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Abstract: UAVs flying in complex low-altitude environments often require real-time sensing to avoid
environmental obstacles. In previous approaches, UAVs have usually carried out motion planning
based on primitive navigation maps such as point clouds and raster maps to achieve autonomous
obstacle avoidance. However, due to the huge amount of data in these raw navigation maps and the
highly discrete map information, the efficiency of solving the UAV’s real-time trajectory optimization
is low, making it difficult to meet the demand for efficient online motion planning. A flight corridor is
a series of unobstructed continuous areas and has convex properties. The flight corridor can be used
as a simple parametric representation to characterize the safe flight space in the environment, and
used as the cost of the collision term in the trajectory back-end optimization for trajectory solving,
which can improve the efficiency of real-time trajectory solving and ensure flight safety. Therefore,
this paper focuses on the construction of safe flight corridors for UAVs and autonomous obstacle
avoidance algorithms for UAVs based on safe flight corridors, based on a rotary-wing UAV platform,
and proposes a polyhedral flight corridor construction algorithm and realizes autonomous obstacle
avoidance for UAVs based on the constructed flight corridors.

Keywords: UAV; autonomous obstacle avoidance; flight corridors; motion planning

1. Introduction

Rotorcraft drones have the characteristics of strong portability, high maneuverability,
vertical takeoff and landing capability, simple aerodynamic principles, and low cost [1],
and have become the focus of research by major research institutes and commercial compa-
nies [2]. In the military field, rotorcraft drones can be used for low-altitude reconnaissance
and swarm warfare. In the civilian field, rotorcraft drones can be used for disaster relief,
surveying and monitoring, aerial photography, and delivery services. In these low-altitude
complex environments, autonomous drones need to obtain environmental information
through onboard sensors and be able to plan a dynamic obstacle avoidance route. How to
dynamically perceive the surrounding environment and plan flight routes has become an
important research direction in the field of drone obstacle avoidance. However, due to
the limitations of the drone’s own size, the implementation of its autonomous obstacle
avoidance technology is constrained by SWaP (Size, Weight, and Power), often requiring it
to utilize limited onboard computing resources to complete real-time and efficient flight
trajectory calculations. Therefore, how to construct an environment and efficiently solve
the real-time obstacle avoidance trajectory of unmanned aerial vehicles, that is, the motion
planning problem of unmanned aerial vehicles during obstacle avoidance, is the research
focus of autonomous obstacle avoidance technology for unmanned aerial vehicles.

In practical obstacle avoidance planning for unmanned aerial vehicles, there are two
challenges [3]. Firstly, real-time trajectories need to be continuously based on environmental
information for trajectory replanning. Therefore, it is necessary to quickly solve real-time
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trajectories under the condition of lightweight airborne computing resources. Secondly,
online trajectory optimization solutions are often complex. The expression form of con-
straint conditions and trajectories greatly affects the speed of trajectory solving. In order to
address these two challenges, many studies have been conducted in fields such as mapping
and planning. Previous methods of obstacle avoidance have usually been based on point
clouds and raster maps for motion planning, but the high level of discrete map information
and the large amount of data available have led to inefficient real-time trajectory solving.
The dense map used for autonomous obstacle avoidance can be roughly divided into a
point cloud map, occupancy grid map, and its extension types, including Octomap and
Signed Distance Field (SDF), etc. A safe flight corridor is a series of obstacle-free areas based
on point clouds, raster maps, and other maps that mark obstacles, often with convex shapes
and interconnections, thus forming a corridor that can be flown freely. Previously, in SDF
maps or other maps that measure gradients based on distance, environmental gradient
information was almost always non-convex, and solving a non-convex problem online
was often very complex and may not even have been able to find the optimal solution.
The flight corridors can be used to characterize safe flight spaces through simple parametric
representations, improving the efficiency of real-time trajectory solving and ensuring flight
safety. The flight corridor can transform non-convex spatial information into convex spatial
information through the flight corridor construction algorithm, that is, transform the opti-
mization problem into a convex optimization problem, which can improve the efficiency
and quality of the optimization solution. Therefore, the study of the construction method
of flight corridors and the motion planning method based on flight corridors are of great
significance to the UAV autonomous obstacle avoidance technology. This paper addresses
the need for the rapid solution of UAV obstacle avoidance trajectories by constructing a
safe flight corridor for UAVs in the context of the study of autonomous obstacle avoidance
algorithms for rotary-wing UAVs in complex low-altitude environments.

The contributions of this paper are summarized as follows:

1. In response to the problem of overly complex characterization of the UAV flight
environment with the original navigation map, a flight corridor construction method
based on geometric space expansion and cutting is proposed.

2. A UAV autonomous obstacle avoidance algorithm based on the flight corridor for
motion planning is proposed to address the problem of the low efficiency of online
real-time trajectory solving for UAVs.

The remainder of this manuscript is structured as follows. Section 2 introduces some
related works of autonomous obstacle avoidance methods for drones. Section 3 constructs
a polyhedral flight corridor and implements autonomous obstacle avoidance based on the
corridor. Experimental results are presented in Section 4 to validate the effectiveness of our
proposed method. Section 5 concludes this paper and envisages some future work.

2. Related Works
2.1. Autonomous Obstacle Avoidance Algorithms for UAV

In 2011, Daniel et al. proposed the Minimum Snap method, which uses the idea
of optimization to solve a trajectory generation problem [4], which generates a real-time
optimal trajectory from a series of 3D coordinates and yaw angles, using a polynomial rep-
resentation of the trajectory and ensuring that the trajectory satisfies dynamical constraints
as well as safety constraints.

When the number of segments of a polynomial curve is too large, the order of its
curve increases and the efficiency of the solution decreases. Vlady et al. used a trajectory
representation of the B spline to parametrically represent the trajectory [5], which has
convex wrapper properties that allow the trajectory to be completely confined to a convex
wrapper consisting of control points, and therefore only constraining the control points can
control the shape of the trajectory. The Fast-Planner [6] and EGO-Planner [7] algorithms,
which have made a big splash in the field of UAV motion planning in recent years, both
use the B-sample trajectory representation.
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The EGO-v2 [8], which appeared on the cover of the science subjournal Robotics in
2022, uses the trajectory class MINCO (Minimum Control) [9] proposed by Wang et al. This
trajectory class is still essentially a polynomial trajectory but is built under the condition
of higher-order derivative continuity of the trajectory, which can guarantee the spatio-
temporal optimality of the trajectory while efficiently handling various constraints. That
is, the MINCO trajectory class is a trajectory expression parametrized in terms of both
spatial location q and time t. MINCO can also calculate the analytical solution of the
trajectory generation directly by matrix operations, which can avoid the inefficiency of
solving numerical solutions and solve the optimality of time allocation.

In summary, in the current research on motion planning algorithms, optimization-
based approaches ensure that trajectories are both safe and feasible and easy to deploy
in realistic scenarios. However, the smoothness, dynamical feasibility, and safety of the
trajectory need to be considered in the process of optimizing the trajectory.

In [5–7], the distance gradient information between the current position of the UAV
and the obstacles is used to achieve the collision term constraints on the UAV (the further
the distance, the smaller the possibility of collision), and motion planning was performed
directly in the original navigation map. However, the 3D map data are highly discrete
and the data volume is huge; the distance gradient data are highly non-convex, which is
not conducive to efficient solving of real-time trajectories. Based on the need for optimal
trajectory solving, the concept of flight corridors is proposed in Refs. [10–12], enabling
UAV motion planning using flight corridors. By constructing a real-time flight corridor,
the UAV achieves the transformation of the non-convex map environment information
to the convex corridor environment information, and constrains the UAV flight trajectory
inside the flight corridor, thus achieving safe collision avoidance. Although constructing
the corridor requires a small number of additional operations, it is more efficient to solve
the optimal trajectory in convex space. Therefore, the obstacle avoidance planning method
based on flight corridors is of great research significance, and how to construct the flight
corridor is the research focus of this method.

2.2. Flight Corridor Construction Algorithm

Ref. [13] constructs spherical flight corridors, which are constructed in a map data
structure based on a KD tree representation. As the safe radius of any point in the map can
be found by the fast nearest neighbor search method in the KD tree, the distance from the
coordinate point to the nearest obstacle can be easily obtained, and the distance is used as
the radius of the spherical corridor. A random sampling-based method is used to connect
the path from the starting point to the target point, and the points on that path are used
to construct a continuous spherical corridor. Ref. [14] further improves on NanoMap [15]
by iteratively checking whether the query point is in the in-frame view in order to obtain
the distance from the nearest point to the drone, and estimating the uncertainty of the
query. Then, using a KD tree, the nearest neighbor point is found and a spherical corridor
is generated along the path. The advantage of a spherical corridor is that it is simple
to construct, requiring only one parameter, the safety radius, to be found to construct a
sphere. However, spherical corridors are less space efficient and have less free space for
path optimization. Ref. [16] builds cubic flight corridors based on octree maps, which
have axes parallel to the coordinate axes, and the corridors also expand axially. However,
the construction method in [16] is more dependent on the octree map environment, and
the space utilization of this type of corridor is low due to the geometric properties of the
octree structure itself in space. Ref. [17] proposes a cube corridor construction method
that finds the maximum radius sphere by constructing an ESDF map and then expands
the inner cube of this sphere axially, which does not rely on the octree map structure and
therefore can contain more free space. The advantage of a cubic corridor is that the space is
easy to represent and can be simply parametrized by the intersection of the six surfaces of
the corridor space with the corresponding axes, i.e., by restricting the coordinate points
to the upper and lower bounds represented by the x, y, and z axes. However, in highly
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non-convex spaces, polyhedra can often contain more free space than axially extended
cubes [10].

3. Proposed Method
3.1. Overview

The autonomous drone needs to obtain the current position information and the
movement information of the airframe in real time during the flight, relying on the onboard
sensors to sense the surrounding environment. A trajectory that does not collide with
environmental obstacles in a safe flight area is planned in real time, and then the controller
controls the drone to follow the planned trajectory. Based on the above description, we
designed an experimental system framework that includes the autonomous positioning
module, mapping module, motion planning module, and flight control module, as shown
in Figure 1.

Figure 1. The framework of UAV autonomous obstacle avoidance system includes autonomous
positioning, perceptual mapping, motion planning, and flight control, while the flight corridor takes
map and path as input, and acts in trajectory optimization.

(1) Autonomous positioning module. In the autonomous positioning module, the UAV
uses sensors and external environmental information to determine its current position
and direction of movement. When encountering obstacles, drones need to combine
the location information of the obstacles and their own location information to plan
a new local path to ensure flight safety. Common methods of obtaining a UAV’s
position include visual SLAM, radar SLAM, and GNSS systems, while motion capture
systems can also be used to assist in obtaining precise indoor positioning of the UAV.

(2) Mapping module. In the sensory map building module, the UAV acquires envi-
ronmental information, including terrain, obstacle locations, obstacle contours, etc.,
through the mounted sensory sensors and passes this information to the onboard
computer to build an environmental map for path planning.

(3) Motion planning module. The planning module is usually divided into two parts:
front-end path planning and back-end trajectory optimization. Path planning finds a
path that connects the starting point to the endpoint, while trajectory optimization
optimizes this path to meet the actual flight requirements. The planning module is
the core module of the UAV’s autonomous obstacle avoidance algorithm. Its role is to
receive the UAV’s own positioning information and environmental map information
and to find an optimal trajectory that can guide the UAV from the current point to
the target point through the motion planning algorithm. The quality of the trajectory
solved by the planning module directly affects whether the UAV can avoid the obstacle.
The flight corridor, on the other hand, is used in the planning module as a collision
term cost for trajectory optimization, ensuring the safety of the trajectory.

(4) Flight control module. The control module is responsible for tracking the trajectory
output from the UAV planning module, which is usually represented by a number of
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dense but discrete coordinate points. Based on the position and attitude information
obtained by the positioning module, the flight control controls the aircraft to follow
a predetermined path point, for example, by changing the flight altitude, direction,
or speed to avoid obstacles and ensure the safe flight of the UAV. During the flight,
the control module needs to solve the flight altitude and flight speed needed to track
the path in real time and also needs to monitor its own flight status in real time.

The design of this framework structure is used to guide us in designing actual physics
experimental systems for outdoor flight experimental verification. In the above modules,
we focus on how to quickly construct flight corridors using SDF maps and guide the
optimization of local obstacle avoidance flight paths based on the flight corridor.

3.2. Path Planning

The core technology of autonomous obstacle avoidance for unmanned aerial vehicles
is the motion planning algorithm, which usually includes front-end path planning and
back-end trajectory optimization. Drones rely on spatial obstacle information obtained
from onboard sensors to construct an environmental map for the autonomous navigation
of drones and use path replanning algorithms to find flight paths in space. In research on
front-end path planning, commonly used methods include graph-based searches such as
the Dijkstra [18] and A* algorithms [19], as well as search-based methods such as RRT* [20]
and PRM [21]. However, due to the fact that the RRT * and PRM path points are not
connected according to the shortest distance, the algorithm itself cannot find an optimal
path. Although the A* and Dijkstra algorithms can find the theoretical optimal path,
the continuous search of the raster space will occupy a large amount of memory and
consume a large amount of computation time, which is difficult to adapt to the demand of
fast trajectory replanning. In this paper, we improve the A* algorithm using the jump point
search (JPS) method [11] to solve the above two problems.

The A* algorithm is a breadth-first search algorithm that starts from the starting point,
iterates through the neighborhoods, and selects the optimal neighborhoods to spread
outwards through the cost function until the endpoint is reached. In this case, the openlist
is used to store all the non-obstructive neighboring nodes around the current point, and the
closelist is used to store the least expensive point in the current openlist to reach the target
point. Since the A* algorithm’s rule for exploring surrounding nodes is to traverse them
one by one, i.e., the A* algorithm adds all non-obstacle points around the current point
to the openlist for a single cost function calculation, this greatly increases the algorithm’s
computation time. If the number of points added to the openlist could be reduced, such
frequent and useless computations could be avoided. Compared to the A* algorithm, there
are two new concepts in the JPS algorithm: forced neighbors and jump points.

(1) The forced neighbors

If a neighboring node of a node C contains an obstacle, define N (Neighbor) to be a
neighboring node of C (Current) and P (Parent) to be the parent of C. N is said to be a
forced neighbor of C if the distance cost of P to reach N via C is less than the distance cost
of either path to N without going through C. Figure 2 shows the forced neighbors for linear
as well as diagonal motion, respectively.

Figure 2. Two ways of judging forced neighbor nodes: the left diagram shows a forced neighbor with
straight-line movement and the right diagram shows a forced neighbor with diagonal movement.
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fP→C→N < fP→another→N (1)

(2) The jumping points

There are three ways to determine whether point C is a jump point.
I: point C is the start or end point.
II: point C has at least one forced neighbor node.
III: if P to C is a diagonal movement and the point C can reach the jump point after a

horizontal or vertical movement.
Figure 3 shows the jump points in the above three cases. In Figure 3, it can be seen that

a jump point is actually a point that causes the path to move in a different direction during
the graph search. Unlike the A* algorithm, which only adds jump points to the openlist, A*
treats all non-obstacle points around the current node as neighbors and adds them to the
openlist. As a result, the JPS algorithm is usually more computationally efficient due to the
fact that it performs fewer operations on the openlist.

Figure 3. There are three ways of determining jump points, green for type 1, blue for type 2, and
yellow for type 3.

At the same time, as the sensing sensors are usually forward mounted during the
flight of the UAV, there is little sensing capability in the z-axis direction. When performing
path planning, it is desired to reduce the motion process of the UAV in the z-axis direction.
Therefore, the cost function of the JPS is designed in this paper as:

f (x) = g(x) + h∗(x) + ex(x) (2)

where g(x) denotes the cost of moving from the starting point to the point to be examined
and h∗(x) denotes the predicted cost from the point to be examined to the target point.
The ex(x) = 0 for a body raster that is at the same height as the current raster. For rasters
at different heights from the current raster, ex(x) = 0.5g(x), as shown in Figure 4.

Figure 4. Adding additional constraints to the movement of the z-axis reduces the height variation
during path planning.

3.3. Flight Corridors’ Design

A safe flight corridor (SFC) is a series of barrier-free zones built from maps with point
clouds or raster maps. These zones often have a convex shape and are interconnected,
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creating a corridor through which the air vehicle can fly freely. A safe flight corridor
is a set of convex geometric objects that satisfy safety, convexity, and continuity. In re-
lated research, commonly used convex aggregates include spheres, cubes, and convex
polyhedrons. According to the above definition, safe flight corridors should have the
following characteristics.

(1) Safety: The path and the drone are contained within the corridor and the obstacles
are outside the corridor.

path, Qua ⊆ SFC
Obs ∩ SFC = ∅ (3)

where path denotes the path (a series of (x, y, z)), Qua represents a convex set con-
taining all vertices of a drone (Quadrotor), Obsi represents a convex set composed of
vertices of a single obstacle , Obs(Obstacle) is a set of Obsi , and SFC is the set of all
segments of the flight corridor combined: SFC =

⋃N
i=0 SFCi.

(2) Convexity: Every segment of corridor is a convex geometry. Define any two points
pt1 and pt2 within any segment of corridor space, then any point on the line segment
formed by these two points is contained within the corridor.

(3) Continuity: Each segment of the flight corridor is continuous from front to back,
and the two endpoints of the path are contained within the flight corridor of the
corresponding path segment.

SFCi ∩ SFCi+1 6= ∅
s.t. i ∈ (0, N − 1)

(4)

Environmental perception map information and the planned path of the drone serve as
inputs, and by performing operations such as geometric expansion, compression, and seg-
mentation on an initialized area in geometric space, the construction of flight corridors
based on geometric methods can be achieved. This paper classifies different shapes of
flight corridors and studies the construction methods of spherical corridors, cubic corri-
dors, and polyhedral corridors. In order to facilitate visual presentation, this paper uses
a top-down view of a two-dimensional plane to demonstrate the generation methods of
the corridors.

(1) The spherical flight corridor

Path planning generates a series of discrete path points pt = [pt1, pt2, ..., ptn] in the
environment, defining the midpoint of any two neighboring path points [pti, pti+1] as
middlepti, i ∈ [1, n− 1]. With middlepti as the center of the sphere, find the nearest obstacle
point to the center of the sphere and write down the distance between the center of the
sphere and the obstacle point as ri to obtain the radius of the spherical corridor [13].

During the construction of the spherical corridor, the condition of continuity of the
corridor needs to be checked:

norm(pti −middlepti) < ri
norm(pti+1 −middlepti) < ri

s.t. i ∈ [0, n− 1]
(5)

The condition is that the distance from the two endpoints of the path to the center of
the sphere needs to be less than ri. If a segment of the spherical flight corridor does not
satisfy Formula (5) after expansion, that is, this segment of the corridor does not contain all
the points in the path, then it does not satisfy the continuity of the corridor. At this point,
a new point ptinew needs to be inserted between [pti, pti+1] by means of an interpolation of
points, in this paper ptinew = middlepti, and the interpolation process is shown in Figure 5.

In the process of implementing spherical corridor construction, an initial pt point
location that is close to an obstacle will result in the initial radius r hitting the obstacle
just as it begins to expand, and then immediately stopping the expansion, as shown in
Figure 6. Although the continuity problem of spherical corridors can be solved using the
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interpolation of points, the final corridor may be a series of very small spheres with low
space utilization.

Figure 5. When the spherical corridor does not contain the two endpoints of the path, as shown on
the left, the green point middlepti in the diagram needs to be added to the pt queue as a new pti+1,
before the corridor calculation is repeated until every point in pt is included in the corridor of the
corresponding path segment.

Figure 6. The spherical corridor is underutilized and the areas in the green boxes in the diagram on
the right are all safe areas.

(2) The cubic corridor

To improve the space utilization of the flight corridor, inspired by the spherical flight
corridor, a cube corridor can be constructed [17], as shown in Figure 7.

Figure 7. Make a spherical corridor of internally connected square cubes and extend the distance from
each face of the cube to the center of the sphere until you meet an obstacle to obtain a cube corridor.

The cube corridor is constructed by first finding a maximal sphere and making its
inner positive cube. Then update the distance from each face of the positive cube to the
center of the sphere in turn, until it stops when it encounters an obstacle. At this point, a
cube corridor with greater space utilization can be obtained.

The spherical flight corridor iterates over the radius r of the expanding sphere and
the cubic corridor iterates over the length l of each face to the initial point, but simple
expansions for the geometric properties of spheres and cubes are limited by their geometric
features to stop expanding when they hit an obstacle, preventing better space utilization.
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(3) The polyhedral flight corridor

This section proposes a method of constructing a flight corridor that continues to
expand whether or not it hits an obstacle until it finds a convex polyhedron that satisfies
the condition. The convex polyhedra in space can generally be represented in two ways,
namely by the intersection of half-spaces (H-representation) and by a convex hull consisting
of a series of points (V-representation). This section will use convex polyhedrons under
the representation of H to describe the corridor space. A hyperplane divides Rn into two
half-spaces. A convex polyhedron in three-dimensional space can be represented by the
intersection of a half-space divided by a finite number of hyperplanes. Figure 8 shows the
situation in 2D, where the yellow area is a convex polygon represented by the intersection
of six hyperplanes (in Figure 8, the intersection of six straight lines).

Figure 8. Green and yellow, respectively, represent a half-space, and the intersection of finite half-
spaces forms a polyhedron.

As shown in Figure 9, the distance r1 from the midpoint of the path to the nearest
obstacle enables a spherical corridor ball1 to be found on the corresponding path segment.
Using the contact point between the ball corridor and the obstacle as the tangent point,
make a tangent plane plane1 tangent to the ball, which separates the ball from a portion of
the obstacle. Once this tangent plane is obtained, the obstacles outside the tangent plane are
removed to obtain a new radius r2, a spherical corridor ball2, and a tangent plane plane2,
and the above steps are repeated.

Since the radius of the ball needs to be calculated several times in the above process,
this paper adopts the method in [11] and sets a bounding box to limit the maximum
expansion space in the process of finding the ball, in order to reduce the computation time
and avoid corridor space search in regions that are too far away. There is also a perceptual
boundary for the sensors in the actual flight. The bounding box consists of a cube and its
axes are aligned with the path path of the corresponding path segment. The minimum
distance from each face on the cube to the path segment is rs. Assuming that the maximum
velocity and maximum acceleration of the UAV are vmax and amax, respectively, the distance

of the bounding box should satisfy rs ≥ v2
max

2amax
. The bounding box is set as shown in Figure 9.

In order to make the corridor satisfy the continuity condition, Ref. [11] initializes an
ellipsoid containing the two endpoints of the path for expansion, and then continuously
iterates over the two parameters of the ellipsoid’s long and short semi-axes. Unlike theirs,
our method only needs to iterate one parameter, the radius r of the sphere, then check
whether the continuity Formula ( 5) is satisfied and ensure that all points within the vector
pt are contained within the continuum space of the corridor by inserting intermediate
points as shown in Figure 5. The insertion point operation is hardly used in most cases in
the experiments.
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Figure 9. Continuously expand the spherical corridor, making a tangent plane for each contact point
with an obstacle, deleting obstacles outside the tangent plane until it expands to the set boundary,
the intersection of the boundary with all tangent planes being the flight corridor of the corresponding
path segment.

The pseudo-code of the algorithm for the construction of the flight corridor for convex
polyhedra based on the geometric approach is shown in Algorithm 1.

Algorithm 1 Building Polyhedral Flight Corridor

1: Input: pt = [pt1, pt2, ..., ptn], obs =
⋃

obsi, stepsize
2: Output: s f c, hpoly
3: s f c =

⋃
s f ci

4: hpoly =
⋃

hpolyi, ri = 0
5: for each pti in pt do
6: middle−pti = (pti + pti+1)/2
7: [hpolybound, limitr] = f ind−bound−hpoly(path, middle−pt)
8: while ri <= limitr do
9: [ri, pc, hpolycut, obs] = check−collision(middle−pti, obs, ri, stepsize)

10: end while
11: hpolyi = [hpolybound; hpolycut]
12: s f ci = poly−s f c(hpolyi)
13: [pt, s f ci] = check−continuity(s f ci, pt)
14: end for
15: return s f c, hpoly

3.4. Trajectory Optimization

In [9], Wang et al. proposed a method based on the location of the midpoint q =
[q1, q2, ..., qM−1]

T and the time T = [∆T1, ∆T2, ..., ∆TM]T for the trajectory parameterization
of the trajectory class MINCO, which is a class of polynomial trajectories defined as follows:

TMINCO ={p(t) : [0, T] 7→ Rm | c =M(q, T)

q ∈ Rm(M−1), T ∈ RM
>0

} (6)

where c = (cT
1 , cT

2 , ..., cT
M)T , i.e., the coefficients in the polynomial trajectory. Thus, in

MINCO, the ith segment trajectory can still be expressed in the following form:

pi(t) = cT
i β(t), ∀t ∈ [0, Ti] (7)
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where β(t) = [1, t, ..., tN ]T is the base of the polynomial, ci is the coefficient matrix,
Ti = ti − ti−1, and T = ∑M

i=1 Ti.
Ref. [4] models the quadrotor as a non-linear dynamical system that has a flat output

of σ = [x, y, z, ψ]T , where p = [x, y, z]T denotes the position of the rotor in space and ψ
denotes the yaw angle of the rotor. The trajectory planning of the UAV only requires control
of the four flat outputs of σ.

This paper uses MINCO’s trajectory representation method to improve the quality of
the trajectory by finding optimal solutions for the constraints. A trajectory segment p(t)
can thus be expressed as:

p(t) = pi(t− ti−1) t ∈ [ti−1, ti] (8)

Trajectory optimization aims to find a smooth trajectory and to ensure that the tra-
jectory is feasible and safe. In polynomial trajectories, the smoothness of a trajectory
can be achieved by controlling the minimum value of its s-order derivative. Trajectory
optimization can therefore be formulated in the followingform [12]:

min
∫ tM

0

∥∥∥p(s)(t)
∥∥∥2

2
dt + ρttM (9a)

s.t. p(0:s−1)(0) = d0, p(0:s−1)(tM) = dg (9b)

p(ti) = qi, ∀1 ≤ i < M (9c)

ti−1 < ti, ∀1 ≤ i < M (9d)∥∥∥p(1)(t)
∥∥∥2

2
≤ v2

max,
∥∥∥p(2)(t)

∥∥∥2

2
≤ a2

max (9e)

p(t) = pi(t− ti) ∈ SFC, ∀1 ≤ i ≤ M, t ∈ [ti−1, ti] (9f)

In this paper, we let s = 3, i.e., the jerk of the trajectory is minimized under the
constraint to ensure the optimality of the trajectory, where ρttM is the penalty term on the
total time tM of the trajectory and ρt is the weighting factor for this term. Equation (9a)
is the objective function for which the optimization solution is required. Equation (9b)
is a constraint on the initial and final states of the trajectory, respectively. d0 and dg
are the matrix forms of the position, velocity, and acceleration of the initial and final
states. Equation (9c) indicates that the trajectory p(ti) corresponding to the ith time passes
through the intermediate coordinate point qi, and M is the total number of path segments.
Equation (9d) is a constraint on time. Equation (9e) indicates that the first-order derivative
(velocity) as well as the second-order derivative (acceleration) of the trajectory cannot
exceed the maximum limit of the UAV dynamics. Equation (9f) represents the safety
constraint on the trajectory, which in this paper is set to ensure that all intermediate
trajectory points are contained within the flight corridor.

This paper designs cost functions for the feasibility cost corresponding to (9e) and the
collision term cost corresponding to (9f), and additionally adds the height cost function;
these three cost functions can be expressed as:

fcost = λ1 fc + λ2( fa + fv) + λ3 fheight (10)

where fc is the collision term cost function, which ensures that the flight trajectory is safe
and collision-free. fv and fa are limits on the velocity and acceleration, respectively, which
the UAV cannot exceed in magnitude during its actual motion in terms of its dynamics.
At the same time, this paper aims to minimize the displacement of the UAV in the altitude
direction to avoid a collision with obstacles that cannot be perceived above the UAV, so
fheight is designed to constrain the change in motion of the trajectory over the flight altitude.
λ1, λ2, and λ3 are the weights of the corresponding three cost functions.
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A collision term cost function is constructed based on corridor information as:

fc =
M
∑

i=1
Fc(s f c(pi(t)))

AT
j pi(t)− bj = k j

s f cj(pi(t)) =
{

0 k j < 0
||k j||2 k j > 0

Fc(s f c(pi(t))) =
mi
∑

j=1
s f cj(pi(t))

(11)

where Aj is a three-dimensional column vector, p = [x, y, z]T denotes the three-dimensional
coordinates of a point in space, and bj is a constant term. This cost function constrains all
points on the trajectory pi(t) to be in mi half-spaces.

The feasibility cost function is expressed as:

fv =
M−1
∑

i=1
Fv(vi(t))

fa =
M−2
∑

i=1
Fa(ai(t))

(12)

When the velocity and acceleration in the trajectory exceed the maximum limits,
a feasibility cost function needs to be imposed. However, since the problem fcost is a soft
constraint optimization problem, the velocity and acceleration limits are set to a value
slightly smaller than the maximum value of velocity and acceleration (vmax, amax) allowed
by the dynamics. Taking the velocity limit as an example, vlimit = vmax − vrange. Then the
velocity penalty term on one dimension is:

Fv(vi(t)) =

{ (
vi(t)2 − v2

limit
)2 vi(t)2 > v2

limit
0 vi(t)2 ≤ v2

limit
(13)

and the acceleration penalty term is the same as the velocity penalty term:

Fa(ai(t)) =

{ (
ai(t)2 − a2

limit
)2 ai(t)2 > a2

limit
0 ai(t)2 ≤ a2

limit
(14)

For a trajectory constrained at height fheight, this is obtained directly by penalizing the
velocity of the trajectory in the height direction vz(t) by:

fheight =
M−1
∑

i=1
Fheight(viz(t)) (15)

where:
Fheight(viz(t)) = viz(t)2 (16)

4. Experiments

To evaluate the autonomous flight corridor-based obstacle avoidance algorithm pro-
posed in this paper, we first verified the path planning algorithm with height limitation.
Then, we verified the superiority of the polyhedral corridor using MATLAB simulations
and the flight corridor-based simulation experiments in the ROS environment. A further
obstacle avoidance experiment using a real UAV was completed with an outdoor flight.

4.1. Path Planning Simulation Experiments

In order to verify that the algorithm limits the variation in 3D height, this paper verifies
the effectiveness of the algorithm in different 3D maps, as shown in Figure 10. In the figure,
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both algorithms have the same start and end points, the paths solved by the algorithm in
this paper are shown in red, and the paths solved by the JPS algorithm are shown in black.

Figure 10. We compared the height changes of our algorithm and JPS algorithm in path planning in
3D maps. The settings for the starting and ending points in the map are the same, with black being
the curve calculated by the JPS algorithm and red being the curve calculated by our method.

When comparing the size of the total height changes of the paths obtained by the two
algorithms in the same map, as shown in Table 1, the height changes of the algorithms
in this paper are all smaller than the height changes of the JPS algorithm, justifying the
restriction on the height changes of the paths by this method.

Table 1. Comparison of JPS and this paper’s algorithm height variation in 3D maps.

Algorithm Name\Experimental Scenes Scene 1 Scene 2 Scene 3 Scene 4

JPS 29 20 18 29
Ours 13 10 12 19

4.2. Flight Corridor Construction Algorithm Simulation Experiments

Figure 11 shows the construction results of spherical corridors, cubic corridors, and poly-
hedral corridors under six different maps (with each column having the same map and
path). From the graph, it can intuitively be seen that the spatial occupancy rates of the three
corridors are in order: polyhedral corridor>cubic corridor>spherical corridor.

Figure 11. Comparison of flight corridor construction methods. Each horizontal row represents
a different map, and each vertical row has identical maps and paths, in order to compare the
computational time and spatial size of the three corridor generation methods.

This paper counts the time consumed to build a corridor using MATLAB in the same
obstacle environment and the space occupation of the corridor (expressed as area size in



Drones 2023, 7, 588 14 of 18

two dimensions) with a computer hardware configuration of Intel i7. The results are shown
in Tables 2 and 3.

Table 2. Comparison of calculation times for the three corridors (ms).

Corridor Type\Map Map 1 Map 2 Map 3 Map 4 Map 5 Map 6

Spherical corridor 1.862 0.971 0.913 1.314 1.012 2.011
Cube corridor 1.975 2.101 1.749 1.711 1.634 1.568

Polyhedral corridor 1.163 1.105 1.233 1.389 1.101 1.363

Table 3. Comparison of space utilization of three types of corridor (m2).

Corridor Type\Map Map 1 Map 2 Map 3 Map 4 Map 5 Map 6

Spherical corridor 2.01 4.37 2.32 2.60 2.26 2.20
Cube corridor 5.6 6.4 4.68 3.84 3.6 3.76

Polyhedral corridor 7.47 7.41 5.45 6.30 7.06 3.15

In Table 2, the cubic corridor construction consumes more computational time than
the other two construction methods because the cube corridor takes a lot of computational
resources to retrieve whether the cube will encounter an obstacle after each outward
extension of its face. In most cases, the computational time for the polyhedral corridor is
greater than that for the spherical corridor due to the fact that its expansion does not stop
after the first obstacle it encounters. Thus, in principle, the polyhedral corridor construction
takes more time. In maps 1 and 6, however, the spherical corridor takes more time because
of the introduction of the insertion of points.

As can be seen from Table 3, the polyhedral corridors take up far more space than the
spherical and cubic corridors in most cases. In Map 6, the cube corridor occupies more
space than the polyhedron because the obstacles around the paths in that map can be
separated by the use of exactly two cubes, and the axes of the cubes and the placement of
the obstacles are in the same direction.

4.3. ROS-Based Flight Obstacle Avoidance Simulation Experiments

This paper uses Gazebo to build the simulation system environment. Gazebo inte-
grates a large library of sensor models, including IMU, GPS, barometer, camera, etc., which
are commonly used for quadcopter UAVs, and can add its physical properties to objects,
such as gravity, wind speed, light, etc., which facilitates the deployment of simulation
experiments into real environments. This paper uses a simulation drone [22], as shown in
Figure 12.

Figure 12. Main view and top view of the simulation system UAV. The left figure is the main view
and the right figure is the top view.

The simulation experiment scenario uses both indoor as well as wooded simulation
environments [23], as shown in Figure 13.
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Figure 13. Indoor and wooded simulation environments.

In this paper, simulation experiments of the algorithm based on flying corridors are
conducted based on indoor corridors and outdoor wooded scenes, respectively, as shown
in Figure 14.

Figure 14. Flight corridor-based simulation experiments in two different environments.

4.4. Physical Flight Experiments

The actual UAV built for the experiments in this paper is shown in Figure 15, with a
wheelbase of 250 mm in length, a height of 158 mm, and a weight of 1.09 kg (without battery).

Figure 15. Physical drone hardware configuration.

The UAV uses CUAV’s CUAV-nora+ flight control module, which has high stability,
accurate inertial measurement devices, and a high and stable barometer setting. The envi-
ronmental awareness, motion planning, and flight control modules run on the Intel NUC-i7
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computer, which is an x86 architecture. The Realsense D435i depth camera from Intel was
used in this paper. This depth camera has the advantages of a compact size and low energy
consumption, and its effective distance measurement is 10 m, which meets the experimental
requirements. The USB-C*3.1 interface is used to support fast data transfer.

In the indoor experiments, the VICON system was used to achieve the positioning of
the UAV. In the outdoor experiments, VINS was used to achieve UAV positioning. The flight
avoidance process is shown in Figure 16.

Figure 16. Flight corridor-based obstacle avoidance experiments in indoor and wooded environments.

The trajectory of the aircraft in the indoor as well as outdoor experiments for obstacle
avoidance is shown in Figure 17.

Figure 17. Indoorand outdoor flight test data. The left figure shows the trajectory curve, the center
shows the velocity curve, and the right figure shows the attitude angle curve.

Combining the above experiments, the algorithm proposed in this paper can achieve
autonomous obstacle avoidance in complex low-altitude environments.

5. Conclusions

In this paper, the construction method of safe flight corridors for UAVs and the
autonomous obstacle avoidance method for UAVs based on the flight corridor are studied,
and are used to realize the online solution of UAVs’ efficient real-time trajectory and ensure
flight safety, and provide certain theoretical and experimental bases for the development
of UAV autonomous obstacle avoidance technology. The proposed corridor construction
algorithm reduces the time required to construct the corridor while ensuring the space
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utilization of the corridor compared to previous methods. The corridor-based autonomous
obstacle avoidance algorithm proposed in this paper effectively reduces the height output
of path planning and successfully achieves autonomous obstacle avoidance in indoor and
wooded environments. To provide further perspectives on the paper, research can be
carried out using flight corridors to target the obstacle avoidance problem for dynamic
obstacles, as well as the obstacle avoidance problem for swarming UAVs.
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