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Abstract: In order to overcome the influence of complex environmental disturbance factors such
as nonlinear time-varying characteristics on the dynamic control performance of small fixed-wing
UAVs, the nonlinear expression relationship of neural networks (NNs) is combined with the recursive
least squares (RLSs) identification algorithm. This paper proposes a hybrid aerodynamic parameter
identification method based on NN-RLS offline network training and online learning correction. The
simulation results show that compared with the real value of the identification value obtained by this
algorithm, the residual error of the moment coefficient is reduced by 69%, and the residual error of the
force coefficient is reduced by 89%. Under the same identification accuracy, the identification time is
shortened from the original 0.1 s to 0.01 s. Compared with traditional identification algorithms, better
estimation results can be obtained. By using this algorithm to continuously update the NN model
and iterate repeatedly, iterative learning for complex dynamic models can be realized, providing
support for the optimization of UAV control schemes.

Keywords: time-domain identification method; data-driven; intelligent correction; aerodynamic
parameters; fixed-wing UAV

1. Introduction

During high altitude and low-speed flight, small fixed-wing UAVs may face a greater
measurement noise environment than large aircraft because their smaller weight and size
lead to faster response dynamics and are more sensitive to environmental factors such as
wind field interference. Moreover, practical factors such as sensor cost control can also
easily introduce additional measurement noise. These responses change as disturbances
cause changes in the dynamic parameters of the UAV system, increasing the difficulty of
controller design [1–3]. Therefore, in the process of flight, if the aerodynamic characteristics
and parameters of the UAV can be identified in real time, not only can the robustness and
adaptability of the system be enhanced, but also the control accuracy can be effectively
improved [4,5].

Traditional identification algorithms are mostly used for models with strong lineariza-
tion. When the model is highly nonlinear or time-varying quickly, it is necessary to add
high-order nonlinear terms. Since the model order of aerodynamic parameters is higher,
the curves drawn by it may be more complex or have severe fluctuations and jumps, which
will seriously affect the identification results of aerodynamic parameters. In this paper, the
neural network can be used to fit any nonlinear function, and the NN-RLS combination
identification algorithm is proposed. NN-RLS can not only train the network model offline
but also use historical flight data to correct the model. It is also possible to directly use the
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trained network to quickly adjust the parameters when online so as to ensure the speed of
parameter estimation while ensuring the accuracy of parameter estimation. In recent years,
some scholars have conducted research on the identification algorithm.

In the literature [6], Jiang’s method is only suitable for simple linear models and
cannot be directly used for complex nonlinear motion models. However, the intelligent
identification algorithm based on NN can fit nonlinear functions with arbitrary accuracy. In
the literature [7,8], Yang and Zhang combined the arbitrary approximation characteristics
of the backpropagation NN to conduct offline training of aerodynamic parameters. They
used the results of NN training to identify the aircraft rudder effect parameters in real-
time. However, compared with the research method of this article, without the process of
correcting the original NN with real flight test data, the goal of lifelong learning cannot be
achieved. In the literature [9], Li proposed to use the least squares support vector machine
(LS-SVM) to identify the nonlinear dynamical system when the aircraft is flying at a high
angle of attack and use the method of network search and cross-validation to select the
parameters of the support vector machine. The dynamic reference model of aircraft with a
high angle of attack is established. However, compared with the research method of this
article, the LS-SVM network takes a long time to learn. Additionally, it is difficult to realize
online real-time identification due to the low speed of the support vector machine. In the
literature [10], the NN model based on the Gauss-based function is established by Wang
to determine the structure and the input and output relations of the network. Then, the
K-means algorithm is used to train the RBF to obtain the parameters of the network model,
which is used to replace the dynamic model of the aircraft. Compared with the research
method of this article, Wang’s method focuses on using an RBF neural network to replace
the aircraft dynamics model and does not extend to fitting aerodynamic parameters. In
the literature [11], a sample expansion combined with a support vector machine and the
online fast correction method for NN parameters is proposed by Pu. However, his method
needs to use the SVM method for data expansion during the simulation process to reach an
order of magnitude suitable for neural network training, which introduces data errors to a
certain extent. In the literature [12], the selection of the lateral–directional excitation signal
and the design method of its parameters are established by Tai based on the requirements
for the identifiability of the aerodynamic derivatives. Moreover, a step-by-step method
for the identification of aerodynamic force and moment derivatives is established. This
method simplifies the solution method for aerodynamic force and aerodynamic moment
step by step. It is only suitable for offline simulation and does not have the characteristics
of online identification. The algorithmic identification takes a long time.

The intelligent identification algorithm of nonlinear aerodynamic parameters is based
on the data-driven multi-level deep learning network proposed in this paper. This approach
uses the characteristics of the deep learning network to fit the nonlinear function with
arbitrary precision and realizes the modeling of the nonlinear aerodynamic parameter
model, which has stronger nonlinearity. The modeling ability can also learn the potential
laws and characteristics in the input data and has better generalization ability [13,14]. In
addition, the deep learning network performs model training based on the optimization
algorithm of gradient descent, which can improve computational efficiency through batch
calculation [15]. Furthermore, this approach accounts for the deviation between the real
aerodynamic data and the nominal aerodynamic data. The multi-level deep learning
network is used to identify the deviation incremental compensation of the aerodynamic
parameters so as to realize the accurate correction of the original aerodynamic parame-
ters [16]. The multi-level deep network can realize the weight matrix update iteration of
the offline network driven by historical flight test data, which can adapt to different dataset
characteristics and changes, better adapt to complex systems, and realize lifelong learning.

2. Offline Training of Aerodynamic Force and Moment NN Model

Since the NN was proposed, it has achieved great development and application in
pattern recognition, perceptual learning, model building, and intelligent control. NN can
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approximate the input and output characteristics of nonlinear dynamical systems with
arbitrary precision and is an effective tool for the identification and modeling of nonlinear
dynamical systems. Using it as a nonlinear dynamical system identification model can
better solve the identification modeling and problems of complex nonlinear dynamical
systems. At present, the most widely used and relatively mature NN is the backpropagation
NN, which is a typical feed-forward network in the NN. This is especially suitable for
dealing with the nonlinearity, uncertainty, and approximation of the system or structural
characteristics of the system, identifying functions, etc.

As shown in Figure 1, the whole algorithm is divided into three stages. In the offline
network training stage, the flight state data set of the fixed-wing UAV is obtained through
the CFD simulation experiment. The multivariate orthogonal time-domain identification
method is used to optimize the reference configuration. The offline NN is trained on the
basis of the benchmark dynamic model. The mapping expression of the flight state data to
the force coefficient and moment coefficient is established through the NN. The network
takes the real-time flight status data as the input and the force and moment coefficients as
the output. In the online compensation stage, online learning captures the time-varying
deviation of the network model through the nonlinear recursive orthogonal time-domain
identification method. In the offline correction stage, combined with historical flight data, a
data-driven iterative correction method for offline learning network weights is carried out.
With the accumulation of UAV flight test data, the mapping value of the flight state data to
the force coefficient and moment coefficient in the offline NN is closer to the real value.

Drones 2023, 7, x FOR PEER REVIEW 3 of 21 
 

2. Offline Training of Aerodynamic Force and Moment NN Model 
Since the NN was proposed, it has achieved great development and application in 

pattern recognition, perceptual learning, model building, and intelligent control. NN can 
approximate the input and output characteristics of nonlinear dynamical systems with 
arbitrary precision and is an effective tool for the identification and modeling of nonlin-
ear dynamical systems. Using it as a nonlinear dynamical system identification model 
can better solve the identification modeling and problems of complex nonlinear dynam-
ical systems. At present, the most widely used and relatively mature NN is the back-
propagation NN, which is a typical feed-forward network in the NN. This is especially 
suitable for dealing with the nonlinearity, uncertainty, and approximation of the system 
or structural characteristics of the system, identifying functions, etc. 

As shown in Figure 1, the whole algorithm is divided into three stages. In the of-
fline network training stage, the flight state data set of the fixed-wing UAV is obtained 
through the CFD simulation experiment. The multivariate orthogonal time-domain iden-
tification method is used to optimize the reference configuration. The offline NN is 
trained on the basis of the benchmark dynamic model. The mapping expression of the 
flight state data to the force coefficient and moment coefficient is established through the 
NN. The network takes the real-time flight status data as the input and the force and 
moment coefficients as the output. In the online compensation stage, online learning 
captures the time-varying deviation of the network model through the nonlinear recur-
sive orthogonal time-domain identification method. In the offline correction stage, com-
bined with historical flight data, a data-driven iterative correction method for offline 
learning network weights is carried out. With the accumulation of UAV flight test data, 
the mapping value of the flight state data to the force coefficient and moment coefficient 
in the offline NN is closer to the real value. 

Neural Network 
Training Data

The Offline Network Training Stage

 The Online Compensation Stage

Increment of Aerodynamic 
Force and Moment

Neural Network 
Fitted Data

Orthogonal Recursive 
Parameter identificationAIRCRAFT SENSORS Sensor Actual 

Measurement Data

The Offline Correction Stage

The Original Ground 
Neural Network

Historical Flight Test 
Database

Extensive Historical 
Flight Test Data

Neural Network Iterative 
Learning Correction

 
Figure 1. Flow chart of an intelligent nonlinear identification algorithm of aircraft aerodynamic 
parameters based on data-driven multi-layer deep learning network modification. 
Figure 1. Flow chart of an intelligent nonlinear identification algorithm of aircraft aerodynamic
parameters based on data-driven multi-layer deep learning network modification.

ANSYS Fluent in Pointwise V18.3 R1 software is used to obtain the aerodynamic data
of the UAV model. The main operation process is as follows: First, the geometric model
of the fixed-wing UAV is established using CATIA software and imported into the CFD
software, and the body parameters are shown in Table 1. Second, generate a computational
mesh that matches the geometric model. Then, determine the boundary conditions of the
simulation area and choose an appropriate flow model. In this paper, a single-component
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complete gas is selected. The Euler equation is used for the fluid properties. The specific
heat ratio is 1.4, the molecular weight of the gas is 2.89 × 10−2, and the initial partition
number of the flow field is 5. CFD software is used to simulate the flow. Additionally, the
CFD software solved the velocity, pressure, temperature, and other parameters of the flow
field according to the selected flow model, grid, and boundary conditions. We extracted
the required aerodynamic data, such as lift coefficient and pitching moment coefficient,
from the simulation results. The UAV model established by CATIA software is shown in
Figure 2, and the CFD simulation process is shown in Figure 3.

Table 1. Basic parameters of a fixed-wing UAV.

Parameter Value

span 3.606 m
body length 2.245 m
body height 0.640 m

weight 20 kg
load capacity 2 kg
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The process of training the deep learning network is a process of continuously cor-
recting the network output and the expected output. This adjustment is achieved by
backpropagating the error signal from the output end and continuously correcting the
weighting coefficients during the propagation process until the output at the output end
and the expected value approach to a certain extent. After the adjustment of the network
weight coefficients is completed for the sample, it is sent to another sample mode for similar
learning until the training and learning of all samples are completed. Finally, the dynamic
NN model is obtained [17].

The NN model is shown in the figure, and the given training set x = [x1, x2, · · · , xn]
T

is the input value of the NN; z = [z1, z2, · · · , zn]
T is the output value of the NN. The NN can

be regarded as a nonlinear function, and its input value and predicted value can be regarded
as the independent variable and dependent variable of the function, respectively. When the
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number of input nodes is n and the number of output nodes is l, the NN is equivalent to the
functional mapping relationship from n independent variables to l dependent variables.

For the output layer, its expression is:

z = g(WTy + B0) (1)

In the formula, g is the activation function; y is the neuron in the hidden layer,
y = [y1, y2, . . . , ym]

T ; W is the weight matrix from the hidden layer to the output layer;
Wjk represents the connection weight between the j neuron in the hidden layer and the k
neuron in the input layer, then W can be written as:

W =


w11 w12 · · · w1l
w21 w22 · · · w2l
· · · · · · · · · · · ·

wm1 wm2 · · · wml

 (2)

The threshold B0 expression is:

B0 =
[
bw1 bw2 · · · bwl

]T (3)

The output layer y can be written as:

y = f
(

VTx + B1

)
(4)

where f is the activation function; x is the neuron in the input layer, x = [x1, x2, · · · , xn]
T ;

V is the weight matrix from the input layer to the hidden layer; and vij represents the
connection weight between the i neuron in the input layer and the j neuron in the hidden
layer, can be written as:

V =


v11 v12 · · · v1m
v21 v22 · · · v2m
· · · · · · · · · · · ·
vn1 vn2 · · · vnm

 (5)

The threshold B1 expression is:

B1 =
[
bv1 bv2 · · · bvm

]T (6)

The above feed-forward NN’s expression is:

z = g
(

WT f
(

VTx + B1

)
+ B0

)
(7)

The activation functions f and g are selected as tanh function and linear function
respectively. f can be expressed as:

f (x) =
1− e−x

1 + e−x (8)

The backpropagation of the error is to first calculate the output error of each layer
of neurons from the output layer by layer. After calculating these errors, the weight and
threshold of each layer are adjusted according to the error of the objective function so that
the final output of the modified network can be close to the expected value. In this section,
the objective function of the NN is proposed to be measured by the sum of mean square
errors [18].



Drones 2023, 7, 594 6 of 20

For a training example,
(

xk, zk
)

, the mean square error is:

Ek =
1
2

l

∑
j=1

(
ẑk

j − zk
j

)2

(9)

Then the total error for all training examples is:

MSE =
1

2p

p

∑
k=1

l

∑
j=1

(
ẑk

j − zk
j

)2

(10)

where p is the number of training samples.
The training method of the NN in this project intends to adopt the L–M training

method. The L–M algorithm is an improved Gauss–Newton method, and its form is
as follows:

∆x = −H−1(x)g(x) (11)

In the formula, H(x) is the Hessian matrix of the function; g(x) is the gradient. At this
point, the Hessian matrix of the gradient and function can be expressed as:{

g(x) = JT(x)e(x)
H(x) = JT(x)J(x) + S(x)

(12)

J(x) is the Jacobian matrix of the function:

J(x) =


∂e1(x)

∂x1

∂e1(x)
∂x2

· · · ∂e1(x)
∂xn

∂e2(x)
∂x1

∂e2(x)
∂x2

· · · ∂e2(x)
∂xn

· · · · · · · · · · · ·
∂eN(x)

∂x1

∂eN(x)
∂x2

· · · ∂eN(x)
∂xn

 (13)

Through the above calculation, the L–M algorithm calculates ∆x to update x at each
step by approximating the Hessian matrix [19], where ∆x is:

∆x =
[

JT(x)J(x) + µI
]−1

JT(x)e(x) (14)

We applied this method to repeat the reverse error propagation algorithm for all data,
adjust the weights and thresholds of each layer, and complete the training of the NN.

3. Dynamic Model Configuration Optimization Based on Multivariate
Orthogonal Function

The multivariate orthogonal function nonlinear aerodynamic coefficient modeling
based on real-time flight data needs to solve two problems: First, the structure of the model
needs to be determined. This requires removing items that have little influence on the
model fitting effect from a large number of nonlinear items in the candidate function pool.
The minimum prediction mean square error PSE criterion can meet the above requirements.
Second, structural parameters need to be identified based on real-time data. The traditional
method of parameter estimation based on least squares regression will lead to an ill-
conditioned regression matrix due to the linear correlation between variables, resulting in
inaccurate parameter estimation.

The coefficient Cj to be identified is used as the dependent variable, and the indepen-
dent variables are m n-dimensional independent variables such as Mach number, angle of
attack, rudder deflection angle, and flap deflection angle. A set of ordered positive integer
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sequences {k1, k2, · · · , km} is specified to obtain the candidate monomial set of independent
variables, also known as regression factors:

wi = xk1
1 ·x

k2
2 · · · · ·x

km
m , i = 1, 2, · · · , n (15)

In order to meet the conditions of the subsequent matrix orthogonal decomposition,
the dimension of the initialization data here depends on the number of monomials n.

We define ϕ(k) = k1 + k2 + · · ·+ km as the order of the monomial [20].

k̃⇔
{

k1, k2, · · · , kµ−1, kµ, kµ+1, · · · , km
}

k⇔
{

k1, k2, · · · , kµ−1, kµ + 1, kµ+1, · · · , km
} (16)

where k represents the new sequence obtained by updating the k̃ base sequence. All the
index sequences are obtained through the above process, which can be inserted into the
above formula to obtain the candidate monomial W0 = [w1, w2, · · · , wn].

Decompose W0 to obtain the initialized orthogonal function matrix Q and coefficient
matrix R:

W0 = QR (17)

The model to be identified can be represented by a linear combination of wi:

Ĉj = θ1w1 + θ2w2 + . . . + θnwn + e
= W0θ + e
= QRθ + e
= Qa + e

(18)

In the formula, θ = [θ1, θ2, · · · , θn]
T and a = Rθ.

The ultimate goal of orthogonal modeling is to obtain a set of optimal θ values so that
the least squares cost function J of the model is minimized [21], where

J = 1
2
(
Cj −W0θ

)T(Cj −W0θ
)

= 1
2
(
Cj −Qa

)T(Cj −Qa
)

= 1
2

[
Cj

TCj −
n
∑

j=1

(
qT

j Cj

)2
] (19)

Calculate the derivative of the cost function in the above formula with respect to θ and
solve the equation to obtain the optimal estimate of the unknown parameter θ:

WT
0 W0θ̂ = WT

0 Cj
Rθ̂ = QTCj

(20)

By transforming it into a matrix, we have:
r11 r12 · · · r1n
0 r22 · · · r2n
...

. . .
...

0 · · · 0 rnn




θ̂1
θ̂2
...

θ̂n

 =


qT

1 Cj
qT

2 Cj
...

qT
n Cj

 (21)

The second part of the rapid modeling of aerodynamic coefficients is to iteratively
update the orthogonal function pool based on real-time data. At the same time, update the
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influencing factors on the right side of the above formula. After acquiring the new data
[ξ1, ξ2, · · · , ξn], the new data are added to the last line of the above formula [22]:

r11 r12 · · · r1n
0 r22 · · · r2n
...

. . .
...

0 · · · 0 rnn
ξ1 ξ2 · · · ξn




θ̂1
θ̂2
...

θ̂n

 =


qT

1 Cj
qT

2 Cj
...

qT
n Cj
ζ

 (22)

where ζ is the new dependent variable data. In order to ensure that the subsequent
decomposition conditions are satisfied, the parameter matrix R′ must be transformed so
that the last row is all zeros. The Givens transformation method is used to triangulate R′,
and the Givens matrix is defined as follows:

Gi =



1 · · · 0 · · · 0 0
...

. . .
...

...
...

0 · · · ci · · · 0 si
...

. . .
...

...
0 · · · 0 · · · 1 0
0 · · · −si · · · 0 ci


(23)

In the formula, ci =
rii√

r2
ii+ξ2

i
, si =

ξi√
r2

ii+ξ2
i
, by multiplying all the Givens matrices into

the formula [23], we have

Gn · · ·G2G1R′ θ̂ = Gn · · ·G2G1


qT

1 Cj
qT

2 Cj
...

qT
n Cj
ζ

 (24)


r′11 r′12 · · · r′1n

0 r′22 · · · r′2n
...

. . .
...

0 · · · 0 r′nn
0 0 · · · 0




θ̂1
θ̂2
...

θ̂n

 =


q′T1 Cj

q′T2 Cj
...

q′Tn Cj
ε

 (25)

The above formula is the result of completing a dataset update, in which the symbol
with a superscript indicates that it contains information on new data. ε indicates the
residual of the new data, which is the residual information that the new data cannot be
projected onto an orthogonal basis. In further iterations, it is necessary to replace the
last row of the matrix with new data and repeat the above iterative process to update
the orthogonal function pool. The whole iterative process only needs to perform simple
matrix multiplication and does not need to repeat the orthogonal function generation
process, which greatly improves the iterative efficiency. The multivariate orthogonal model
screening flow chart is shown in Figure 4.



Drones 2023, 7, 594 9 of 20

Drones 2023, 7, x FOR PEER REVIEW 9 of 21 
 

11 12 1
1

22 2

2

1

2

ˆ
0 ˆ

0 0
ˆ

0 0 0

n

n

T
j

T
j

T
nn n j

n

r r r q C
r r q C

r q C

θ

θ

θ ε

′ ′ ′ ′         ′ ′ ′        =      ′ ′            





   






 (25) 

The above formula is the result of completing a dataset update, in which the symbol 
with a superscript indicates that it contains information on new data. ε  indicates the re-
sidual of the new data, which is the residual information that the new data cannot be 
projected onto an orthogonal basis. In further iterations, it is necessary to replace the last 
row of the matrix with new data and repeat the above iterative process to update the or-
thogonal function pool. The whole iterative process only needs to perform simple matrix 
multiplication and does not need to repeat the orthogonal function generation process, 
which greatly improves the iterative efficiency. The multivariate orthogonal model 
screening flow chart is shown in Figure 4. 

Ranking Model

Filter elements in order

Whether the filtering
 criteria are met

Retain

Construct Identification 
Model

Delete

Whether the maximum 
number of filtering times

is reached

Model Decoupling

NY

N

Y

PSE

 
Figure 4. Schematic diagram of the multivariate orthogonal model screening process. 

When applied to data not used in the model identification process, the PSE criterion 
can be used to quantify the squared prediction error of the identified model. The PSE 
standard is as follows [24]: 

2 2
max max

ˆ1 ˆ ˆ( ) ( )T
j j

n J nPSE C Qa C Qa
N N N N

σ σ= − − + = +  (26) 

The previous term of PSE is the Mean Squared Fit Error (MSFE) 
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When applied to data not used in the model identification process, the PSE criterion
can be used to quantify the squared prediction error of the identified model. The PSE
standard is as follows [24]:

PSE =
1
N
(Cj −Qâ)T(Cj −Qâ) + σ2

max
n
N

=
Ĵ
N

+ σ2
max

n
N

(26)

The previous term of PSE is the Mean Squared Fit Error (MSFE)

MSFE =
Ĵ
N

(27)

MSEF decreases monotonically with increasing orthogonal functions.
The second item is the Overfitting Principle (OFP), as follows:

OFP = σ2
max

n
N

(28)

OFP increases monotonically with the increase in the orthogonal function, which
can prevent over-parameterization of the model and help improve the accuracy of the
model prediction.

Since MSFE decreases monotonically and OFP increases monotonically, each time an
orthogonal function is introduced, MSFE decreases and OFP increases. If each orthogonal
function is sorted according to its degree of importance and the orthogonal functions
are introduced in order, the PSE must have a global minimum. Selecting this point can
determine the selected n orthogonal model functions, taking into account the minimum
average square error and good predictive power [25].

4. Online Incremental Compensation Dynamics Identification Method Based on
Recursive Least Squares

As shown in Figure 5, during the online identification process, the observation model
is used to calculate the pitching moment coefficient and lift coefficient, and the difference
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between the online observation value and the offline network mapping value is calculated
as the input value of the recursive least squares to identify the error increment.
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For parameter estimation, the relationship between the measured output and the
model parameters is more important. The model is called a linear parametric model if the
output is given by the following equation:

z = Hθ + v (29)

For a given z and θ, the best estimate is obtained by minimizing the weighted sum of
the squared errors between the measured output and the model output.

J(θ) =
1
2
(z− Hθ)T(z− Hθ) (30)

Assuming B(k) = HT(k)H(k), the estimated parameters at the k moments are:

θ(k) = B−1(k)HT(k)Y(k) (31)

The recursive process starts at time k + 1. In the process of actual use, with the
increase in information, the positive definiteness of the information matrix is continuously
reduced, and the improvement effect on new information is gradually equal to zero.
This phenomenon is called the dataset saturation phenomenon. To solve this problem, a
recursive algorithm that introduces the forgetting factor [26] is proposed:

P(k + 1) = 1
ρ2 [P(k)− K(k)H(k + 1)P(k)]

θ̂(k + 1) = θ̂(k) + K(k)
[
z(k + 1)− H(k + 1)θ̂(k)

]
K(k) = P(k)HT(k + 1)

[
ρ2 I + H(k + 1)P(k)HT(k + 1)

]−1
(32)
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In the real flight process, the force and moment coefficients cannot be directly measured
by sensors. However, they are calculated based on other observable parameters, so it
is necessary to establish an observation model of observable parameters and force and
moment coefficients.{

Cmobservation = 1
qSc [Jy

.
ωz + (Jx − Jz)ωxωy + Jxz(ωx

2 −ωy
2)]

CLobservation =
may
qS

(33)

where Cm is the pitching moment coefficient, c is the effective length, and b is the chord
length.

.
ωz is the pitch angular acceleration, Jx, Jxz, Jy is the moment of inertia, ωx is the

roll angular rate, and ωy is the yaw angular rate. CL is the lift coefficient, q is the dynamic
pressure, S is the reference area, and ay is the acceleration in the y axial direction.

In the online real-time identification process, the sensor collects the flight state data
in real-time to calculate the observed value of the pitch moment coefficient. It makes a
difference with the offline NN mapping value to obtain the error increment of the pitch
moment coefficient. According to the recursive least squares identification algorithm, the
incremental identification value of each derivative item of the pitching moment coefficient
is calculated:

∆θ =
[
∆Ca

m, ∆C
δy
m , ∆C

δ f
m

]
(34)

We add the error incremental identification value of the derivative term to the reference
value to obtain the identification incremental compensation pitching moment coefficient:

z = zNN + ∆z = zNN + H∆θ + v (35)

where zNN is the fitted value of the offline NN based on the flight status data.

5. Data-Driven NN Model Iterative Modification Method

This section is based on the intelligent identification of NN to realize the iterative
correction of data-driven offline network weights. With the accumulation of flight test data,
the mapping model of flight state data to force coefficient and moment coefficient in the
offline learning network is continuously revised, and lifelong learning is finally realized.

Input layer [27]: xIo(k) = xIi(k).

Hidden layer:
{

xHi(k) = WHI(k)xIo(k)
xHo(k) = `[xHi(k)]

.

In the formula, xHo(k) is the output of the hidden layer of the k step, xHi(k) is the input
of the hidden layer of the k step, WHI(k) is the weight matrix for converting the output of
the input layer into the input of the hidden layer, and `(·) is the activation function of the
hidden layer. is the hyperbolic tangent sigmoid function Tanh, and its expression is this:{

`(x) = (ex − e−x)/(ex + e−x)
`′(x) = 1− `2(x)

(36)

Output layer:
{

xOi(k) = WOH(k)xHo(k)
xOo(k) = ϕ

[
xOi(k)

] .

In the formula, ϕ(·) is the activation function of the output layer, which is specified as
a sigmoid function, and the expression is:{

ϕ(x) = 1/(1 + e−x)
ϕ′(x) = ϕ(x)(1− ϕ(x))

(37)

5.1. Establish Loss Function

The update of the weight matrix of the NN should be guided by the minimum loss
function J so that the error between the pitching moment coefficient/lift coefficient and
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the nominal pitching moment coefficient/lift coefficient of the offline mapping of the NN
is minimized.

J =
1
2

[
Cm−O f f line − Cm−Nominal

]2
, J =

1
2

[
CL−O f f line − CL−Nominal

]2
(38)

5.2. The Weight Matrix WOH Update Algorithm from the Hidden Layer to the Output Layer of NN

The BP update algorithm of the weight matrix is reversed, so the weight matrix WOH
from the hidden layer to the output layer needs to be updated first [28]:

WOH(k + 1) = WOH(k)− η
∂J

∂WOH(k)
+ α∆WOH(k) (39)

In the formula, we take the negative gradient direction, that is, −∂J/∂WOH(k), to seek
the minimum value of the loss function J; η is the learning rate; the last momentum item is
added here: α is the inertia coefficient; ∆WOH(k) is the weight matrix correction amount of
the k step.

The weight matrix correction amount of the k + 1 step is:

∆WOH(k + 1) = WOH(k + 1)−WOH(k) = −η
∂J

∂WOH(k)
+ α∆WOH(k) (40)

The above formula ∂J/∂WOH(k) is unknown; the following uses the chain rule to
derive the expression of ∂J/∂WOH(k):

∂J
∂WOH(k)

=
∂J

∂y(k + 1)
∂y(k + 1)

∂u(k)
∂u(k)

∂xOo(k)
∂xOo(k)
∂xOi(k)

∂xOi(k)
∂WOH(k)

(41)

where

∂J
∂y(k+1) = −e(k + 1), e(k + 1) = y(k + 1)− r(k + 1) = mznominal(k + 1)−mzO f f line(k + 1) (42)

For ∂y(k + 1)/∂u(k), the symbolic function is used to simplify the expression:

∂y(k + 1)
∂u(k)

, sign(
∂y(k + 1)

∂u(k)
) (43)

The bias produced by the sign function substitution is compensated by the learning
rate and inertia coefficient [29]. If the controlled quantity is torque, ∂u(k)

∂xOo(k)
= 1.

According to the output layer activation function

∂xOo(k)
∂xOi(k)

=
∂ϕ
[
xOi(k)

]
∂xOi(k)

= ϕ′[xOi(k)] (44)

and
{

xOi(k) = WOH(k)xHo(k)
xOo(k) = ϕ

[
xOi(k)

] and after approximation and substitution, it can be sim-

plified [30]:

∂J
∂WOH(k)

= −
{

e(k + 1)sign(
∂y(k + 1)

∂u(k)
)

∂u(k)
∂xOo(k)

· ϕ′[xOi(k)]
}
[xHo(k)]

T = −δO[xHo(k)]
T (45)

The above formula xHo(k) is the output of the first hidden layer.
The final result ∂J/∂WOH(k) is a 3× nh dimensional matrix, where nh is the number

of neurons in the hidden layer.
Then, the weight matrix correction amount ∆WOH can be rewritten as:

∆WOH(k + 1) = ηδO[xHo(k)]
T + α∆WOH(k) (46)
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5.3. Update the Algorithm of the Weight Matrix WHI(k) from the Input Layer to the Hidden Layer
of NN

∂J
∂WOH(k)

=
∂J

∂xOi(k)
∂xOi(k)

∂WOH(k)
=

∂J
∂xOi(k)

∂WOH(k)xHo(k)
∂WOH(k)

=
∂J

∂xOi(k)
[xHo(k)]

T (47)

Comparing formula ∆WOH(k + 1) = ηδO
[
xHo(k)

]T
+ α∆WOH(k), it is found that the

following relational formula exists [31]:

ξO =
∂J

∂xOi(k)
= −δO,

∂J
∂WHI(k)

= ξH[xIo(k)]
T (48)

Therefore, the weight matrix correction value ∆WHI from the input layer to the hidden
layer of the k + 1 step can be written as:

∆WHI(k + 1) = −ηξH[xIo(k)]
T + α∆WHI(k) = ηδH[xIo(k)]

T + α∆WHI(k) (49)

where
ξH =

∂J
∂xHi(k)

= `′[xHi(k)] ·
[
(ξO)

TWOH(k)
]T

(50)

6. Simulation Example

In order to verify the effectiveness of the method proposed in this paper, this section
obtains aerodynamic data based on the aerodynamic function of a fixed-wing UAV and
trains an offline NN, which reflects the mapping relationship between the flight state and
the force and moment coefficients.

The form of the high-dimensional identification model established offline is as fol-
lows [32]:

Cm = Cm0 + Cα
mα + Cq

m
qc

2V0 + C
δy
m δy + C

δ f
m δ f + Cα2

m α2 + C
δy

2

m δy
2

+C
αδy
m αδy + Cα3

m α3 + C
δy

3

m δy
3

CL = CL0 + Cα
Lα + Cq

L
qc

2V0 + C
δy
L δy + C

δ f
L δ f + Cα2

L α2 + C
δy

2

L δy
2

+C
αδy
L αδy + Cα3

L α3 + C
δy

3

L δy
3

(51)

The form of the low-dimensional identification model after screening by the orthogonal
model is as follows:

Cm = Cα
mα + C

δy
m δy + C

δ f
m δ f

CL = Cα
Lα + C

δy
L δy + C

δ f
L δ f

(52)

Based on the flight state data, an offline NN is built. Moreover, the NN is trained to
map the pitching moment coefficient to the flight state data, such as angle of attack and
rudder deflection. The fitting effect of the offline NN is measured by the fitting degree R2

and the mean square error MSE, and the closer the fitting degree R2 is to 1, the better the
fitting effect is.

6.1. Simulation and Analysis of Offline Training of Aerodynamic Force and Aerodynamic Moment
NN Model

Using Pointwise V18.3 R1 software from ANSYS Fluent to calculate the aerodynamic
data set of the UAV, a total of 20,000 sets of data are used to build an offline deep learning
network. The NN is trained to map the pitching moment coefficient to the flight state data,
such as angle of attack and rudder deflection. An offline neural network is a feed-forward
network composed of nonlinearly changing units. It is generally composed of five layers of
neurons: one input layer, three hidden layers, and one output layer. The neurons in each
layer form weighted interconnections, while the neurons located in the same layer have
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no connections and do not influence each other. Therefore, the neurons in each layer are
only sensitive to the input of the neurons in the previous layer. The output of the neurons
in each layer only affects the output of the next layer. The BP neural network structure
is determined based on the characteristics of the fitted nonlinear function. This paper
studies the nonlinear functions of the lift coefficient and pitching moment coefficient. It has
five input parameters: angle of attack, full-motion tail, flap deflection angle, speed, and
altitude, and two output parameters: lift coefficient and pitching moment coefficient. In this
section, the nonlinear link of the hidden layer of the BP neural network uses the “sigmoid”
nonlinear function, and the neuron type of the output layer is a linear output neuron. This
algorithm selects 70% of the training data as the training set, and the verification set and
the test set each account for 15% of the data. The fitting effect of the offline NN is measured
by the fitting degree R2 and the mean square error MSE, and the closer the fitting degree R2

is to 1, the better the fitting effect is, as shown in Figure 6.
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Figure 6. Offline NN test set mean square error.

The offline deep learning network was built according to the CFD flight status data.
As shown as Table 2, the fitting degree R2 was 0.99948, and the mean square error of
the training data was 10−7, which indicated that the NN built offline had a good fitting
mapping effect on the parameters to be estimated.

Table 2. Goodness of Fit for each set.

Goodness of Fit

Training R2 = 0.99946
Validation R2 = 0.99969

Test R2 = 0.99905
All R2 = 0.99948

6.2. Simulation and Analysis of Dynamic Identification Based on Offline Network Learning and
Online Compensation

Based on the benchmark NN model of aerodynamic force and aerodynamic moment
established in the offline stage and the response data of the online process, the deviation
data of the benchmark NN model is calculated and obtained. The increment in aerodynamic
force and aerodynamic moment is obtained using the time domain recursive least squares
identification method. In this section, we conduct an identification simulation analysis of
the pitching moment coefficient and lift coefficient. This analysis is based on the dynamic
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identification method of offline network learning and online compensation. We evaluate
the aspects of identification accuracy and identification efficiency, respectively.

It can be seen from Figures 7 and 8 that, under the same conditions of identification
accuracy, the force coefficient and moment coefficient identified by the hybrid intelligent
method converge faster than the force coefficient and moment coefficient obtained by the
traditional identification method.The residual and relative error curves of the pitching
moment coefficient and lift coefficient are shown in Figures 9 and 10.
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Figure 7. Comparison results of pitching moment coefficients between incremental compensation
and network mapping.
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In the offline process, the research method in this paper uses the QR decomposition
matrix according to the multivariate orthogonal function. It uses the Givens matrix to
iterate the data to determine the identification reference configuration. Compared with the
traditional online iterative identification configuration, the time consumed by the online
iterative process is greatly reduced. Moreover, online learning captures the time-varying
deviation of the network model through the nonlinear recursive orthogonal time-domain
identification method. These deviations are then integrated with the force coefficient and
moment coefficient fitted by the NN, which improves the identification accuracy of the
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force coefficient and moment coefficient. As shown in Table 3, it can be seen from the
table that under the same identification conditions, the time-consuming task of identifying
the moment coefficient is reduced from the original 0.438 s to 0.0674 s. Comparing the
incremental compensation identification and the recursive least squares identification
methods, the identification time-consuming of the force coefficient is reduced from the
original 0.576 s to 0.0753 s.
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Figure 9. Comparison results of incremental compensation and network mapping pitching moment
coefficient residual and relative error. (a) Residual curve of incremental compensation and network
mapping pitching moment coefficient; (b) relative error curve of incremental compensation and
network mapping pitching moment coefficient.
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Figure 10. Comparison results of incremental compensation and network mapping lift coefficient
residual and relative error. (a) Residual curve of incremental compensation and network mapping lift
coefficient; (b) relative error curve of incremental compensation and network mapping lift coefficient.
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Table 3. Comparison table of identification average time between RLS and RLS + NN.

Pitching Moment Coefficient (s) Lift Coefficient (s)

RLS 0.438 0.576
RLS + NN 0.0647 0.0753

6.3. Simulation and Analysis of an Iterative Learning Correction Method Based on a Data-Driven
NN Model

This section considers using the flight test data of a real fixed-wing UAV to modify the
weight matrix of the original NN offline so as to realize the iterative learning of the offline
network. By updating and iterating the weight matrix of the NN, the fitting accuracy of the
NN to the force coefficient and moment coefficient is greatly improved, thereby realizing
lifelong learning for complex dynamic models. Figures 11 and 12 are respectively the
identification results of the pitching moment coefficient and lift coefficient after correction
by the neural network.
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Figure 11. The results of fitting the pitching moment coefficient between the modified network and
the original network. (a) Fitting pitching moment coefficient curve between the modified network
and the original network; (b) the residual curve of the modified network and the original network
fitting value and nominal value.

The training data of the original NN were obtained through CFD tests, and there is a
big difference with the real flight data. Therefore, it is necessary to correct the original NN
weight matrix established offline through the network weight iterative correction algorithm
based on the real flight test data. This adjustment ensures that the NN model established by
it can better reflect the real dynamic model. According to the simulation results as shown in
Table 4, compared with the original NN, the variance of the mapping value of the modified
network to the moment coefficient is reduced by 83.68%, and the residual error is reduced
by 69.23%. After the correction, the variance of the mapping value of the network to the
force coefficient is reduced by 39.63%, and the residual error is reduced by 89.89%.
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Figure 12. The results of fitting the lift coefficient between the modified network and the original net-
work. (a) Fitting lift coefficient curve between the modified network and the original network; (b) the
residual curve of the modified network and the original network fitting value and nominal value.

Table 4. Comparison of the accuracy of identifying force coefficient and moment coefficient before
and after NN correction.

Serial
Number

Moment Coefficient Force Coefficient

Original Network Corrected Network Original Network Corrected Network

Variance Residual Variance Residual Variance Residual Variance Residual

1 0.2137 0.1713 0.0391 0.0514 0.0314 0.0313 0.0177 0.0041
2 0.2353 0.1747 0.0314 0.0551 0.0354 0.0414 0.0211 0.0034
3 0.2200 0.1704 0.0371 0.0541 0.0305 0.0351 0.0204 0.0035
4 0.2259 0.1690 0.0369 0.0495 0.0321 0.0393 0.0184 0.0039
5 0.2325 0.1807 0.0397 0.0563 0.0322 0.0409 0.0198 0.0041

Average 0.2255 0.1732 0.0368 0.0533 0.0323 0.0376 0.0195 0.0038

7. Conclusions

In this paper, an intelligent identification method of aerodynamic parameters based
on deep learning network correction and compensation is used to identify the pitching
moment coefficient and lift coefficient. The CFD simulation data of fixed-wing UAVs
are used to train the deep learning network offline. The network training dataset pair
consists of flight state data, force coefficients, and moment coefficients. Secondly, based on
the recursive orthogonal time-domain algorithm, the recursive least squares incremental
identification compensation is performed according to the offline trained network mapping
force coefficient, moment coefficient, and coefficients. Finally, the method of establishing
a loss function is used to correct the output layer to the hidden layer and the weights
from the hidden layer to the input layer. The deep learning networks are corrected offline
according to the data collected in the real flight state so that the corrected NN mapping
force coefficient and torque coefficient are closer to the real values.

Since the model established based on ground simulation data has errors and it is
difficult to simulate uncertain factors such as complex real-world environments, this
method improves the control performance of the UAV. It improves the fitting accuracy of
network mapping force coefficients and torque coefficients. At the same time, the problem
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of reduced control accuracy caused by the existence of time-varying coupling is solved.
In addition, flight tests have accumulated a large number of test flight data. It is of great
significance to use test flight data to achieve model correction in real flight environments,
laying the foundation for obtaining more accurate complex control models.
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