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Abstract: The Federal Aviation Administration introduced the concept of urban air mobility (UAM),
a new three-dimensional transport system that operates with a fusion of manned/unmanned aerial
vehicles on an urban or intercity scale. The rapid development of UAM has brought innovation
and dynamism to many industries, especially in the field of logistics. Various types of unmanned
aerial vehicles (UAVs) for use in transport logistics are being designed and produced. UAV logistics
refers to the use of UAVs, usually carrying goods and parcels, to achieve route planning, identify risk
perception, facilitate parcel delivery, and carry out other functions. This research provides a method
for assessing the operational capacity of a UAV logistics route network. The concept of “logistics UAV
route network operation capacity” is defined, and a bi-objective optimization model for assessing the
route network’s operating capacity is developed. The first objective is to maximize the number of
UAV logistics delivery plans that can be executed in a fixed operation time. The second objective is to
minimize the total operational impedance value in a fixed operation time. To solve the bi-objective
optimization model, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is utilized. A UAV
logistics route network with 62 nodes is developed to assess the rationale and validity of the proposed
concept. The experiments show that with an increase in operation time, the route network’s optimal
operational capacity gradually increases, the convergence speed of the algorithm slows down, and
the optimization magnitude gradually reduces. Two key parameters—operational safety interval and
flight speed—are further analyzed in the experiments. According to the experiments, as the safety
interval increases, the route network’s average operational capacity steadily diminishes, as does its
sensitivity to the safety interval. The average operational capacity steadily rose with the rise in flight
speed, especially when the UAV logistics flight speed was between 10 m/s and 10.5 m/s. In that
range, the operational capacity of the route network was substantially impacted by the flight speed.

Keywords: air traffic management; airspace management; capacity assessment; urban air mobility;
UAV logistics

1. Introduction

The increasing urban population has caused traffic congestion and environmental pol-
lution to become increasingly serious, especially in mega-cities such as New York, Shanghai,
and Tokyo. Traditional urban transport and facilities are becoming increasingly inadequate
to meet the growing demand. In recent years, with the continuous improvements in science
and technology, the development of urban transport has trended toward green, intelligent,
and sustainable features. In 2018, the Federal Aviation Administration (FAA) proposed
the urban air mobility (UAM) concept, based on the small aircraft transportation system
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(SATS) [1,2]. The development of UAM has been considered as an innovative solution to
alleviate urban ground traffic congestion and improve transportation capacity.

Vertical takeoff and landing aircraft, such as electric vertical takeoff and landing
(eVTOL) aircraft, rotor unmanned aerial vehicles (rotor UAVs), and helicopters, will be
the leading examples of UAM. For specific application scenarios, different configurations
of vertical takeoff and landing aircraft will be combined to operate in low-altitude urban
airspace. In particular, the demand for UAV logistics is strong, and the market is vast. UAV
logistics is a new type of transport that uses UAVs for package delivery.

Amazon Prime Air, Flytrex, UPS Flight Forward, and other services have begun to
develop UAV logistics projects, one after another. Zipline has become a globally known
company for scaling UAV logistics operations. Unlike companies such as Amazon, Zipline
focuses on the delivery of medical supplies, especially in East Africa. To date, Zipline has
successfully delivered blood packs to 21 hospitals within 75 km in Rwanda [3]. Meanwhile,
DHL Express has partnered with EHang Command to propose a fully automated UAV
logistics solution for the last mile of logistics delivery in China [4]. The MarketsandMarkets
company predicts that the market for the use of UVA logistics in transportation will reach
USD 17 billion by 2030 [5].

2. Related Works

(1) Application of UAVs in logistics

UAVs were initially invented and produced as military products because of their
flexibility, economy, and unmanned facility. The application of UAVs gradually expanded
to civilian fields, including logistics, rescue operations, healthcare, and agriculture. UAVs
display excellent advantages in addressing the last-mile delivery problem, especially in
urban scenarios [6]. Pina-Pardo et al. pointed out that in addressing the traveling salesman
problem, the application of UAVs could reduce delivery times by at least 20% [7]. However,
due to the limitation of battery performance, the service range of UAVs is relatively limited.
Coindreau et al. proposed a truck-and-UAV solution to expand the service range, which
reduced delivery times by 34% compared to truck-only deliveries [8]. However, the
implementation of UAV logistics as an innovative logistics model has some barriers and
constraints. Sah et al. stated that regulations and threats to privacy and security are the
key factors that constrain the implementation of delivery via UAVs [9]. Sandbrook raised
concerns about the safety of UAV users’ data [10]. In addition, the emission problems,
noise problems, and environmental issues brought about by UAV-logistics applications
have been discussed [11–13].

(2) Operation and management of UAV logistics

The rapid development of UAV logistics has raised the need for requirements for
its management. The current research on the operational management of UAV logistics
mainly includes path planning, airport landing and takeoff layout, delivery-mode design,
and operational environment planning. For UAV logistics path planning, a collision free
path planning algorithm based on the A* algorithm, was proposed by Shi et al. after
taking into account the dynamic and random characteristics of the operation environment
of UAV logistics. This algorithm achieved an average planning time of 19.45 s when the
distribution demand was 5000, and the collision probability rose as the distribution demand
continued to rise [14]. Duan et al. identified capacity limitation as the primary issue with
the UAV logistics system, combined the memetic algorithm and variable neighborhood
descent, proposed a logistics UAV path optimization method, and carried out simulation
experiments based on real geographic environments to carry on the logistics UAV path
planning for four logistics UAVs to fulfill 200 delivery demands [15]. Zhao et al. suggested a
3D logistics UAV path planning approach based on the APF–RRT* algorithm and contrasted
it with the conventional RRT and RRT* algorithms, demonstrating that the proposed APF–
RRT* algorithm performed at its best in terms of planning effect and planning time [16]. For
logistics UAV landing and takeoff airport layout, based on actual geographic information
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for San Francisco, Shavarani et al. integrated the logistics costs associated with UAV takeoff
and landing, charging, and UAV purchasing, and presented a logistics UAV takeoff and
landing airport and charging station layout concept [17]. German et al. presented a small
parcel delivery scheme utilizing eVTOL to deliver from a warehouse in Tracy, California,
to the San Francisco Bay Area as a scenario, and presented a logistics UAV takeoff and
landing field layout scheme with the goal of maximizing delivery demand [18]. Hong et al.
established a mixed integer planning model for logistics UAV charging equipment layout
by considering the influence of obstacles on the operation capability of logistics UAVs, and
carried out a large-scale simulation experiment in Phoenix City to test the efficacy of the
suggested model and methodology [19]. For logistics UAV delivery mode design, Brunner
suggested a mode of delivering goods to customers’ balconies by logistics UAVs for the
last mile of express transportation in urban areas, using GPS to assist logistics UAVs to
reach the vicinity of delivery locations, and then using visual navigation equipment to
lock the exact delivery location [20]. Li et al. developed a path optimization model for
the collaborative delivery of vehicles and UAVs for emergency logistics delivery scenarios
and experimentally demonstrated that the collaborative delivery model can effectively
improve timeliness and customer satisfaction [21]. For logistics UAV operation environment
planning scale operation, Li et al. proposed a logistics UAV route network planning
approach based on improved cellular automata and the best-spanning tree algorithm. They
also created a route network covering 378 distribution requirements [22]. Salleh et al.
established three configurations of urban low-altitude route networks based on a regional
scenario in Singapore for UAM development requirements [23].

(3) Airspace capacity assessment

The rapid development of UAV logistics brings challenges to low-altitude airspace
management. Considering the expected development tendency of large-scale and routine
logistics UAV operations, an urban low-altitude airspace capacity assessment study is
critical for ensuring the safe and efficient operation of logistics UAVs. The early airspace
capacity assessment studies focused on runways and terminal areas, and mathematical
modeling was adopted as the main research method. Bowen and Pearcy proposed a Poisson
distribution-based airport runway arrival flow model with reference to ground traffic flow
models, which provides a foundation for airport capacity assessment [24]. Janic and Tosic
pioneered the establishment of a terminal area capacity assessment model [25]. Computer
technology began to develop rapidly in the 20th century, which provided new ideas for
airspace capacity assessment research. SIMMOD, RAMS, and TAAM software have been
developed to simulate the operation of airports, sectors, and other airspace structures,
further improving the reliability and precision of airspace capacity assessment [26,27]. In
recent years, data mining and machine learning techniques have become prevalent, and
intelligent algorithms have been applied to airspace capacity assessment research [28].
However, the urban low-altitude airspace environment is more complex, and existing
airspace capacity assessment methods are difficult to apply directly to low-altitude airspace.
Because the aircraft operating in the urban low-altitude airspace environment are mainly
vertical takeoff and landing aircraft, such as rotary-wing UAVs, eVTOL, and helicopters,
and the operation and management modes are innovative, the well-established capacity
assessment models for sector or terminal area operation are not applicable. Meanwhile,
UAM is still in the developmental stage, and there is limited operational data from real-
world scenarios for research. The current low-altitude airspace capacity assessment is
mostly based on the control variable approach for large-scale simulation trials [29–31] to
explore the influence of airspace structure [32], route network structure [23], operation
interval [33], CNS [34] and other factors on the low-altitude airspace capacity.

To sum up, some outcomes have been achieved with the development of UAM
and logistics UAVs. However, there are relatively few studies on low-altitude airspace
management for large-scale logistics UAV operations. This paper proposed a capacity
assessment method for logistics UAV route networks. The aim is to provide a foundation
for the future normalized logistics UAV operation and to ensure the safety and efficiency of
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logistics UAVs. This paper presents a research methodology that combines mathematical
modeling and simulation verification. The definition of logistics UAV route network
operation capacity for the logistics UAV scale operation scenario is proposed, and the
logistics UAV operation mode in urban regions is clarified. A methodology for assessing
the capacity to operate a logistics UAV route network is developed, taking safety, cost,
and noise into account. The route network covering 62 nodes was built to support the
simulation experiments. Through multiple groups of comparison experiments, the two
key parameters of logistics UAV operation interval and flight speed are analyzed with the
evolution rule of the route network operation capacity.

3. Methodologies

A logistics UAV operation mode has been identified in this study. The multiobjective
optimization model for logistics UAV flight route network capacity assessment is estab-
lished based on the new operation mode. This model integrates the impact of safety, cost,
and noise on logistics UAV operation by establishing the impedance function.

3.1. Problem Description

The present route network operation capacity assessment method is oriented to the
high frequency, short distance, and multi-cycle urban logistics transportation and distribu-
tion needs, considering safety, noise, and cost factors during the logistics UAV operation,
aiming to realize the effective assessment of urban logistics UAV delivery network opera-
tion capacity. This paper constructs a logistics UAV delivery scenario with reference to the
operation mode of the CaiBird post, as shown in Figure 1. CaiBird post is a new type of
logistics service platform in China that co-operates with many logistics companies. CaiBird
service stations are usually built in neighborhoods, and different logistics companies deliver
packages to the stations, where customers can choose to pick up the packages or have them
delivered to their homes.
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Figure 1. Logistics UAV delivery scenario schematic.

The route network is equipped with 2 public delivery centers (O1, O2) and 10 delivery
stations Di (i = 1, 2, . . ., 7), divided into 2 service communities (CA, CB). Logistics UAVs fly
along the route to complete the delivery plan, which consists of multiple directed segments.
Each delivery center and delivery station is linked to at least one fly-in segment and one
fly-out segment. Considering the demand for transferring and returning goods in the actual
logistics transportation, delivery stations and delivery centers are provided with shipping
and receiving functions. In order to simplify the calculation, the suggested approach for
determining the operational capacity of the route network assumes:
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1. Logistics UAVs operate within the specified communities; cross-regional delivery
is not allowed, and the public delivery center is at the boundary of each service
community and can provide services for multiple community logistics UAVs;

2. All logistics UAVs must operate at a steady speed along a predetermined path in
accordance with the delivery plan, keeping a specific safety interval and not allowing
any route changes in the middle of the flight. They are all identical in kind and
consistent in their performance parameter settings;

3. Logistics UAVs are allowed to land or skip through any public distribution center or
delivery station, and the public delivery center or delivery station can only provide
service for one logistics UAV at the same time;

4. Logistics UAVs are required to complete takeoff and landing within the specified time,
beyond which the delivery plan cannot be executed;

5. Ignoring the effect of weather on logistics UAV operations.

3.2. Modeling
3.2.1. Objective Functions

The operational capability of the route network is specified as the maximum logistics
UAVs that can be served by all vertiports (including public delivery centers and delivery
stations) within the route network in fixed operation time. In addition, it is necessary to
consider the impact of safety, cost, and noise factors on logistics UAV operation.

(1) The First Objective

Based on the above operation scenario, the logistics UAVs fly according to the delivery
plan. The delivery plan defines the beginning and end vertiports as well as the routes to be
flown. Therefore, the number of logistics UAV sorties that can be serviced by the vertiports
is defined as the number of delivery plans that can be executed. The first objective of the
model is to maximize the number of logistics UAV delivery plans that can be executed in
the fixed operation time, as shown in formula (1). In this paper, the fixed operation time is
set to 30 s, 60 s, 90 s, and 120 s to analyze the difference in the capacity of the route network
at different fixed operation times:

MaxN =
K

∑
k=1

f (nk) (1)

where N represents the operation capacity, namely the greatest number of logistics UAV
delivery plans that can be executed. nk represents the delivery plans that are requested to
be executed within a fixed operation time. f (nk) represents the logistics UAV delivery plan
as a 0–1 variable, as shown in formula (2):

f (nk) =

{
1, delivery plan k is executed
0, delivery plan k is not executed

(2)

(2) The Second Objective

Referring to the concept of road traffic impedance, consider safety, cost, and noise
factors and establish an impedance function for the route network operation. The safety
factor is the malfunctioning of the logistics UAVs, which then crash to the ground and cause
injuries to people on the ground. The causes of logistics UAV malfunctions include system
failures, operational errors, bird strikes, etc. The cost factor refers to the expenses incurred
during the logistics UAV operation process, which are mainly related to the flight time and
package weight. The longer the flight time and the heavier the package, the higher the cost
impedance. The noise factor is the sound produced by the interaction between the rotor
rotation and the air during the logistics UAV operation, and the lower the flight altitude,



Drones 2023, 7, 582 6 of 23

the stronger the impact of flight noise. The second objective of the model is to minimize the
total impedance value in fixed operation time, as shown in formula (3):

MinC = ωrisk

K

∑
k=1

f (nk)Ck
risk + ωnoise

K

∑
k=1

f (nk)Ck
noise + ωcos t

K

∑
k=1

f (nk)Ck
cos t (3)

where C represents the total operation impedance value of the route network, which
includes the safety impedance Ck

risk
, noise impedance Ck

noise
, and cost impedance Ck

cos t . ωrisk,
ωnoise, ωcos t are the weighting coefficients of safety impedance, noise impedance, cost
impedance, and ωrisk + ωnoise + ωcos t = 1.

In order to realize the effective characterization of the logistics UAV operation envi-
ronment, the ground environment is equally divided into rth grids, as shown in Figure 2:
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(1) Safety Impedance

The route network safety impedance is shown in formula (4):

Ck
risk

= PcrashNpeopleFdie (4)

where safety impedance Ck
risk

consists of three elements. Pcrash represents the probability
of logistics UAVs crashing in an accident. Npeople represents the number of logistics UAVs
that hit ground people after crashing. Fdie represents the probability that the ground people
will die after being hit by a falling logistics UAV.
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(1) Safety Impedance 
The route network safety impedance is shown in formula (4): 

risk crash e
k

people diC P N F=  (4) 

where safety impedance 
risk

kC  consists of three elements. crashP  represents the probability 

of logistics UAVs crashing in an accident. peopleN  represents the number of logistics UAVs 

that hit ground people after crashing. dieF  represents the probability that the ground peo-
ple will die after being hit by a falling logistics UAV. 

○1  The number of people hit by logistics UAVs. 
The number of people hit by logistics UAVs peopleN  is shown in formula (5): 

people
1

n
r
ij r

r
N L Aρ

=

= × ×   
(5) 

The number of people hit by logistics UAVs.
The number of people hit by logistics UAVs Npeople is shown in formula (5):

Npeople =
n

∑
r=1

Lr
ij × ρr × A (5)

where Lr
ij represents the distance of the segment Lij in the grid r. n represents the total

number of grids crossed by segment Lij. ρr represents the ground population density of
grid r; the calculation is shown in formula (6). A represents the ground area affected by the
logistics UAV crash landing, as shown in formula (8):

ρr = ∑
b∈B

dbe(1−rrb
2)ρavg (6)

In formula (6), ρavg represents the average population density. rrb represents the
distance between the center point of building b and the grid r. B represents the set of all
buildings. db represents the delivery demand for building b, which is positively correlated
with the size of the building; the calculation method is shown in formula (7):

db = ε(nb × Fb) (7)
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In formula (7), ε represents the correlation coefficient. nb represents the number of
grids occupied by building b. Fb represents the floor height of building b.

A = wuav ×
√

l2
uav + h2

uav (8)

In formula (8), wuav represents the length of the logistics UAV wingspan. luav rep-
resents the length of logistics UAV fuselages. huav represents the height of logistics
UAV fuselages.
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0
1 1

1max[ ( ), 0]
g

noise

Fn
k r fg

ij g CMFY noise
r g G f uav

C L L L L
v

ρ
= ∈ =

= − − Δ  (12) 

The lethality rate after hitting people
Fdie represents the probability of ground people dying after being hit by a crashing

logistics UAV, as shown in formula (9):

Fdie =
1

1 +

√
α
µ

( µ
E
) 1

4s

(9)

where E represents the logistics UAV impact kinetic energy, which is calculated as shown
in formula (10). S represents the average sheltering factor of the route. α, µ represents fixed
parameters in the model.

E =
(muav + mdelivery)× v2

crash

2
(10)

where muav represents logistics UAV unladen mass. mdelivery represents logistics UAV carry
package quality. vcrash represents logistics UAV crash speed, as shown in formula (11):

v
crash

= [max(vuav, vwind)] + vvertical (11)

where vuav represents logistics UAV flight speed. vwind represents horizontal wind speed.
vvertical represents logistics UAV vertical crash speed.

(2) Noise Impedance

The noise impedance of logistics UAV operations is proportional to population density
and distance to logistics UAVs, as shown in formula (12):

Ck
noise

=
n

∑
r=1

∑
g∈G

Fg

∑
f=1

max[
1

vuav
Lr

ijρg(L0 − LCMFY − ∆L f g
noise), 0] (12)

As shown in Figure 3, r represents the grid with the logistics UAV segment path.
Lr

ij represents the distance of the segment Lij in the grid r. G is the set of gird g. Fg

represents the floor of the building in grid g if there is no building Fg = 1. f represents the
floor of the building. ρg represents the population density in grid g; the calculation method
is consistent with ρr. L0 represents the logistics UAV initial noise value. LCMFY represents
the people’s acceptable value of logistics UAS noise. ∆L f g

noise represents noise attenuation of
the fth floor in grid g, as shown in formula (13) [35]:

∆L f g
noise = 10lg(

1
4πd f g

2 )× (1 + 0.08Gg) (13)

where Gg represents the logistics UAV noise barrier factor [36], which indicates the shielding
effect of ground buildings and trees from logistics UAV noise. hfg represents the distance
between logistics UAV and people affected by noise; the calculation method is shown in
formula (14):

d f g =
√
(huav − hpeople)

2 + ∆xrg2 + ∆yrg2 (14)
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where huav represents the vertical distance of logistics UAV from the grid. hpeople represents
the vertical distance of people from the grid. ∆xrg represents the horizontal distance
between grid r and grid g. ∆yrg represents the vertical distance between the grid r and the
grid g.
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(3) Cost Impedance

The noise impedance of the route network is shown in formula (15):

Ck
cos t =

n

∑
r=1

Lr
ij

vuav
× ε(mdelivery)× ppower (15)

where, ppower represents logistics UAVs’ flight cost. ε(mdelivery) represents the penalty factor
when the package mass carried by the logistics UAV is mdelivery; the calculation method is
shown in formula (16):

ε(mdelivery) =
εmax − 1

mmax
×mdelivery + 1 (16)

where εmax represents the upper limit of ε(mdelivery). mmax represents the upper limit of
package mass.

3.2.2. Constraint Conditions

(1) Takeoff

If the delivery plan k takes off from the vertiport Oi is executed, namely f (nk) = 1,
logistics UAV must pass through any of the segments that fly away from the vertiport Oi.
If the delivery plan k from vertiport Oi is not executed, namely f (nk) = 0, logistics UAV
must not pass through any of the segments that fly away from vertiport Oi, as shown in
formula (17):

f (nk) = ∑ xij
k , Lij ∈ Lout

i (17)

where xij
k is a 0–1 variable, xij

k = 1 represents delivery plan k passes through the seg-

ment Lij and xij
k = 0 represents delivery plan k without passing through the segment Lij.

Lout
i represents the set of segments that fly away from the vertiport Oi.

(2) Landing

If the delivery plan k landing at vertiport Oj is executed, namely f (nk) = 1, logistics
UAV must pass through any of the segments that fly into vertiport Oj. If the delivery plan
k landing at vertiport Oj is not executed, namely f (nk) = 0, logistics UAV must not pass
through any of the segments which fly into vertiport Oj, as shown in formula (18):

f (nk) = ∑ xij
k , Lij ∈ Lin

j (18)
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where Lin
j represents the set of segments which fly into from vertiport Oj.

(3) Fly Across

In the scenario proposed in the paper, takeoff and landing services are available at any
node of the route network. If the delivery plan k flies across the vertiport Oz, namely not
landing when arriving at the vertiport Oz, flies across the vertiport Oz, then continues to
follow the fixed route, the logistics UAV must fly across one vertiport Oz fly into segment
and one vertiport Oz fly away segment, as shown in formula (19):

∑ xiz
k = ∑ xzj

k =

{
1, fly acrossOz
0, not fly acrossOz

, Liz ∈ Lin
z , Lzj ∈ Lout

z (19)

where xiz
k is a 0–1 variable, xiz

k = 1 represents delivery plan k fly across segment Liz and

xiz
k = 0 represents delivery plan k not fly across segment Liz. xzj

k is a 0–1 variable, xzj
k = 1

represents delivery plan k fly across segment Lzj and xzj
k = 0 represents delivery plan k

not fly across segment Lzj. Lin
z is the set of vertiport Oz fly into segment, Lout

z is the set of
vertiport Oz fly away segment.

(4) Safety Interval

The distance between the front and rear logistics UAV must be larger than the mini-
mum safety interval. In this paper, the safety interval standard is maintained by setting the
logistics UAV takeoff interval, as shown in formula (20):∣∣∣ti

k − ti
k′

∣∣∣≥ Tairroute, k 6= k′ (20)

where ti
k represents the takeoff time of delivery plan k. ti

k′ represents the takeoff time of
the delivery plan k′. Tairroute represents the takeoff interval time between the two logistics
UAVs, before and after.

(5) Fly Across Time

The time of logistics UAV flying across the vertiport is calculated as formula (21):

tj′

k = ti
k +4tij

k (21)

where tj′

k represents the time that logistics UAV flying across the vertiport Oj. 4tij
k repre-

sents the time required for a logistics UAV to fly over segment Lij.

(6) Load Limitation

The mass of logistics UAVs cannot exceed the upper limit of the takeoff mass after
loading the package, as shown in formula (22):

muav + mdelivery ≤ mmax (22)

where muav represents the mass of logistics UAV without packages. mdelivery is the mass of
the package. mmax represents the upper limit of logistics UAV takeoff mass.

(7) Flight Speed Limitation

Logistics UAV flight speed must be between the lower and upper flight speed limits,
as shown in formula (23):

vmin ≤ vuav ≤ max(vwind, vmax) (23)

where vuav represents the logistics UAV flight speed. vmin represents the lower limit of
logistics UAV flight speed. vmax represents the upper limit of logistics UAV flight speed.
vwind represents wind speed.
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(8) Flight Distance Limitation

The total flight distance of logistics UAVs executing each delivery plan must be less
than the flight distance limit, as shown in formula (24):

∑ Lij ≤ Lmax
ij (24)

where Lmax
ij represents the upper limit of logistics UAV flight distance.

The complete model is shown in formula (25):

MaxN =
K
∑

k=1
f (nk)

MinC = ωrisk
K
∑

k=1
f (nk)Ck

risk + ωnoise
K
∑

k=1
f (nk)Ck

noise + ωcos t
K
∑

k=1
f (nk)Ck

cos t

s.t.



Cij
risk = PuavNpeopleFdie

Ck
noise

=
n
∑

r=1
∑

g∈G

Fg

∑
f=1

max[ 1
vuav

Lr
ijρg(L0 − LCMFY − ∆L f g

noise), 0]

Ck
cos t =

n
∑

r=1

Lr
ij

vuav
× ε(mdelivery)× ppower

f (nk) = ∑ xij
k , Lij ∈ Lout

i
f (nk) = ∑ xij

k , Lij ∈ Lin
j

∑ xiz
k = ∑ xzj

k =

{
1, fly acrossOz
0, not fly acrossOz

, Liz ∈ Lin
z , Lzj ∈ Lout

z∣∣ti
k − ti

k′
∣∣≥ Tairroute, k 6= k′

tj′

k = ti
k +4tij

k
muav + mdelivery ≤ mmax
vmin ≤ vuav ≤ max(vwind, vmax)

∑ Lij ≤ Lmax
ij

(25)

where f (nk), xij
k , xij

k , xiz
k , and xzj

k are binary variables; Ck
risk, Ck

noise, and Ck
cos t are quantitative

variables; and ti
k, ti

k′ , muav, mdelivery, and vuav are quantitative variables.

4. Algorithm

The Non-dominated Sorting Genetic Algorithm-II (NGSA-II) algorithm is utilized to
solve the proposed logistics UAV route network capacity assessment multiobjective model.
The principles and execution of the NGSA-II algorithm are presented. NGSA-II is a typical
heuristic algorithm with the advantages of fast convergence and high efficiency, which is
widely used in solving multiobjective optimization problems. Compared with the NGSA
algorithm, the NGSA-II algorithm has lower complexity. NSGA-II reduces the algorithm
complexity from O (mN3) to O (mN2) by a non-dominated sorting method, where m is the
number of objective functions and N is the population size. Meanwhile, NGSA-II uses
crowding and crowding comparison operators instead of the fitness-sharing strategy that
requires the specification of a sharing radius, which helps to maintain the diversity of the
population [37]. Figure 4 illustrates the algorithm flow.

Non-dominance sorting is a stratification of all individuals in the population by the
number of individuals that can be dominated. As shown in Figure 4, parent populations
generate offspring populations through selection, crossover, and mutation. Then, all
populations are to be stratified by a non-dominated sorting method. If the set of individuals
cannot be dominated by other individuals, they are sorted into Rank 1, the Pareto frontier.
If the set of individuals can be dominated by one individual, they are sorted into Rank 2,
and so on. If 50% of the individuals (above the red line) are retained as the new parent
population, Rank 1 and Rank 2 will be retained directly. Since some individuals in Rank 3
are outside the 50% range, Rank 3 is further reordered by calculating the crowding distance.
Crowding distance is a standard for determining the degree of aggregation near individuals
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of the same rank. Large crowding distances indicate dense population distribution, which
makes the algorithm readily reach local optimal solutions and allows for direct rejection.
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NGSA-II Algorithm Genetic Mechanism Design

(1) Coding

Generating K logistics UAV delivery plan serial numbers and randomizing them,
as shown in Figure 5. Meanwhile, the route and package weight corresponding to each
delivery plan is generated, as shown in Table 1.
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Table 1. Delivery plan information.

Delivery Plan
Serial Number Route Package Weight (kg)

1 O1→O2 2

k − 1 O2→O3→O4 1

3 O2→O3→Oj 2.5

2 O1→O3→O4→Oj 0.5

4 O3→O4 3

k O4→O5→Oj 1.5

. . . . . . . . .

5 O1→O2→O3 3

(2) Genetic Operations

The genetic operation in the NGSA-II algorithm is similar to the traditional Genetic
Algorithm (GA) in that it takes three approaches to generate offspring populations, namely
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selection, crossover, and mutation. The roulette mechanism is adopted in this paper for the
selection operation. When the delivery plan serial number is in crossover and mutation
operation, the corresponding route and the package weight carried change in order with
the serial number.

The crossover probability Pc and mutation probability Pm are the keys to determining
the speed of convergence and stable performance of NSGA-II algorithms. This paper
applies the adaptive adjustment mechanism of genetic operators to reduce the probability
of good operators being selected for crossover and mutation and to increase the probability
of poor operators being selected for crossover and mutation to ensure the gradual and stable
improvement of the overall population level. The crossover probability Pc is calculated as
formula (26). The mutation probability Pm is calculated as formula (27) [38]:

pc =

 0.1×
√

(1−N′rank)×G
(R−1)×N +0.9 , N′rank < Navg

1 , N′rank ≥ Navg

(26)

where N′rank represents the value of the paired crossover operator with the smaller non-
dominated rank. Navg represents the average value of the current population’s individual
non-dominance rank. G represents the current population iteration number. R repre-
sents the maximum value of the current population’s individual non-dominance rank. N
represents the maximum number of iterations.

pm =

{
0.1×

√
−(Nrank−1)×G

(R−1)×N , Nrank < Navg

0.1 , Nrank ≥ Navg
(27)

where Nrank represents the non-dominated rank of the mutation operator.
The NGSA-II algorithm’s particular stages are as follows [Algorithm 1]:

Algorithm 1. NGSA-II Algorithm solving process [37]

Input: The maximum amount of iterations Nmaxz
Output: Final population Pareto solution set PNmax

N = 0, PN = {x1, x2, x3, · · · , xn} // Generating an initial population with population size n
While N ≤ Nmax

C1 = calCost1(PN) // Calculating the objective function
C2 = calCost2(PN)
PN = nonDominatedSorting(PN , C1, C2) // Non-dominance sorting
PN = crowdingDisSorting(PN) // Sorting by crowding distance
PN+1 = PN [: z] // Retaining the top z individuals in PN
While len(PN+1) < n

xa, xb = rouletteChoice(PN) // Select two individuals from the parent population
Pc = calCrossProb(xa, xb) // Calculating adaptive crossover probabilities
Pm = calMutateProb(xa, xb) // Calculating adaptive mutation probabilities
x′a, x′b = geneticOperator(xa, xb, Pc, Pm)
PN+1.append(x′a, x′b

)
N = N + 1

End While
ReturnPNmax

5. Analysis

A logistics UAV route network based on real geographic information data is estab-
lished. Comparative experiments are performed to analyze the result of logistics UAV route
network capacity. Particular focus is placed on the impact of two key parameters, flight
speed and safety interval, on the route network capacity.
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5.1. Parameters Setting

(1) Simulation Environment

To verify the effectiveness of the logistics UAV route network operation capacity
assessment model and algorithm, Python 3.9.10 was utilized for simulation experiments. A
region in Nanjing, China, is selected as the experimental scenario, as shown in Figure 6a, to
construct a logistics UAV route network, as shown in Figure 6b. The route network has
62 vertiports, including 53 end delivery stations and 9 public delivery stations, divided
into 4 communities. Logistics UAVs fly on fixed headings without two-way segments.
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Logistics UAV operation noise impedance is directly related to the height of the route
network; refer to the literature [23]. The route network constructed is planned at 50 m above
the ground road, and the noise impedance value calculation results in the region shown in
Figure 7; the darker the color, the higher the noise impedance value. According to Figure 7,
the noise impedance value and building height are directly inversely correlated; the higher
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the building height, the closer it is to the logistics UAV path, the more pronounced the
noise interference, and the higher the noise impedance value. The distance between the
outdoor open area and the logistics UAV route is larger, and the noise impedance value is
relatively small.
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Figure 7. Noise impedance distribution in an area of Nanjing, China.

Population density is related to building distribution. People inside the buildings are
clustered, and outdoors are relatively loose; the population density in the region is shown
in Figure 8; the darker the color indicates that the population density is greater. According
to Figure 8, residential neighborhoods and office building areas are densely populated,
parks and football fields are relatively loosely populated, and lake areas are almost devoid
of people.
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(2) Parameters

For the logistics UAV delivery scenario, the model parameters are set according to the
previous related research [39] and the performance of some multicopter logistics UAVs,
such as Meituan FP400, EHang216, and Antwork TR7S, as shown in Table 2.

Table 2. Parameter setting [39].

Parameter Meaning Value

wuav The length of logistics UAV wingspan 1 m

luav The length of logistics UAV fuselages 0.5 m

huav The height of logistics UAV fuselages 0.5 m

muav Logistics UAV unladen mass 4 kg

mdelivery The mass of logistics UAV carried package [0, 3] kg

mmax The upper limit of logistics UAV takeoff mass 7 kg

vuav Logistics UAV flight speed 10 m/s

Tairroute
The takeoff interval time between the two logistics

UAVs before and after 1.5 s

εmax The upper limit of ε(mdelivery) 3

S The average sheltering factor of the route 0.5

α Fixed parameter 106 J

µ Fixed parameter 100 J

LCMFY The people’s acceptable value of logistics UAS noise 30 Db

Lmax
ij The upper limit of logistics UAV flight distance 4 km

ωrisk Safety impedance weighting coefficients 0.4

ωnoise Noise impedance weighting coefficients 0.3

ωcos t Cost impedance weighting coefficients 0.3

Z The number of retained individuals 100

Nmax The maximum number of iterations 1000

5.2. Results Analysis
5.2.1. Operation Capacity Analysis

The operation capacity of a logistics UAV route network with operation times of
30 s, 60 s, 90 s, and 120 s is solved using the above model and parameter settings, and
the experiment is repeated 20 times for each operation time, and the optimal solution is
selected to plot the Pareto front, as shown in Figure 9. The operation capacity and the
total impedance value show a linear relationship with similar angular coefficients, and
as the total impedance value gradually rises, the operation capacity reaches the inflection
point, indicating that the route network operation capacity can continue to optimize the
space for improvement gradually decreases. Meanwhile, the Pareto fronts at different
operation times are uniformly distributed, indicating that the NGSA-II algorithm maintains
the diversity of the population during the solution process.

The optimal solution set among 20 replicate experiments is selected to draw an iterative
graph of the operation capacity, as shown in Figure 10. The population optimal solution,
namely the optimal operation capacity, and the population average solution, namely the
average operation capacity, are outputs for each iteration to comprehensively assess the
operation capacity of the logistics UAV route network. The optimal operation capacity
of the route network in 30 s, 60 s, 90 s, and 120 s is 414, 523, 599, and 711, respectively,
while the average operation capacity is 392, 497, 580, and 688, respectively, and the optimal
operation capacity is higher than the average operation capacity by about 20 sorties. When



Drones 2023, 7, 582 16 of 23

the operation time is 30 s, the optimal solution could be obtained with 400–500 iterations,
and when the operation time increases to 90 s and 120 s, the algorithm begins to converge
with more than 500 iterations, indicating that with the increase of operation time, the
complexity of computing increases, and the convergence speed of algorithm slows down
and the optimization magnitude gradually decreases, reflecting the reasonableness of the
proposed logistics UAV route network operation capacity assessment model.
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5.2.2. Key Parameter Analysis

(1) Safety Interval

The safety interval mentioned in this paper relates to the minimum distance that
the two logistics drones in front and behind must maintain when operating in the route
network [40]. Maintaining safety intervals is the basic requirement to ensure the logistics
UAV operates safely. The route network operation capacity at different operation times with
safety intervals of 15 m, 20 m, 25 m, and 30 m is assessed by considering the performance
of multicopter logistics UAV, and each group of experiments is repeated 20 times, and the
average value is obtained to plot average operation capacity at different safety intervals
with the average total impedance value change, as shown in Figure 11.

According to Figure 11, When the operation duration is fixed, the total impedance
value drops as the safety interval grows and the route network’s operation capacity steadily
declines. Moreover, when the safety interval is increased from 25 m to 30 m, the opera-
tion capacity decreases significantly less than when the safety interval is increased from
15 m to 20 m and from 20 m to 25 m. It is shown that in the scenario proposed in this
paper, with the increase of safety interval, the sensitivity of logistics UAV route network
operation capacity to safety interval gradually decreases; namely, when the safety interval
reaches a certain level, the influence of safety interval on route network operation capacity
gradually decreases.
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To analyze the assessment of the operation capacity of the logistics UAV route network
in relation to the safety interval, the ‘operation time-safety interval-average operation capac-
ity’ and ‘operation time-safety interval-average total impedance value’ graphs were plotted
based on the above experimental data, as shown in Figures 12 and 13. A comprehensive
analysis of the two key parameters of operation time and safety interval shows that as the
operation time increases and the safety interval decreases, the average operation capacity
tends to increase. When the operation time is smaller while the safety interval is larger,
the average operation capacity is affected more by the operation time; when the operation
time is larger while the safety interval is smaller, the average operation capacity is affected
more by the safety interval. The smaller variation in the average total impedance value
compared to the average operation capacity indicates that the impedance value required
to achieve the same increase in operation capacity is decreasing under the influence of
marginal effects.
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(2) Flight Speed

According to the scenario developed in this study, logistics UAVs fly at a constant
speed throughout the route network, and with reference to the performance parameters
of Meituan FP400 logistics UAV, the research analyses the trend of the operation capacity
of the route network when the safety interval is fixed at 20 m, and the flight speed of
logistics UAVs is increased from 10 m/s to 15 m/s in 0.5 m/s increments. Each group
of experiments was repeated 20 times, the average operation capacity and the maximum
operation capacity were recorded, and the average of the average operation capacity was
obtained to plot the change in flight speed and the average operation capacity. As shown
in Figure 14, the average operation capacity rises gradually as the flight speed increases; as
the operating time rises, the average operation capacity at the same flying speed improves
at a slower rate.
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To explore the effect of logistics UAV flying speed on route network operation capacity,
based on the above experimental data, the average value of maximum operation capacity
and average operation capacity of each group of experiments are taken to plot the relation-
ship between flight speed and operation capacity at different operation time, as shown in
Figure 15. According to Figure 15, when the logistics UAV flight speed is increased from
10 m/s to 10.5 m/s, the operation capacity rises at the maximum rate, and as the flight
speed increases, the overall rate of rise gradually slows down. Moreover, as the operation
time increases, the rate of increase in operation capacity grows. It indicates that when
logistics UAVs fly at speeds between 10 m/s and 10.5 m/s, the operation capacity of the
route network is influenced by the flight speed, and its influence gradually strengthens as
the operation time rises, while the maximum operation capacity is greater than the average
operation capacity by about 20 sorties.
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In the Analysis section, two main parameters, flight speed and safety interval, are
selected for multiple comparative experiments. Reference [41] also establishes a capac-
ity assessment model for logistics UAV routes and selects the safety interval as the key
parameter to be analyzed. In reference [41], the capacity of the route network decreases
with increasing safety intervals, and the rate of decrease slows down, which is similar to
the findings of this paper, which verified the reliability. Moreover, reference [41] does not
concern the effect of flight speed on the route network’s capacity, and this study is more
comprehensive than reference [41].

6. Conclusions

This paper proposes an urban low-altitude logistics UAV route network operation
capacity assessment method in order to respond to the development trend of logistics
UAVs; the following are the contributions:

1. This paper clarifies the operation mode of logistics UAVs in urban low-altitude
airspace and defines the operation capacity of logistics UAV route networks as the
maximum sortie of logistics UAVs that can be served during the operation time of
all vertiports in the route network. A bi-objective optimization model for assessing
the logistics UAV route network operation capacity is established, considering safety,
cost, and noise factors. The first objective is to maximize the logistics UAV delivery
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plan that can be executed during operation time. The second objective is to minimize
the total impedance value;

2. The route network is established utilizing real-world geographic data with a total
of 62 vertiports, including 53 end delivery stations and 9 public delivery stations,
divided into 4 communities. Based on the above model and experimental scenarios,
the NSGA-II algorithm is adopted to solve the model with operation times of 30 s,
60 s, 90 s, and 120 s, respectively. As the operation time increases, the optimal route
network capacity increases from 414 to 711, and the algorithm convergence rate slows
down, indicating the reasonableness of the proposed model and algorithm;

3. Comparative experiments were designed for the key parameter of the safety interval
to assess the logistics UAV route network operation capacity at different operating
times with safety intervals of 15 m, 20 m, 25 m, and 30 m. Experiments reveal that
when the safety interval rises, the average operation capacity of the route network
rapidly declines, and the sensitivity to the safety interval decreases accordingly. In
addition, the average total impedance value varies less than the average operation
capacity, indicating that the impedance value required to achieve the same increase in
operation capacity is decreasing under the influence of marginal effects;

4. Multiple group experiments are carried out to analyze the trend of the route network
operation capacity when the flight speed of logistics UAVs is increased from 10 m/s,
in 0.5 m/s increments, to 15 m/s, with the goal to expand the relationship between
the flight speed of logistics UAVs and the route network operation capacity. The
experiments show that as the flight speed increases, the average operation capacity
gradually rises, especially when the logistics UAV flight speed is between 10 m/s and
10.5 m/s. The route network operation capacity is influenced by the flight speed, and
its influence gradually strengthens as the operation time rises.

This paper proposed a logistics UAV route network operation capacity assessment
method. However, the urban environment is complicated, and the logistics UAV operation
scenario has meteorological and other dynamic influencing factors interference. In the
future, we will try to further study the logistics UAV route network dynamic capacity
assessment method through a combination of computer simulation and mathematical
modeling methods. Attempts to simulate random influences in the urban low-altitude
environment, such as wind shear and bird interference, are made through computer
simulation techniques. In addition, we are trying to establish a dynamic network of logistic
UAV route networks, which can be based on real-time changes in distribution demand,
and studying the dynamic route network capacity assessment methodology. Overall, the
study on the capacity assessment of the logistics UAV route network will play a significant
role in the planning and scheduling of logistics demand in the real world, especially
for the future urban air-ground coordinated logistics and distribution mode. Scientific
assessment of the capacity of low-altitude airspace is an important prerequisite for the
efficient allocation of air and ground transport resources. Moreover, this study will also
provide support for urban low-altitude airspace management and provide a reference value
for the development of a reasonable logistics UAV management plan.
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Abbreviations

Abbreviation Meaning

UAM Urban Air Mobility
A new three-dimensional transport system with
integrated manned/unmanned aerial vehicle
operations on an urban or intercity scale [1,2].

Logistics Logistics Unmanned Unmanned Aerial Vehicles (UAVs) used in logistics and
UAV Aerial Vehicle transport applications, usually carrying parcels [15].

eVTOL
Electric Vertical Takeoff An innovative aircraft, vertical takeoff and landing
and Landing aircraft with an electric power engine [18].

Logistics Logistics Unmanned An airway serving logistics UAVs which usually
UAV route Aerial Vehicle route requires pre-planning [36].

NSGA-II
Non-dominated Sorting

One of the most popular multiobjective genetic algorithms,

Genetic Algorithm-II
which reduces the complexity of non-inferiority sorting
genetic algorithms [37].

GA Genetic Algorithm
A stochastic search algorithm that draws on natural
selection and natural genetic mechanisms in biology [37].

- Safety Interval
Minimum distance between front and rear
logistics UAVs [40].
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