown seed
heads of J. effusus. Interestingly, the analysis identified that M. caerulea was best classified
using early-growing season imagery (PA = 81%, UA = 98%). This was the only deciduous
grass species at the site and was widespread, creating large clumps of dead material at the
end of the growing season [75]. Senescent vegetation is known to have a distinct spectral
signature [39]. Hence, by the following year, this material exhibited a distinct peak in
reflectance in the red band, which was not present for the other (non-deciduous) species.
These findings highlight the strong impact of phenology on vegetation classification.

The optimal time for image acquisition will vary between sites, depending on the cli-
mate, environmental conditions, and the vegetation species present. However, the findings
of the present study broadly coincide with those of Cole et al., who found that peatland
PFTs in the Peak District (UK) were most separable in April and July, based on a time-series
of hyperspectral field spectroscopy data [39]. It is therefore important that studies either
(1) have detailed knowledge of the site phenology, limiting UAV surveys to the peak grow-
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ing season; or (2) are able to survey on multiple dates (ideally during the early and peak
growing season) to improve the classification accuracy. It is also worth noting that the
temporal variability in spectral reflectance results can also be determined by environmental
conditions (i.e., physiological status of the vegetation, see [76,77]). This is especially im-
portant to consider in peatlands, which exhibit strong heterogeneity at the microsite level.
During dry periods, for example, although hollows can remain relatively moist, supporting
vegetation growth, hummocks may dry out and induce the premature senescence of vege-
tation. Such small-scale variability can cause contrasting spectral signatures to be present
for specimens within a single species and complicate classification analysis.

While the majority of UAV studies in the literature conducted classifications based
on mono-temporal datasets, the present study has highlighted the strong impact of phe-
nology over the growing season. In the literature, the use of multi-temporal datasets has
been associated with improved image classification accuracy. Dudley et al., for example,
employed a multi-temporal spectral library to map scrubby vegetation at the species level
over a coastal elevation gradient in California [78]. The authors found that this improved
the classification accuracy for some species compared to single-date libraries. The use of
composite high-resolution imagery has not been widely explored for peatland vegetation
mapping. This data gap may be due to the inaccessibility of many peatland environments
and the lack of theoretically ideal meteorological conditions for spectral measurements
(see [39]). However, due to the strong seasonal phenological cycle of peatland vegetation,
such data would be valuable to collect, particularly if the use of UAVs for peatland study
continues to increase in popularity.

5. Conclusions

UAV-based vegetation mapping can provide important data for peatland studies
evaluating restoration projects (e.g., [25]) or estimating carbon emissions, particularly
where certain vegetation communities, micro-topographical units, or species are associated
with elevated fluxes of carbon dioxide or methane, for example [27,56]. Despite UAV
technology allowing us to monitor peatlands at the centimetre level, to the best of our
knowledge, this rich detail has rarely been exploited in vegetation classification.

The present study examined the use of ultra-high-resolution (2.8 cm GSD) multispec-
tral UAV imagery for classifying vegetation at the species level. Despite strong spatial
heterogeneity, 11 dominant species at the site were classified with overall accuracy of
almost 70% using an ML classifier. The species C. vulgaris, J. effusus, and Sphagnum were
classified with the highest accuracy, whereas the sedge E. vaginatum was often misclassified
as the graminoid species M. caerulea or D. flexuosa. Surprisingly, little difference in accuracy
for classifications employing imagery of 2.8 to 11.2 cm GSD was observed. However, a
large drop in accuracy was seen when using imagery of coarser resolution (22.4 cm GSD).
Further analysis and testing at a range of sites would help to better constrain the trends
in accuracy under decreasing image resolution. This information would provide valuable
guidance for future studies, allowing researchers to choose the most efficient study design.

The multi-temporal dataset analysed in the present study is unique. Analysis of this
dataset has shown that the seasonal timing of image acquisition is a key factor influencing
the classification accuracy. The most accurate vegetation classifications were produced
using imagery acquired during the peak or early growing season, which supports previous
findings [39]. In terms of the design, studies conducting more than one survey over the
growing season would be most advantageous, particularly at sites where the phenology is
not well known, whereas a targeted sampling design in the peak growing season could be
employed at regularly monitored sites.

Despite the complexity of mapping peatland vegetation at fine spatial scales, data
from the present study show it is possible to map vegetation at the species level with high
accuracy. Such data products could be employed to estimate peatland carbon emissions,
or by peatland restoration managers as a quick and repeatable method to monitor project
success. Further research would help to identify which platforms (or combinations thereof)
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produce the highest-accuracy classifications and which types of classifier (e.g., object- or
pixel-based) and algorithms (traditional or GeoAI) are best suited to classifying peatland
vegetation at the single-species level. This work would be invaluable in guiding future
studies in how to achieve the highest classification accuracies.
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