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Abstract: Over the past decade, Unmanned Aerial Vehicles (UAVs) have emerged as essential tools
for landslide studies, particularly in on-site investigations. This paper reviews UAV applications in
landslide studies, with a focus on static geological characteristics, monitoring temporal and spatial
dynamics, and responses post-events. We discuss the functions and limitations of various types of
UAVs and sensors (RGB cameras, multi-spectral cameras, thermal IR cameras, SAR, LiDAR), outlining
their roles and data processing methods in landslide applications. This review focuses on the UAVs’
roles in landslide geology surveys, emphasizing landslide mapping, modeling and characterization.
For change monitoring, it provides an overview of the temporal and spatial evolution through UAV-
based monitoring, shedding light on dynamic landslide processes. Moreover, this paper underscores
UAVs’ crucial role in emergent response scenarios, detailing strategies and automated detection using
machine learning algorithms. The discussion on challenges and opportunities highlights the need for
ongoing UAV technology advancements, addressing regulatory hurdles, hover time limitations, 3D
reconstruction accuracy and potential integration with technologies like UAV swarms.

Keywords: UAVs; landslide; remote sensing; photogrammetry

1. Introduction

Unmanned aerial vehicles (UAVs), commonly known as drones, have witnessed
significant advancements in various applications [1–3]. Their increasing affordability, user-
friendly operation, and integration of artificial intelligent technologies have prompted a
significant shift in diverse fields, from agriculture and environmental monitoring to infras-
tructure inspection and construction [4–6]. UAVs have had a signifacant impact on landslide
research, especially in on-site surveys, leading to a surge in geoscience publications reliant
on UAV-based remote sensing [7,8].

Landslides, characterized by the flow of rock, earth, or debris down slopes [9,10], can
be triggered by various external factors, including intense rainfall [11–14], fluctuating water
levels [15–18], stream erosion [19,20], changes in groundwater [21,22], earthquakes [23–26],
and volcanic activity [27]. Annually, these natural hazards result in extensive property
damage, incurring substantial direct and indirect costs [7,28].

A diverse array of geoscience methods has emerged, providing various ways to collect
data for a comprehensive understanding of landslides. Surface data on landslides, directly
reflecting geomorphological features such as slope angle and displacement, have become
an effective method for hazard assessment strategies [29]. These data can be provided by
remote sensing methods with high spatial resolution in comparison with ground-based in-
struments. Manned aircraft and satellites have proven effective in disaster response across
a range of temporal and spatial resolutions, covering scales from meters to kilometers.
However, utilizing methods like spaceborne photogrammetry and spaceborne Interfero-
metric Synthetic Aperture Radar (InSAR), satellite remote sensing faces issues related to
timely data acquisition and atmospheric conditions [30–33]. Airborne remote sensing has
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been used for many years, generally based on manned aircraft, which is expensive and
inconvenient [34]. Researchers are exploring the use of manned-control UAVs for sensing
or photogrammetry of landslide surfaces or beyond surface data, which is flexible, low-cost,
and effective compared to manned-aircraft-based sensing [35]. However, the constraints of
within-the-horizon flight have limited these UAVs’ usage in some applications like emer-
gency response, where flight planning is required. In the past decade, with IMU sensor
minimization, autopilot control development, and image processing technology, UAVs
equipped with advanced sensors have rapidly emerged as useful tools in landslide analysis,
offering cost-effective over-the-horizon flight and a timely method to study landslides.
Recent publications about on-site landslide studies suggest that UAVs have become almost
a necessary tool to support investigations [7,8].

UAVs have predominantly found application in landslide studies for the monitoring
of displacements and the characterization of structures, addressing both the dynamic and
static facets of landslides. Leveraged extensively for the static characterization of precarious
regions using aerial images [36], UAVs offer a rapid response option in the aftermath of
hazard events, particularly when ground investigations are time-consuming. They are
also useful in high-resolution 3D model reconstruction based on a number of overlapped
aerial images, as UAVs can be closer to landslides to achieve higher spatial resolution
compared to spaceborne or airborne remote sensing [37]. Furthermore, the difference
between multi-temporal landslide models provides an effective and direct method for
short-long term monitoring [38]. In emergency response scenarios, multi-functional UAVs’
rapid deployment and data acquisition capabilities aid in post-landslide assessments,
enabling real-time monitoring to gauge damage extent, evaluate risks, and inform timely
decision making in emergency situations [39–41]. Addtionally, as UAV platforms and
diverse sensors evolve, applications in landslides, including object identification and real-
time change detection, benefit from advanced data analysis techniques in computer vision
and machine learning. This enhancement allows for more sophisticated automated analysis
of UAV data [42,43].

This article conducts a thorough review of the literature, examining how UAVs con-
tribute to landslide studies and providing an updated look at the technology, covering
sensors to data processing. We hope this review can offer the geoscience community a
practical update, pointing out potential research areas and addressing associated challenges.
Within this paper, we begin by exploring various types of UAVs, sensors, and methods for
use in landslide studies. We then present the diverse applications of UAVs in landslide
research across three key aspects. The first section discusses their significance in landslide
characterization, mapping, and modeling. The following section focuses on monitoring
temporal and spatial dynamics in landslide processes, including surface change monitoring
to crack and fissure detection. The final section examines the applications of UAVs in emer-
gency response, highlighting effective strategies and the integration of automated detection
and machine learning algorithms. To conclude, we underscore the existing challenges,
opportunities, and potential future directions within the field.

2. UAVs Description

2.1. UAVs Types

UAVs encompass a diverse array of specifications, with the capability to operate at
altitudes ranging from a few meters to several kilometers and carrying weights varying
from a few grams to several hundred kilograms. In the realm of landslide studies, UAVs
serve various purposes and can be classified based on their aerodynamic and physical
features. These classifications include rotary-wing configurations, including helicopters,
coaxial designs, quadcopters, and multi-rotors [44]; and fixed-wing designs, encompassing
gliders or flying wing models [45]. Notably, the application of helicopters in geoscience
studies has swiftly given way to more commercially practical multi-rotors. Fixed-wing
UAVs stand out in large-scale surveys and mapping for landslides, adeptly covering
extensive areas in a single flight. These drones are most effective in flat or gently sloping
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terrains, with their performance potentially limited in comparison to multirotor drones
when operating in complex or rugged landscapes. Multirotor UAVs, exemplified by
quadcopters or hexacopters, provide versatility for conducting detailed surveys, facilitating
close inspections, and monitoring various landslide features. Another emerging category
is hybrid drones [46], which combine features of fixed-wing and rotary-wing designs,
showing promise in landslide studies. Figure 1 illustrates the features and limitations of
each UAV type.

Figure 1. Functions and limitations on different UAV types.

2.2. Overview of UAV Sensors

Rapid technological advancements in both passive and active sensors have signifi-
cantly bolstered the capabilities of UAVs across various mission types. Sensors seamlessly
integrated into UAVs facilitate image capture at centimeter-scale spatial resolutions and pro-
vide temporal resolution conducive to time-dependent analyses. The selection of sensors for
a UAV is contingent upon platform size and specific mission objectives. It is worth noting
that despite the miniaturization of sensors for UAVs, they often fall short of the capabilities
of their ground-based counterparts due to size, power, and environmental constraints. In
landslide studies, commonly utilized on-board sensors comprise RGB cameras [44], multi-
spectral sensors [47], thermal Infrared Range (IR) cameras [48,49], Synthetic Aperture Radar
(SAR) [50–52], and Light Detection and Ranging (LiDAR) [38,53]. Additionally, sensors like
electromagnetism and multi-gas find application in specific landslide scenarios.

2.2.1. Optical Sensors

Optical sensors cover the visible (380 nm to 760 nm), near-infrared (760 nm to 1400 nm),
shortwave infrared (1400 nm to 3000 nm), and mid-infrared (3000 nm to 35,000 nm) domains.
Imagery captured by optical sensors serves as a robust method for landslide analysis,
proving particularly effective when visible or thermal effects are prominent. This technique
plays a crucial role in efficiently identifying key features, utilizing either human expertise or
automated detection approaches in landslide studies. Optical sensors integrated into UAV
platforms are commonly classified into visible cameras [54–56], thermal infrared range (IR)
cameras [48,49,57,58], and multi-spectral sensors [47,59].

Visible Camera

Visible cameras operate by capturing reflected sunlight and measuring the intensity
of light in the visible spectrum. RGB cameras distinguish between red, green, and blue
wavelengths, providing valuable color information. These cameras play a pivotal role
in landslide detection and mapping by capturing images that emphasize morphological
characteristics such as scarps, cracks, the main body, rotated blocks, toes, armchair-shaped
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boundaries and river damming. In many existing landslide applications, reliance on RGB
camera-based products like orthophotos and DEMs is prevalent due to their effectiveness,
directionality and practical implementation. However, it is important to note that visible
cameras have limitations, such as being restricted to daylight conditions and susceptibility
to adverse weather factors to consider for continuous monitoring. The quality of RGB
images, vital for feature identification, depends on various factors, including light source,
setting parameters, camera selection, lens distortion, focal length, pixel size, and more [60].

Thermal Infrared Range (IR) Camera

Thermal Infrared Range (IR) cameras operate based on detecting emitted thermal
radiation, where warmer surfaces emit more infrared radiation than cooler ones [61]. These
cameras determine kinetic temperature and emissivity through intensity, capturing emitted
infrared radiation—a phenomenon exhibited by all materials above absolute zero. When
mounted on UAVs, thermal infrared range (IR) cameras excel in identifying thermal anoma-
lies associated with geological instability on landslide surfaces. This capability to discern
temperature variations offers a unique perspective, enhancing the overall understanding of
landslide dynamics. To better localize thermal features, the view field of a thermal camera
is designed to be close to that of a normal visible camera. However, it is important to
note that thermal images typically have lower spatial resolution than RGB images due
to the nature of infrared wavelengths. These cameras may face challenges in certain en-
vironmental conditions, such as thick vegetation cover, which can hinder the detection
of thermal anomalies. Additionally, the interpretation of thermal data requires careful
consideration, as factors like surface moisture and atmospheric conditions can influence
temperature readings.

Multi-Spectral Sensors Camera

Multi-spectral sensors function by capturing information across various bands of
the electromagnetic spectrum, extending beyond the capabilities of human vision. These
sensors can record data at numerous spectral bands, each corresponding to specific wave-
lengths. In contrast to RGB cameras, which capture three bands, multi-spectral sensors
enable a detailed spectral analysis of the terrain, identifying unique signatures associated
with geological materials and vegetation information [62]. For instance, the red-edge and
near-infrared bands can be highly sensitive to vegetation. This comprehensive spectral
information enhances geological mapping and allows for advanced analyses, including
assessments of vegetation and mineral identification—crucial aspects in landslide studies.
Some UAV-based multi-spectral products are designed to support studies on vegetation
detection and analysis, soil moisture estimation, and agriculture. For instance, the Phantom
4 Multi-spectral UAV incorporates a lightweight multi-spectral imaging sensor that yields
valuable data in various bands, encompassing the visible, near-infrared, and shortwave
infrared domains. This data can be utilized to derive vegetation indices (VIs), including
the Normalized Difference Vegetation Index (NDVI) [63]. However, it is worth noting that
these sensors often come with trade-offs, such as lower spatial resolution compared to
traditional RGB cameras, more complex data processing requirements, and a higher cost.

2.2.2. Light Detection and Ranging (LiDAR)

LiDAR sensors are renowned for their precision in geometric data acquisition [64].
Functioning within the wavelength range of 1000–1600 nm, a LiDAR sensor emits laser
pulses directed toward the ground. The sensor records the backscattered signals from
various objects such as man-made structures, vegetation, and the ground surface. The
returned light energy is then captured by the sensor, and the time taken for the return pulse
to travel is employed to calculate the distance covered. The measurements of distance
and orientation are accomplished through positioning systems, comprising a positioning
system and an inertial measurement unit (IMU), yielding a set of three-dimensional (3D)
Cartesian coordinates—X, Y, Z. LiDAR systems can detect multiple echo peaks from various
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reflectors, such as the ground or vegetation, allowing for precise measurements of distances
to different surfaces. With the miniaturization of LiDAR devices and the increased payload
capacity of UAVs, UAV-based LiDAR studies have become more prevalent. UAV-based
LiDAR systems offer significant advantages for landslide studies compared to other sens-
ing technologies, including high precision, rapid data collection, and the ability to create
detailed 3D models. However, LiDAR does present certain limitations, including suscep-
tibility to atmospheric factors like fog, rain, and sandstorms, as well as interference from
dust. These conditions can scatter the laser beam and lead to power attenuation, posing
challenges in obtaining precise information about the target [65]. In situations demanding
swift responses, such as emergency rescue operations, adverse weather conditions may
impede the effective use of LiDAR. Currently, some commercial UAV-based LiDAR systems
are reported to be user-friendly and promising in the landslide field like DJI L2, Feima D200.

2.2.3. Synthetic Aperture Radar (SAR)

SAR technology, a remote sensing method employing radar, produces high-resolution
Earth surface images that remain unaffected by weather conditions or time of day. Its
extensive application spans space-borne, airborne and ground-based platforms, delivering
detailed radar images. The process involves emitting radar signals, capturing reflections
from the terrain, and processing the data for image generation. Additionally, SAR data
supports interferometry, specifically InSAR, utilizing phase information to measure the
sensor-to-target distance. This feature allows for the accurate monitoring of land surface
changes with precision reaching the centimeter level in landslide studies [66,67]. However,
the precision of UAV-based InSAR methods relies heavily on the path accuracy of the
flight platform, demanding precision autopilot controls for a repeatable path compared
to UAV photogrammetry. GNSS/IMU sensors in UAV platforms are often inaccurate
relative to sensor resolution, and UAV platforms are less stable during flight. Despite
these challenges, high-altitude UAV SAR systems have been reported [50], benefiting from
relaxed absolute path accuracy requirements at greater heights. Various advanced UAV
localization technologies, such as real-time kinematic (RTK), vision, and advanced SLAM
algorithms [68–72], might address these issues. On the other hand, the complexity of SAR
data processing requires specialized knowledge and advanced computational resources.
Additionally, SAR systems may face challenges in layover, foreshortening, and shadowing
effects [73]. Therefore, the UAV SAR systems currently lack the widespread accessibility
of UAV-based photogrammetric mapping systems. Despite this, UAV SAR systems show
significant advantages, including the ability to operate in adverse weather conditions, rapid
data collection, and detailed 3D modeling, especially when oblique viewing angles are
crucial [51,52,74]. The potential for the use of small-size SAR sensors is still very promising,
given their development in sensor design and application in landslides, where low-cost
multi-rotor UAVs could serve as a viable platform.

In summary, the integration of sensors, including optical, LiDAR and SAR, into UAV
platforms enhances the versatility and effectiveness of landslide studies. These sensors
provide valuable data for both qualitative and quantitative analyses, making substantial
contributions to the field of landslide studies. The functions and limitations of each sensor
are presented in Figure 2.
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Figure 2. Functions and limitations of on-board sensors.

3. Integrated UAV Methodology for Landslide Analysis

UAV-based remote sensing in landslide applications typically emphasizes both static
characteristic identification and multi-temporal monitoring. Basic static characteristics
are derived from mono-temporal aerial images. Subsequently, a static 3D model can be
reconstructed based on a series of overlapping aerial images or LiDAR data, providing
detailed insights into the topography in three dimensions. Additionally, the differences
observed in multi-temporal models serve as a valuable means to monitor the dynamic
changes within landslide-prone areas.

3.1. UAV-Based Aerial Images

One of the key advantages of UAVs is their ability to provide bird’s-eye-view images
of landslides, a widely-applied function in landslide characterization. The aerial images,
captured by optical sensors, play an important role in detecting and mapping landslides
based on morphological characteristics such as scarps. Landslide geological surveys often
utilize a set of RGB aerial images for landslide static characterization and secondary risk
assessment [75,76].

As high-resolution optical sensors continue to advance, UAVs can effectively capture
numerous images with high spatial resolution, characterized by the ground sampling
distance (GSD). The GSD, usually measured in centimeters per pixel (cm/pixel), denotes
the distance between the centers of two adjacent pixels on the ground. This parameter is
determined by the simplified function:

GSD =
P × H

f × sin(θ)

In this equation, H represents the UAV’s height (m), θ is the camera’s pitch angle,
P is the pixel size of the sensor (micrometers), and f is the focal length (mm). A larger GSD
value indicates lower spatial resolution and decreased visibility of details in the image.
For example, considering a DJI Mavic 2 Pro with a focal length of 24 mm (35 mm format
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equivalent) flying at a height of 60 m, the GSD would be approximately 1.53 cm/pixel.
However, in landslide studies, the situation becomes more complex due to variations in
altitude within the field of view, different pitch angles of UAVs and considerations of
above-ground level (AGL) fluctuation, which cannot be overlooked in certain cases. The
photogrammetric software is instrumental in estimating the averaged Ground Sampling
Distance (GSD) of the orthomosaic. This calculation involves determining the average
distance from the cameras to the sparse cloud points.

3.2. Model Reconstructions

The limitation of 2D aerial images makes it challenging to distinguish some unstable
3D features, such as near-vertical scarps. Furthermore, a set of aerial pictures with overlap
taken by UAVs can be employed for three-dimensional model reconstruction, facilitating
more accurate identification of static features in landslides. Commonly used 3D models for
landslides include Digital Elevation Models (DEMs), which consist of Digital Surface Mod-
els (DSMs) and Digital Terrain Models (DTMs). A Digital Terrain Model (DTM) represents
the bare earth surface without any objects, while a Digital Surface Model (DSM) includes
the earth’s surface with objects. Obtaining these models in the format of point cloud, regu-
lar grid or triangular irregulars mesh achievable through technologies likeLiDAR [77–79]
and stereo photogrammetry using UAVs’ optical cameras [37].

3.2.1. UAV-Lidar-Based Reconstructions

Lidar systems are recognized for their reliability in directly outputting three-dimensional
coordinates in point cloud format. This precision or UAV-Lidar depends on the accurate
localization provided by the platform’sInertial Measurement Unit (IMU) andGlobal Nav-
igation Satellite System (GNSS) sensors. Measuring the time each pulse takes to return
enables precise calculations of distances, and the integration of visible cameras ensures
color information in the resulting point cloud. Multiple echo peaks from diverse reflectors,
such as the ground or vegetation, contribute to distance measurements. When processing
only the last pulses (considered ground echoes), the result is a Digital Terrain Model (DTM),
providing a representation of the bare earth surface [64]. The inherent accuracy and direct
3D point clouds output make Lidar a valuable tool for applications in landslide studies.

3.2.2. UAV-Image-Based Reconstructions

High-resolution Digital Elevation Models (DEMs) are increasingly prevalent with the
utilization of Structure from Motion (SfM) software and consumer-grade cameras mounted
on UAVs. This innovative approach integrates SfM and multiview-stereo (MVS) algorithms,
which is different from traditional photogrammetry techniques by requiring minimal
expertise and control measurements, along with automated processing. SfM, a computer
vision technique, concurrently retrieves 3D camera motion and 3D scene structure from
tracked 2D features on overlapping images [80]. Employing images captured by UAVs, this
method generates a three-dimensional point cloud, rivaling or even surpassing the quality
and resolution of a LiDAR-generated point cloud [81,82].

As shown in Figure 3, the UAV-SfM workflow requires flight planning, considering
essential factors like GSD to ensure optimal image resolution and maintaining an image
overlap of 60% to 80% for comprehensive coverage. These parameters can be set in some
flight planning software [37]. Additionally, in terms of georeferencing, Ground Control
Points (GCPs) with known locations are strategically captured to significantly enhance the
accuracy of the final 3D model [83–87]. Then, the UAV equipped with a camera captures
multiple images from varying angles where the camera orientation can be nadir or oblique.
These images, along with GCPs if captured, undergo photogrammetric processing. The
software first extracts features like corners and edges from each image and subsequently
matches these features across images through camera triangulation. This process calculates
the relative positions and orientations of the cameras. Following camera triangulation,
the software conducts dense image matching by comparing every pixel in each image to
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identify matches. This results in a dense point cloud, portraying the 3D structure of the
imaged terrain or object.

The accuracy of the final DEM hinges on various factors influencing the initial image
acquisition, with an important element being the GSD, which represents the spatial resolu-
tion of UAV images and is intricately linked to factors such as flight height, path, sensor
size and landforms. Additionally, model accuracy is contingent on considerations like
camera pitch, image overlap, flight trajectory, camera calibration method, and the choice of
reconstruction software. Standard approaches for increasing the accuracy of DEMs from
UAV data involve the incorporation of direct georeferencing or indirect georeferencing. Di-
rect georeferencing relies on the measured position and orientation of the UAV camera. It is
therefore essential to enhance the UAV platform’s position accuracy, such as GNSS/RTK or
advanced IMU. Indirect georeferencing based on GCPs can be acquired using GNSS/RTK
or a total station survey at most sites. Incorporating checkpoints in the validation process
serves to assess the precision of the DEM, typically quantified through metrics like Root
Mean Square Error (RMSE).

Several investigations have focused on evaluating the accuracy of the UAV-SfM approach.
These studies have undertaken a comparative analysis of various SfM software packages,
including Agisoft Photoscan, MicMac, and Pix4D Mapper [88–90]. Ouédraogo et al. (2014) [88]
compared a Digital Terrain Model (DTM) derived from TLS with those obtained using
SfM software (MicMac and Photoscan). James et al. (2012) [90] compared a series of
SfM-MVS models with laser scanning, demonstrating that the method is limited by the
straightforward camera calibration model used in the software but generally exceeds
1:1000. However, areas without GCPs may still result in locally highly inaccurate DSMs.
Liao et al. (2021) [78] conducted a comparison between point clouds generated from UAV-
SfM and Lidar across three distinct land cover types, as illustrated in Figure 4. Szypuła et al.
(2022) [87] attempted reconstruction without GCPs, which was proven to be unacceptable
in some detailed studies like change detection. Overall, the UAV-SfM approach offers
a cost-effective and efficient alternative for generating detailed topographic information
without the need for extensive ground-based equipment and complex survey setups [91].
SfM-MVS models can be comparable with LiDAR under well-setting flight conditions
and with enough GCPs, as well as necessary checkpoints used to evaluate the accuracy of
reconstructions.

Figure 3. Typical acquisition and processing workflow for UAV images [37].
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Figure 4. Reconstructions of the study area, including locations of the three subplots: forest (F),
wasteland (W), and bare land (B). (a) SfM point cloud, (b) LiDAR point cloud (c) DEM difference
calculated by subtracting the LiDAR DEM from the SfM DEM [78].

3.3. Change Detection Based on Multi-Temporal 3D Models

Moreover, it is natural to attempt differentiation of high-resolution DEMs models in
time series to detect changes in landslides. Landslide morphology encompasses distinctive
surface elements, such as cliffs, source areas, circulation areas, and accumulation areas.
Monitoring the displacement of these morphological features is crucial for understanding
landslide behavior and assessing potential hazards. A widely employed method for dis-
placement monitoring relies on high-resolution DEMs, often represented as point clouds
or mesh models [44,92–95]. Figure 5 offers a comparative overview of common change
detection methods, including Differencing of DEMs (DoD), where vertical distances are
computed [96]. This pixel-by-pixel differentiation of two DEMs in a time series quantifies
vertical changes in the landscape but has inherent limitations in capturing complex three-
dimensional displacements. Some methods, such as cloud-to-cloud (C2C) distances using
the closest point distance [97] and cloud-to-mesh (C2M) distances computed along the local
normal of the mesh [98], offer nuanced perspectives on landscape alterations. However,
these methods are constrained by their sensitivity to outliers and may struggle with accu-
rately capturing intricate changes in complex terrains, as their effectiveness depends on
factors such as data density and terrain complexity, limiting their applicability in certain
scenarios. In contrast, the Multiscale Model-to-Model Cloud Comparison (M3C2) method,
computed along a cylindrical axis [99], has emerged as a promising alternative. M3C2
overcomes some of the limitations of traditional methods by providing a mean distance
along the normal direction, enabling more accurate and comprehensive monitoring of land-
scape changes. This method, embedded in some open-source or commercial software such
as CloudCompare, has gained popularity for its enhanced capability to capture complex
three-dimensional displacements, making it a preferred choice in contemporary UAV-based
landslide studies. Moreover, some improved approaches were also proposed to monitor
displacement on landslides [100,101].
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Figure 5. Comparison of common displacement measurement methods bewteen two DEMs including
(a) differencing of DEMs (DoD), (b) cloud-to-cloud (C2C), (c) cloud-to-mesh (C2M), and (d) Multiscale
Model-to-Model Cloud Comparison (M3C2) [29,99,102].

4. Applications of UAVs in Landslide

UAV applications in landslide studies include three key aspects: geological survey,
dynamic monitoring, and emergency response. The static geological survey involves
characterizing landscapes through images or 3D models, vegetation investigation and
comprehensive landslide mapping and modeling. Dynamic monitoring focuses on volume
estimation using multi-temporal differences, surface change detection and monitoring
changes in cracks and fissures. When it comes to emergency response, UAVs play a
crucial role within a couple of weeks after an event, contributing to search and rescue
operations and employing automated detection and machine learning algorithms with
UAV-based data.

4.1. Applications of UAVs in Landslide Geological Survey

Timely and accurate landslide surveys are essential for hazard assessment, predic-
tion and effective decision-making strategies. For instance, individuals residing in areas
on ancient landslides face potential reactivation risks, posing significant safety concerns.
Traditional methods for landslide investigation involve on-site investigations, satellite or
airborne imagery, ground surveys using GNSS stations and Lidar-based sensing. Taking
into account factors such as efficiency, cost and flexibility, UAVs offer a viable solution
for landslide geological survey. The comprehensive geological survey of landslides typ-
ically encompasses characterization, mapping and modeling. This section provides the
UAV applications on UAV-based geological surveys—a critical aspect for preventing and
assessing hazards.

4.1.1. Landslide Mapping and Characterization

Landslide mapping involves the identification and delineation of areas susceptible
to landslides, employing geospatial technologies for assessing susceptibility, hazards, and
risks. This process is integral to quantitative risk assessment, secondary hazard prediction,
and post-disaster reconstruction planning, essential into the stability of environmentally
sensitive regions. Traditional approaches to large-scale landslide mapping often rely on the
interpretation of spaceborne and aerial photographs from satellites, airplanes, and on-site
survey inspections, but trade off spatial resolution when compared to UAV surveys.

UAVs, with their high-resolution capabilities, have proven instrumental in characteriz-
ing various landslide features, including scarps, textures, fissures and micro-landforms.
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Al-Rawabdeh et al. (2016) [103] employed UAV-derived data for automated landslide scarp
recognition, showcasing the effectiveness of image-based analysis algorithms in distin-
guishing landslide scarps (Figure 6). Characterization of landslides serves as a fundamental
step for a thorough exploration of landslide dynamics. In 2018, Peng et al. [104] utilized
UAV-captured aerial images to identify 69 landslides around Heifangtai (Yongjing, China).
Their study highlighted the surface deformation direction of slopes and the bedding dip
angle of bedrock as influential factors. Additionally, Qiu et al. (2018) [105] conducted
field investigations supplemented by UAV images, pinpointing 275 landslides in Zhidan
County, China. Their research explored the effects of slope length and gradient on the size
distributions of the characterized landslides.

Figure 6. Landslide scarp detection results (blue) overlaid on the orthophoto captured by UAV of
study area [103].

4.1.2. Landslide Model Reconstruction

Digital models, offering comprehensive information about landslides, are gaining
popularity in risk management and geoscience information systems due to their accuracy
and flexibility. Commonly employed digital model reconstructions for landslides include
digital orthophoto maps (DOMs) and digital elevation models (DEMs). DOMs result from
the amalgamation of images captured by UAVs, providing detailed geological information
such as the length, width and geometry of landslides, with high spatial resolution to capture
localized surface details. However, they lack height information. On the other hand, DEMs,
which can be attached with height data include (DSMs) or exclude (DTMs) natural and
man-made objects located on the landslide.

For instance, Colica et al. [55] reconstructed a model using UAV photogrammetry to
survey a landslide in northern Malta, emphasizing the importance of digital geological
surveys. High-resolution DEMs can also serve as a fundamental layer in GIS systems,
providing valuable information. Hu et al. [106] analyzed the digital terrain topographic
features of a landslide using a high-resolution DEM obtained by UAV-SfM, reflecting
the risk area. Moreover, DEM models obtained by UAVs can be input geometry in nu-
merical simulation [107–110]. Ouyang et al. (2019) [110] explored the use of UAV-based
high-resolution DEMs to capture the initial deformation of large sequential landslides,
demonstrating their potential as input geometry in numerical simulations for evaluating
potentially landslide-prone areas. Lin et al. (2021) [111] investigated geological structures
using UAV Lidar, inputting the data into the failure mechanism simulation of the landslide.
Table A1 provides a summary of recent applications of UAV-based Model Reconstruction.
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4.1.3. Landslide Susceptibility Mapping

Landslide susceptibility, influenced by morphometric and hydrological terrain condi-
tions, signifies the probability of landslide occurrences driven by geodynamic processes
and represents geohazard [112]. The assessment of landslide susceptibility is essential
for the implementation of preventive measures in areas prone to landslides, providing
vital information for concerned agencies [113,114]. Geospatial studies commonly leverage
remote sensing data through Geographic Information System (GIS) platforms, employ-
ing integrated decision models to formulate comprehensive landslide susceptibility maps.
These models incorporate various parameters, such as the topographic wetness index, slope
(angle, gradient, aspect) index (SI), normalized difference vegetation index (NDVI), stream
power index (SPI), etc. UAV-based sensing contributes detailed DEMs data, including
the slope index (SI) [115]. UAV sensing also provides advantages for NDVI, a parameter
indicating the vegetation density of an area. NDVI, derived from the normalized ratio
of Near-Infrared (NIR) to red band reflectance, enables the monitoring of green vegeta-
tion density and health [116]. Bhatt et al. (2013) [117] observed that regions with dense
forest coverage show decreased susceptibility to landslides, while Song et al. (2012) [118]
highlighted the role of tree roots in slope stability and soil moisture reduction. As a result,
the NDVI is considered an essential parameter in landslide susceptibility assessments. By
combining UAV-based multispectral and visible RGB cameras, NDVI can be calculated as a
thematic layer in GIS, supporting the computation of landslide susceptibility. For instance,
Gantimurova et al. (2021) [47] demonstrated the calculation of landslide susceptibility
based on NDVI and DEMs using UAV-based multispectral and visible RGB cameras. Some
other key parameters are also used in landslide susceptibility calculation (Figure 7).

Figure 7. Conditioning factor mapping on DEM: (a) land cover map (based on NDVI); (b) slope angle
map (based on DEM); (c) TWI map; (d) LSF map; (e) TRI map; (f) landslide susceptibility map [47].

4.2. UAV Applications for Landslide Monitoring

4.2.1. Surface Change Monitoring with UAV-Based Sensing

Monitoring the dynamic changes in landslides requires both temporal and spatial
resolutions to study the evolution and assess risks [42,119]. The surface change of landslide
monitoring focuses on whether the landslide moves and how the landslide moves.
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UAVs facilitate landslide volume estimation—a critical aspect for assessing the risk of
landslides and secondary hazards by providing pre- and post-sliding topographic data that
require comparison in multi-temporal settings. Ma et al. (2020) [120] estimated the total
volumes of the source zone and accumulation zone of the Zaoling landslide (Xiangning,
China) at 77,000 and 82,000 m3, respectively, using high-resolution UAV photogrammetry.
For larger coverage fixed-wing UAV surveys, Saito et al. (2018) [45] identified 54 coseismic
landslides within the Sensuikyo area (Aso, Japan), with volumes ranging from 9.1 to
3994.6 m3. The application of UAVs for monitoring whether the slope surface moves
provides a valuable and efficient alternative, enabling detailed and accurate mapping of
landslide features.

Additionally, conventional ground-based sensing techniques, limited to a few monitoring
points along unstable slopes [121,122], restrict the understanding of complex and heteroge-
neous ground motion, as well as the kinematic behaviors of large landslides. Based on change
detection methods in Section 3.3, UAVs present several advantages for morphological monitor-
ing of landslides compared to traditional methods. They can capture high-resolution imagery,
access challenging terrains, and collect data frequently and at a lower cost [123]. Therefore,
the adoption and further development of this technology for time-series landslide monitoring
are increasingly popular. For example, Mazzanti et al. (2021) [124] compared UAV SFM-based
point clouds and Lidar scanning point clouds using the M3C2 algorithm in which data were
obtained six times from 2015 to 2018, showing an active geomorphological evolution of the
rock scarp area due to frequent rockfalls and topples. Bentley et al. (2023) [95] detected sur-
face displacement with a 5-year monitoring program based on UAV-based photogrammetry,
indicating there were sufficient pre-failure deformations. However, as aerial image acquisition
requires time, it might limit the application of this method in some fast-moving landslides.

Besides 3D cloud of DEMs for surface change monitoring of landslides, UAVs can
also serve as platforms for SAR, which is particularly valuable in landslide monitoring.
UAVSAR often incorporates interferometric synthetic aperture radar (InSAR) techniques,
allowing it to analyze changes in the Earth’s surface by comparing multiple radar im-
ages taken at different times to detect ground deformations and provide crucial infor-
mation for assessing landslide risk and understanding dynamic geological processes.
NASA/JPL deployed an airborne SAR system in an optimal natural laboratory, specifi-
cally at the Slumgullion landslide in Colorado, depicted in Figure 8a. This landslide has
experienced movement at rates of tens of millimeters per day for centuries [125–127].
Delbridge et al. (2016) [50] present a method for characterizing 3D surface deformation
using the UAVSAR system, applied to the Slumgullion Landslide. They demonstrated
the accuracy of UAVSAR-derived vector velocity measurements in capturing landslide
dynamics, revealing seasonal variations in movement, and employing an inversion frame-
work to determine slide thickness and basal geometry (Figure 8b). However, such ap-
plications based on InSAR to monitor surface changes of landslides require precision
autopilot controls to enable flying the same path with very high accuracy to ensure the
two UAVSAR radar images are from the same location, which can be differenced to show
the changes between the images. For smaller size UAVs, Frey et al. (2021) [74] utilized a
compact frequency-modulated continuous wave (FMCW) L-band SAR system mounted on
Aeroscout’s UAV Scout B1-100. They conducted an interferometric repeat-pass SAR data
acquisition, achieving high-quality results over diverse natural terrain.



Drones 2024, 8, 30 14 of 27

Figure 8. (a) Slope and elevation of the Slumgullion Landslide (11 kinematic units) and surrounding
terrain; (b) comparison of GPS- and UAVSAR-derived horizontal velocity vectors [50].

4.2.2. Crack and Fissure Change Monitoring Using UAV-Based Sensing

Within the broader scope of UAV applications in landslide monitoring, one of the
crucial aspects is the detection of crack and fissure changes. Understanding the dynamics of
cracks in landslide-prone areas is essential for landslide evolution and comprehensive risk
assessments [128–130]. Traditional approaches to monitoring changes in cracks predom-
inantly depend on on-site investigations and the use of crackmeters [131,132]. However,
advancements in high-resolution remote sensing techniques now enable the monitoring of
cracks at landslide sites with the assistance of UAVs.

In fact, an RGB camera can offer high-resolution images where cracks can be detected
by visual inspection or some semi- or fully automated detection algorithms [103,133]. For
example, Cheng et al. (2021) [54] employed UAV photogrammetry to assess a landslide
through detailed field surveys and automatic crack recognition using deep learning. The
behavior of the landslide was investigated by comparing the identified cracks on two
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different dates after the landslide event. This comparative analysis provided supporting
evidence regarding the stability of the landslide. However, RGB images are not always
feasible in some cases without a good light source. As any object with a temperature higher
than absolute zero emits electromagnetic radiation within the infrared (IR) band, known
as “thermal radiation”, an IR thermal camera is a novel operational tool for monitoring
cracks on unstable landslides [48,49,57,58]. As shown in Figure 9, Vivaldi et al. (2022) [134]
introduces an approach to landslide monitoring using UAV-based infrared thermography.
Through the integration of three-dimensional models generated from aerial RGB pho-
togrammetry and thermal outcomes from infrared thermography, the research successfully
monitors the state and distribution of landslide activity, detecting features such as forming
cracks, scarps, wet terrain portions and loose material. However, it is worth noting that
factors such as direct exposure to sunlight, visibility, and a reasonable distance from the
landslide should be fully considered before the usage of UAV-based IR sensing [135]. In
specific scenarios, such as gas and oil pipeline areas susceptible to landslides, the utilization
of UAV-based gas sensing proves invaluable, offering a potential contribution to compre-
hensive landslide monitoring efforts by providing crucial information into environmental
conditions and potential risks [136–139]. This technology enables enhanced surveillance,
aiding in the early detection and management of landslide-related challenges in critical
infrastructure zones.

Figure 9. Comparison of Airborne RGB-photogrammetry and infrared thermography applied to
landslide remote monitoring. (a) Aerial photo of the area framed by IRT in insets; (b) focus of the
landslide depletion zone taken late in the evening on March 2021; (c) focus of the landslide depletion
zone taken early in the morning on March 2021; and (d) focus of the landslide depletion zone taken
early in the morning on April 2021 [134].

4.3. UAV Applications in Emergency Response

4.3.1. Emergency Response Strategies

According to DJI’s official website, more than 1000 lives have been saved by their UAV
products in diverse disaster situations over the last decade [140]. This attests to the pivotal
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role that UAVs play as essential tools for emergency rescue operations, safeguarding lives
during critical moments. In landslide disasters, UAVs stand out for their easy operation
and ability to capture high-resolution images, making them valuable tools for aiding
decision-making by local governments [39–41]. When a landslide disaster occurs, attention
is immediately drawn to the rescue of survivors, the assessment of landslide activity,
and the potential secondary hazards associated with the event [141–143]. Emergency
investigation and monitoring in the weeks following such occurrences are crucial, providing
insights into the stability of the landslide. Ground-based investigation methods are often
limited by challenging weather conditions and difficult-to-reach slope surfaces. Herein,
UAV-based remote sensing presents an effective solution, enabling rapid response and
comprehensive monitoring.

UAVs swiftly identify unsafe conditions, including growing cracks and scarp areas, by
capturing high-resolution imagery and videos. In addition, the UAVs are able to respond
to emergent landslides within a couple of days. For instance, as shown in Figure 10, in the
aftermath of an earthquake-induced landslide in Sichuan, China, Jiang et al. (2022) [144]
utilized UAV photogrammetry-based 3D modeling only one day after the event, combined
with ground-based SAR (GB-SAR) and TLS. This approach not only identified the landslide
but also provided crucial insights into the failure mechanism, explaining how early slope re-
inforcement delayed the occurrence by four and a half hours after the earthquake. Similarly,
in the case of a rainfall-induced landslide in Zhonghaicun, Sichuan, China, an emergency in-
vestigation was promptly conducted after continuous torrential downpours [145]. Utilizing
a DJI Phantom 4 Pro UAV, high-resolution orthophotographs, and digital elevation models
(DEMs) were obtained for the entire landslide area. Beyond static identification, continuous
monitoring in the weeks following the event was imperative for assessing landslide activity.
In a 20-day emergency investigation of the ancient Aniangzhai landslide triggered by a
short-duration rainstorm and Meilong debris, Zhao et al. (2021) [146] employed daily
UAV (DJI Phantom 4 RTK) images. Their findings indicated a reactivation of the ancient
landslide, maintaining a constant deformation state with an approximate rate of 5 mm/h.

Figure 10. UAV aerial views capturing landslides and a dammed lake since one day after landslide
event: (a,b) showcase the preliminary investigation of the landslide dam and the resulting lake;
(c) depicts the landslide dam during the emergency road excavation; (d) displays the excavation of
the emergency discharge channel at the landslide dam site [144].
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Protecting human life stands as one of the paramount goals in the realm of hazard
studies, a mission where UAVs play a pivotal and life-saving role, particularly in the
field of disaster relief. In disaster scenarios, the urgency to locate and aid survivors
is often hindered by the perilous conditions faced by first responders, who themselves
grapple with life-threatening risks akin to those confronted by the victims. The past
decade has witnessed a notable simplification in UAV operations, notably in aspects
such as First Person View (FPV), which enables support for over-the-horizon flight. This
simplification has been instrumental in extending the reach of first responders, offering a
solution for survivor searches while effectively keeping operators away from hazardous
and inaccessible areas. UAVs, equipped with FPV capabilities, enable operators to navigate
treacherous terrains with a heightened awareness of their surroundings. This not only
expedites the search and rescue process but also minimizes the exposure of operators to
potential dangers. Illustrating the life-saving potential of UAVs in landslide disasters,
numerous instances exemplify their crucial role in ensuring the safety of both survivors and
first responders. In the aftermath of a landslide in the village of Ask, Norway (2020), where
emergency personnel were not allowed to try entering any of the collapsed homes because
of safety issues, UAVs equipped with FPV and thermal imaging device capabilities swiftly
surveyed the area, aiding search and rescue teams in identifying 13 survivors and a missing
Dalmatian (Figure 11) [147,148]. Similarly, during a landslide event in Putumayo province,
Colombia, UAVs played a critical role in supporting rescue amidst challenging conditions,
generating 3D maps and providing critical information for timely and effective emergency
response [149]. UAVs’ role in disaster relief becomes increasingly important, contributing to
the safeguarding of lives and the enhancement of overall emergency response capabilities.

Figure 11. Ask Landslide, December 2020: (a) FPV view of a UAV operator; (b) an interactive 3D
model (DEM) of the area [148].

While UAVs prove valuable in emergency response, certain limitations merit con-
sideration. Unfavorable weather conditions, such as heavy rainfall or strong winds, may
impede UAV flights, potentially causing delays in critical response efforts and restricting
access to disaster-stricken areas. The operational range of UAVs may pose challenges when
dealing with remote or geographically isolated locations. Moreover, the endurance and
flight time of UAVs are constrained, necessitating careful planning for extended monitoring
periods. The requirement for skilled operators and specialized equipment adds complex-
ity, potentially influencing the immediacy of response efforts. Despite these challenges,
the remarkable versatility and swift deployment of UAVs emphasize their crucial role in
emergency response scenarios. Researchers and practitioners should be aware of these
limitations while recognizing the significant potential of UAVs to save lives during emer-
gencies, prompting ongoing exploration and collaboration to enhance UAV technology in
disaster response.
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4.3.2. Automated Detection and Machine Learning Algorithms Using UAV-Based Data

As Machine Learning and edge computation progress, a new set of tools is emerging,
making use of UAV-captured data to automatically detect signatures in dynamic data
streams. This capability is particularly valuable in emergency response scenarios [150].
With the swift collection of data, these tools often employ machine learning or edge
computation algorithms for efficient feature extraction, ensuring that data analysis keeps
pace with the cadence of UAV data collection. This shift represents a transformative field in
geomorphic change analyses, facilitating timely and scientifically informed investigations.

Lian et al. (2020) [76] showcased the potential of UAV-based rapid identification by
combining DOM and DEM generated from low-altitude UAV aerial images. This method
proved highly effective in swiftly and accurately identifying landslides, collapses and
cracks. The accuracy of crack identification reached 93%, while landslide and collapse
identification achieved 100%. These UAV-based rapid identification methods can also
be integrated with other remote sensing methods. For instance, Jiang et al. (2022) [151]
proposed a fusion method that integrates TLS and UAV photogrammetry for landslide
deformation monitoring, especially in complex terrain conditions. This method uses
TLS to augment the number and range of ground control points (GCPs) visible to UAVs,
subsequently employing assumed control points (ACPs) to reconstruct the UAV model.
The calculated landslide displacement, compared with monitoring data obtained by GNSS,
demonstrates reasonable agreement, highlighting the efficacy of this fusion method. Catani
(2021) [75] investigates the fusion of UAS-captured images, data from autonomous sources,
and non-nadir web-crowd-sourced imagery. The study employs convolutional neural
network (CNN) algorithms to assess the viability of non-standard images for automated
landslide detection and geomorphic mass movement analysis. While open-source CNN
classification schemes prove effective in identifying geomorphic mass movements, the study
cautions against directly applying specific CNNs to UAS-captured imagery. It emphasizes
the need for a nuanced balance between computational power requirements and analysis
speed. Recent contributions by Yun et al. (2023) [152] showcased the application of
an Improved Mask R-CNN Model for landslide area detection using UAV images. This
advancement yields a noteworthy improvement, achieving a recall of 91.4% and an accuracy
of 92.6%, underscoring the potential for enhanced precision in landslide identification.
Furthermore, Qi et al. (2022) [43] make significant advancements by combining UAV
remote sensing image technology with machine learning, creating a landslide feature
extraction system. This system, integrated with experimental design, undergoes rigorous
verification to assess its performance. Such integrative approaches signal a promising
trajectory in emergent response systems that meld UAV technology and machine learning
to refine the understanding and analysis of geomorphic changes.

5. Challenges and Opportunities

The integration of UAVs in geological surveys presents both challenges and promising
opportunities for advancing landslide studies. One critical challenge revolves around
regulatory frameworks, with some regions imposing restrictions on UAV flight. These
regulations, shaped by privacy concerns and airspace management, impact the scope and
efficiency of UAV-based surveys. Additionally, the limited hover time of UAVs poses
operational challenges, restricting operators from venturing far from landslide-prone areas.
This constraint increases the potential risk for personnel involved in emergency response
activities post-landslide events. Also, the advancement of UAVs in navigation and control
emerges as a key focal point. Moreover, SfM algorithms make 3D reconstruction simple
for users and mainstream UAV usage. However, the accuracy of DEMs strongly depends
on the setting of Ground Control Points (GCPs) on-site. New approaches, such as the
co-alignment method, attempt to make GCPs more effective [153]. In situations where the
landslide is accessible, it is crucial to increase 3D reconstruction accuracy without GCPs.
Addressing these issues is paramount for optimizing UAV applications in landslide studies.



Drones 2024, 8, 30 19 of 27

The utilization of UAV swarms presents a promising avenue, offering enhanced map-
ping capabilities and improved efficiency, especially in emergency scenarios. Additionally,
the life-saving potential of UAVs in geohazard situations is crucial. UAVs, with their
rapid deployment capabilities, play a crucial role in emergency response strategies. Future
research should focus on enhancing the resilience of UAV systems, exploring swarm tech-
nologies, and conducting in-depth studies on their applications in emergency scenarios.
By addressing these challenges and capitalizing on emerging opportunities, UAVs stand
poised to revolutionize landslide studies and contribute significantly to risk assessment
and emergency response efforts. For geoscience research and engineering, it is necessary
to pay heightened attention not only to fully commercial technology but also to the rapid
advancements in UAV technology. The integration of features such as localization tech-
nology, swarm capabilities, and other emerging technologies might stand as a potential
revolutionary force.

Overall, UAVs have significantly shaped modern landslide studies, playing a pivotal
role in on-site investigations owing to their remarkable attributes, including high spatial
resolution, cost-effectiveness, and adaptability. While these qualities contribute to their
indispensability, careful consideration of challenges, such as regulatory restrictions, opera-
tional limitations, and environmental impact, becomes imperative to ensure the sustainable
and efficient application of UAVs in landslide studies.

6. Conclusions

This review of UAV applications underscores their significant contributions in land-
slide studies across investigation and monitoring. The exploration began by focusing on
the identification of stastic characteristics, elucidating the intricacies of static features such
as landslide characterization, mapping, and modeling. This foundational understanding
forms the basis for a nuanced comprehension of the geological facets associated with land-
slides. In terms of change monitoring, UAVs equipped with high-resolution capabilities
emerge as crucial assets, offering detailed temporal and spatial data to monitor the evolving
nature of landslide processes. We further emphasize the essential role of UAVs in emergent
response scenarios post-landslide events, showcasing their effectiveness in immediate
response strategies and automated detection through machine learning algorithms. De-
spite the significant impact of UAVs, the review discussed ongoing challenges, including
regulatory hurdles, hover time limitations, SfM accuracy, and the potential integration of
advanced technologies like UAV swarms.

In conclusion, this review sheds light on the crucial role of UAVs in landslide studies.
The integration of UAV technology not only enhances our understanding of static and
dynamic landslide characteristics but also proves instrumental in emergency response
efforts. As technological landscapes evolve, embracing new advancements and capitalizing
on opportunities will be crucial for the geoscience community to explore and maximize the
potential applications of UAVs in landslide research.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
GNSS Global Navigation Satellite Systems
TLS Terrestrial Laser Scanners
InSAR Interferometric Synthetic Aperture Radar
IR Infrared Range
LiDAR Light Detection and Ranging
DOM Digital Orthophoto Map
DEM Digital Elevation Model
DSM Digital Surface Model
DTM Digital Terrain Model
SfM Structure-from-Motion
GCP Ground Control Point
M3C2 Multiscale Model-to-Model Cloud Comparison
RTK Real-time Kinematic
NDVI Normalized Difference Vegetation Index
GIS Geographic Information System

Appendix A

Table A1. Summary of Recent UAV-based DEM Applications in Landslide Studies.

Reference Scientific Issue, UAV
Platform, Camera Flight Parameter GSD, Software, Accuracy

Chen et al. (2021) [54]

Landslide modeling;
Multicopter-Feima D200;

SONY RX1RII with
35.9 × 24 mm sensor

55 m AGL, overlap/sidelap
rate: 80%/65%

GSD 0.9 cm/pixel; Feima UAV
manager; RMSxy < 1.7 cm,

RMSz < 1.4 cm

Colica et al. (2021) [55]

Geological surveys;
Multicopter-DJI Phantom 4
Pro; 1′ ′ CMOS, 20-MP RGB

camera

30 m above the launch
location, overlap/sidelap rate:

>80%/>60%

GSD 0.87 cm/pixel; Agisoft
Metashape; RMSE = 0.87 cm

Chang et al. (2020) [56]
Geological surveys;

Fixed-wing-Skywalker X8;
Nikon D800E

1500–3000 m AGL,
overlap/sidelap rate:

>80%/>60%

GSD 15 cm/pixel; Pix4D
Mapper; RMSE = 0.13–0.47 m

Hu et al. (2019) [106]

Landslide modeling;
Multicopter-DJI Mavic Pro;

1/2.3′ ′ CMOS, 12.35 MP
camera

149.7 m above the launch
location, overlap/sidelap rate:

75%/75%

GSD 5 cm/pixel; unknown
software; RMSE = 0.5 m

Rodriguez-Caballero et al.
(2021) [154]

Landslide modeling;
Multicopter-DJI Phantom 4;

1′ ′ CMOS, 20-MP RGB camera

60 m above the launch
location, overlap/sidelap rate:

75%/65%

unknown GSD; Pix4Dmapper;
RMSx = 0.096 m,
RMSy = 0.14 m,
RMSz = 0.33 m

Büschelberger et al.
(2021) [155]

Landslide characterization;
Multicopter-DJI Mavic Pro;

1/2.3′ ′ CMOS, 12.35 MP
camera

110 m above the launch
location, overlap/sidelap rate:

75%/65%

GSD < 5 cm/pixel; Agisoft
Metashape; 1.4 pixels

Vassilakis et al. (2021) [67]
Landslide modeling;

Multicopter-DJI Phantom 4;
1′ ′ CMOS, 20-MP RGB camera

120 m/140 m above the
launch location,
overlap/sidelap
rate: 75%/65%

GSD unknown; Agisoft; <1 cm
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Table A1. Cont.

Reference Scientific Issue, UAV
Platform, Camera Flight Parameter GSD, Software, Accuracy

Dille et al. (2020) [156]

Landslide modeling;
Multicopter-DJI Phantom 3
Pro; 1/2.3′ ′ CMOS camera,

12 MP RGB camera

115 m above the launch
location, overlap/sidelap

rate: 85%/75%

GSD 5 cm/pixel; Agisoft
Photoscan; RMSx = 0.07 m,

RMSy = 0.24 m

Koutalakis et al. (2021) [157]
Landslide modeling;

Multicopter-DJI Mavic 2 Pro;
1′ ′ CMOS, 20-MP RGB camera

50 m above the launch
location, overlap/sidelap rate:

unknown

GSD unknown; Pix4Dmapper
Pro; RMSE = 6 cm

Sandric et al. (2023) [158]
Landslide modeling;

Multicopter-DJI Phantom 4;
1′ ′ CMOS, 20-MP RGB camera

114 m above the launch
location, overlap/sidelap rate:

70%/70%

GSD unknown; ArcGIS Pro
(ESRI); RMSx = 0.14–0.23 m,

RMSy = 0.12–0.33 m,
RMSz = 0.42–0.56 m

Xu et al. (2020) [159]

Landslide modeling; 1:
Multicopter-MD4-1000; Sony

ILCE-7R camera; 2:
Fixed-wing-Feima F1000;

1: 450 m above the launch
location, overlap/sidelap rate:
60%/80%; 2: 270 m above the

launch location,
overlap/sidelap rate:

65%/80%

GSD 1 6 cm/pixel; GSD 2
4 cm/pixel; Pix4D Mapper,

Polyworks; 1: RMSx
0.02–0.05 m, RMSy
0.03–0.04 m, RMSz

0.05–0.11 m; 2: RMSx
0.03–0.04 m, RMSy
0.02–0.04 m, RMSz

0.03–0.06 m;

Conforti et al. (2020) [160]
Landslide modeling;

Multicopter-Parrot Anafi
21 Mp RGB camera

131 m above the launch
location, overlap/sidelap rate:

85%/80%

GSD 6.7 cm/pixel; Pix4D
Mapper; RMSx = 0.19 m,

RMSy = 0.18 m,
RMSz = 0.21 m

Zarate et al. (2023) [161]
Landslide modeling;

Multicopter-DJI Phantom 2;
GoPro 3+ camera

84.2–89 m above the launch
location, overlap/sidelap rate:

70%/70%

GSD 4.0–4.3 cm/pixel;
Agisoft PhotoScan;

RMSE = 0.01–0.04 m
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