
Citation: Xu, Z.; Zhang, P.; Li, C.;

Zhu, H.; Xu, G.; Sun, C. A

Collaborative Inference Algorithm in

Low-Earth-Orbit Satellite Network

for Unmanned Aerial Vehicle. Drones

2023, 7, 575. https://doi.org/

10.3390/drones7090575

Academic Editor: Emmanouel

T. Michailidis

Received: 11 August 2023

Revised: 6 September 2023

Accepted: 9 September 2023

Published: 11 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

A Collaborative Inference Algorithm in Low-Earth-Orbit
Satellite Network for Unmanned Aerial Vehicle
Zhengqian Xu 1, Peiying Zhang 2,3,4,5 , Chengcheng Li 1,*, Hailong Zhu 6, Guanjun Xu 7 and Chenhua Sun 1

1 The 54th Research Institute of CETC, Shijiazhuang 050081, China; zqxu_0@stu.xidian.edu.cn (Z.X.);
zhuansunying@bupt.edu.cn (C.S.)

2 Qingdao Institute of Software, College of Computer Science and Technology, China University of
Petroleum (East China), Qingdao 266580, China; zhangpeiying@upc.edu.cn

3 Shandong Provincial Key Laboratory of Computer Networks, Shandong Computer Science Center
(National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences),
Jinan 250013, China

4 State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China
5 National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
6 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and

Telecommunications, Beijing 100876, China; zhuhl@bupt.edu.cn
7 Space Information Research Institute, Hangzhou Dianzi University, Hangzhou 310018, China;

gjxu@ee.ecnu.edu.cn
* Correspondence: lengcangche@bupt.cn

Abstract: In recent years, the low-Earth-orbit (LEO) satellite network has achieved considerable
development. Moreover, it is necessary to introduce edge computing into LEO networks, which can
provide high-quality services, such as worldwide seamless low-delay computation offloading for
unmanned aerial vehicles (UAVs) or user terminals and nearby remote-sensing data processing for
UAVs or satellites. However, because the computation resource of the satellite is relatively scarce
compared to the ground server, it is hard for a single satellite to complete massive deep neural
network (DNN) inference tasks in a short time. Consequently, in this paper, we focus on the multi-
satellite collaborative inference problem and propose a novel COllaborative INference algorithm
for LEO edge computing called COIN-LEO. COIN-LEO manages to split the complete DNN model
into several submodels consisting of some consecutive layers and deploy these submodels to several
satellites for inference. We innovatively leverage deep reinforcement learning (DRL) to efficiently
split the model and use a neural network (NN) to predict the time required for inference tasks of a
specific submodel on a specific satellite. By implementing COIN-LEO and evaluating its performance
in a highly realistic satellite-network-emulation platform, we find that our COIN-LEO outperforms
baseline algorithms in terms of inference throughput, time consumed and network traffic overhead.

Keywords: edge computing; satellite network; collaborative inference

1. Introduction

A satellite network is a type of communication network that can provide beyond-
line-of-sight communication services [1]. It consists of a space segment, a ground segment
and a user segment. The space segment is mainly composed of a satellite (s) that has
communication functions, such as signal processing and routing. The ground segment
is mainly composed of gateway stations that can interconnect with terrestrial networks,
such as the 4G/5G mobile network. The user segment mainly contains satellite terminals
used by end users. It is widely accepted that the 6G network is a space–ground integrated
network. As such, the satellite network is an important part of 6G [2].

Compared with traditional geosynchronous (GEO) satellite networks, the low-Earth-
orbit (LEO) network has some intrinsic advantages, such as relatively low propagation
latency between the terminal and the LEO satellite, seamless global coverage and so

Drones 2023, 7, 575. https://doi.org/10.3390/drones7090575 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7090575
https://doi.org/10.3390/drones7090575
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-0990-5581
https://orcid.org/0000-0002-7788-0208
https://doi.org/10.3390/drones7090575
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7090575?type=check_update&version=2

Drones 2023, 7, 575 2 of 21

on [3]. Consequently, in recent years, the LEO satellite network has achieved considerable
development. Many companies, such as SpaceX, OneWeb, Amazon and Telesat, have
deployed their own LEO satellite networks [4]. These networks are expected to meet the
growing demand for reliable and accessible Internet connection worldwide.

Despite the fact that the LEO network has many advantages and has attracted much
attention in recent years, it cannot provide high-quality services in some scenarios:

• Computation offloading: If a UAV or a user terminal wants to offload computation-
intensive tasks to the network, it has to offload the task to the cloud on the ground.
However, the end-to-end delay between the user and the cloud is usually very large
because the distances between user links (between satellite terminal and the access
satellite) and inter-satellite links (ISLs) are very long, which means that the signal
propagation delay is very large;

• Remote-sensing data processing: Traditionally, after the remote-sensing payload on
the UAV or after the satellite obtains the original data, the UAV or the satellite has
to transmit these original/preprocessed data to the cloud on the ground where the
data are processed and useful information is obtained [5]. However, these origi-
nal/preprocessed data are usually very large. For example, the size of a single image
taken by a Gaofen-1 satellite is up to several gigabits, and the size of satellite-based
synthetic-aperture radar (SAR) echo data for a single image is up to 50 Gbits [6]. As
remote-sensing technology evolves, this size becomes larger and larger. This type of
remote-sensing data transmission presses hard upon the ISLs and feeder links.

Therefore, we believe that it is necessary to introduce edge computing into LEO net-
works, which conforms to the trends in the integration of computation and the networking
of the 6G system [7]. By deploying computation and storage resource on the LEO satellite,
it is possible to build a collaborative space-based edge-computing system that is composed
of many satellite-based computing platforms.

Introducing edge computing into the LEO network can yield obvious benefits:

• Low-delay computation offloading: By offloading computation tasks to the LEO
satellite (instead of the cloud on the ground), which is the edge of the LEO network, it
is possible to support users’ latency-sensitive, computationally intensive applications;

• Data analysis nearby the source: By processing the remote-sensing data nearby the
data sources (the UAV-based or satellite-based remote-sensing payload), the band-
width occupation for transmitting huge amounts of original/preprocessed data is
saved. Moreover, by processing/analyzing data using an artificial intelligence (AI)
algorithm via the satellite-based computing platform and sending only the useful
information that has a much smaller data size to the user, the user can obtain the
desired information much faster;

• More rapid remote-sensing information dissemination: Edge computing in the LEO
network can lead to improved capabilities in near-real-time remote sensing, in which
data are processed and transmitted relatively quickly. Some remote-sensing satellites
are designed for specific applications, such as disaster monitoring, in which more rapid
information dissemination is critical. By leveraging edge computing, it is possible
to reduce the time needed for useful information dissemination obtained by satellite
remote sensing.

The inference process of deep learning (DL) is an important type of algorithm that is
run on the LEO satellite-based edge-computing platform. However, the computing power
of an LEO satellite is less than that of an edge-computing node in the terrestrial network, so
it is necessary to use multiple satellites’ computing resource in order to complete massive
inference tasks in a short time [8,9]. For example, when there are many users who are
offloading many inference tasks to the access satellite or when a remote-sensing satellite
has many images (or video frames) requiring processing, it is necessary for several nearby
satellites to compute collaboratively to avoid overloading the access satellite [10].

Drones 2023, 7, 575 3 of 21

Therefore, in this paper, we focus on the collaborative inference problem in the LEO
edge-computing system and propose a COllaborative INference algorithm in LEO edge
computing called COIN-LEO, in which several satellites can collaboratively complete many
inference tasks in a finite time. Specifically, the COIN-LEO algorithm first appropriately
selects several satellites to participate in the inference process in the ‘neighborhood’ of
the data source satellite. Then, COIN-LEO splits the deep neural network (DNN) model
into several parts, in which a part consists of several consecutive layers of the model.
After obtaining the model-splitting result, COIN-LEO assigns these model parts to selected
satellites, and each satellite accomplishes the inference task that corresponds to the assigned
model part. In this way, several satellites collaboratively accomplish the compete inference
process in a pipeline fashion, which can improve the amount of accomplished inference
tasks within a given time.

Our main contributions are summarized as follows:

• We propose a simple method to select appropriate satellites to participate in the
collaborative inference process, which is easy to implement in engineering. The core
idea is to take into the entire topology of the LEO network in consideration and select
several satellites to build a circle-like topology;

• We propose an efficient deep reinforcement learning (DRL)-based algorithm for DNN
model splitting. To support the model-splitting algorithm, we use a neural network
(NN) to predict the inference time of a specific submodel deployed on a specific
satellite and conduct many experiments to obtain enough training data;

• We conduct the collaborative inference experiments in a testbed that highly realisti-
cally simulates the LEO network and evaluates several performance metrics, such as
inference throughput and time.

The following article is organized as follows. Section 2 provides a comprehensive
overview of related works in the literature. The system model is described in Section 3. In
Section 4, we explain the details of the COIN-LEO algorithm. Performance evaluation is
presented in Section 5. Section 6 concludes this article.

2. Related Work
2.1. Collborative Inference

In order to improve the inference performance, there are some works that focus on
collaborative inference in the literature.

Shao et al. study edge inference in resource-constrained devices and focus on device
edge co-inference, in which the inference is assisted by an edge-computing server [11].
They propose a general three-step framework for the inference: model split-point selection
to determine the on-device model; communication-aware model compression to reduce
the on-device computation and the resulting communication overhead; and task-oriented
encoding of the intermediate feature to further reduce the communication overhead. They
only consider splitting the model into two parts. However, in order to utilize many satellites’
resources, we limit ourselves to only using one satellite’s computing resource.

Lin et al. explore the distributed DNN deployment problem on the next-generation
network, which includes multi-level hierarchical computing units from the UE to the cloud
by leveraging FC and MEC [12]. The computing units in the lower level (i.e., nearer to
the UE) usually have weaker computing and bandwidth capacity (e.g., 10 Gflops and
1 Gbps), whereas the ones in the higher level (i.e., nearer to the cloud) are more powerful
(e.g., 1 Tflops and 10 Gbps). They solve the deployment problem considering both response
time and inference throughput. They study the distributed DNN deployment problem
considering multi-level hierarchical computing units, which is different from this paper.

Khan et al. introduce methods for distributed inference over IoT devices and edge
servers [13]. They propose two distinct algorithms to split the deep neural network layers’
computation between the IoT device and an edge server: the early split strategy (ESS) for
battery-powered IoT devices and the late split strategy (LSS) for IoT devices connected to
a regular power source, considering several factors, such as the available bandwidth of

Drones 2023, 7, 575 4 of 21

ISLs, the available computing resource of satellites, the computing power needed for the
inference process as part of the DNN model, etc. They study the distributed inference by
the IoT device and the edge server, which is different to our problem.

Kim et al. present experimental results of DNN inference offloading in a real-world
5G MEC testbed to meet requirements for high detection accuracy and low end-to-end
latency for object detection [14]. They implement the DNN offloading by applying task
pipeline parallelism and a DNN task-decoupling scheme from the edge to the MEC server.
However, they offload the whole inference task to the MEC server, which is different from
our approach, which splits the inference task into multiple parts.

Yu et al. study the cloud-based model serving problem, in which users deploy models
as serverless functions and let the platform handle provisioning and scaling [15]. They
observe that serverless functions have constrained resources in CPU and memory, making
them inefficient or infeasible to serve the whole large neural networks. As such, they present
Gillis, a serverless-based model serving system that automatically partitions a large model
across multiple serverless functions for faster inference and reduced memory footprint per
function. In their scenario, the DNN model partitions are deployed on different serverless
functions between which are low-delay links with large bandwidth, which is different from
the satellites’ collaborative inference scenario in which ISLs have high delay.

2.2. Satellite-Based Edge Computing

In recent years, more and more researchers have begun to recognize the importance of
satellite-based edge computing.

Wang et al. introduce a novel satellite–terrestrial network with double edge computing
to reap the benefits of providing computing services to remote areas [16]. A strategy is
designed to solve the problem of efficiently scheduling the edge servers distributed in the
satellite–terrestrial networks to provide more powerful edge-computing services. For the
purpose of allocating satellite edge-computing resources efficiently in the strategy, a double-
edge-computation offloading algorithm is proposed to optimize energy consumption and
reduce latency by assigning tasks to edge servers with minimal cost.

Wang et al. propose a game-theoretic approach to the optimization of computation
offloading strategy in satellite edge computing [17]. The system model for computa-
tion offloading in satellite edge computing is established, considering the intermittent
terrestrial–satellite communication caused by satellites orbiting. They conduct a computa-
tion offloading game framework and compute the response time and energy consumption
of a task based on the queuing theory as metrics of optimizing performance.

Zhang et al. believe that orbital edge-computing (OEC) technology that deploys
edge-computing servers on LEO satellite constellations can meet the growing demand
for the real time reliability of various applications [18]. Based on the above motivations,
they propose an OEC task allocation (OECTA) algorithm based on the greedy strategy
in LEO satellite networks for the Walker Delta satellite constellation, which fully utilizes
satellite computing resources to provide services to ground users. They also analyze the
performance of their proposed algorithm in terms of computational cost.

Cheng et al. observe that, different from terrestrial edge computing, the computing
capacity in LEO satellites is usually unstable due to the limited and consistently changing
energy supply of fast-orbiting LEO satellites [19]. They propose a dynamic offloading
strategy to minimize the overall delay of tasks from terrestrial users in a satellite edge-
computing system, subject to the energy and computing capacity constraints of the LEO
satellite. Based on Lyapunov optimization theory, they convert a long-term stochastic prob-
lem with a time-varying energy constraint into multiple deterministic one-slot problems
parameterized by the current system state, in which task-offloading decisions, computing
resource allocation and transmit power control are jointly optimized.

Israel Leyva-Mayorga and his colleagues investigated a framework for optimizing
image distribution and parameter compression in LEO edge computing [20]. Their ap-
proach increases the number of supported images by the system while reducing energy

Drones 2023, 7, 575 5 of 21

consumption. Their research primarily focuses on energy efficiency. Zhu and his team
studied task-offloading algorithms based on deep reinforcement learning, achieving better
offloading cost effectiveness [21]. Their approach is suitable for satellite–terrestrial net-
works with fast fading channels, and their computational tasks lean more towards task
offloading rather than multi-satellite collaborative inference.

As we can see from these related works, present research in the field of LEO edge
computing predominantly focuses on task offloading, emphasizing the transfer of computa-
tional tasks from users to satellites to enhance computational efficiency in the LEO satellite
network. These works encompass a wide range of topics, including deep reinforcement
learning, distributed task scheduling and model optimization, with the aim of addressing
resource constraints and energy limitations. However, research on collaborative inference
among satellites remains relatively scarce, leaving a critical gap in the current body of
knowledge. Research into multi-satellite collaborative inference investigates how to har-
ness the resources of multiple LEO satellites to execute deep-learning inference tasks in a
distributed manner across multiple satellites, thereby improving inference performance.
Our research is dedicated to filling this research gap.

3. System Model
3.1. LEO Edge Computing

The LEO satellite network consists of a constellation of LEO satellites positioned in
low Earth orbits. These LEO satellites act as access points and routers. These satellites work
together to ensure continuous coverage and connectivity to all the regions of the world. The
low orbital altitude of LEO satellites results in reduced signal latency, making it suitable for
relatively low-delay communication. The constellation’s global coverage allows it to reach
even remote and sparsely populated areas, providing Internet access to a wider population.

LEO satellite networks typically use mesh-like topology, in which there are several
paths between every satellite and another satellite. The main advantages of this topology
are flexibility and fault tolerance: data can be transmitted through different paths, ensuring
system reliability and continuity even if a satellite fails. Figure 1 illustrates a typical edge-
computing scenario in an LEO satellite network. UAVs or user terminals offload inference
tasks to the LEO network via a user link, and these tasks are distributed among several
satellites within the LEO network. The satellites are interconnected in full-mesh topology,
which provides path redundancy and seamless coverage. For the sake of visual clarity, not
all inter-satellite links are shown in the figure.

Drones 2023, 7, x FOR PEER REVIEW 5 of 22

problems parameterized by the current system state, in which task-offloading decisions,

computing resource allocation and transmit power control are jointly optimized.

Israel Leyva-Mayorga and his colleagues investigated a framework for optimizing

image distribution and parameter compression in LEO edge computing [20]. Their ap-

proach increases the number of supported images by the system while reducing energy

consumption. Their research primarily focuses on energy efficiency. Zhu and his team

studied task-offloading algorithms based on deep reinforcement learning, achieving bet-

ter offloading cost effectiveness [21]. Their approach is suitable for satellite–terrestrial net-

works with fast fading channels, and their computational tasks lean more towards task

offloading rather than multi-satellite collaborative inference.

As we can see from these related works, present research in the field of LEO edge com-

puting predominantly focuses on task offloading, emphasizing the transfer of computational

tasks from users to satellites to enhance computational efficiency in the LEO satellite network.

These works encompass a wide range of topics, including deep reinforcement learning, dis-

tributed task scheduling and model optimization, with the aim of addressing resource con-

straints and energy limitations. However, research on collaborative inference among satellites

remains relatively scarce, leaving a critical gap in the current body of knowledge. Research

into multi-satellite collaborative inference investigates how to harness the resources of multi-

ple LEO satellites to execute deep-learning inference tasks in a distributed manner across mul-

tiple satellites, thereby improving inference performance. Our research is dedicated to filling

this research gap.

3. System Model

3.1. LEO Edge Computing

The LEO satellite network consists of a constellation of LEO satellites positioned in low

Earth orbits. These LEO satellites act as access points and routers. These satellites work to-

gether to ensure continuous coverage and connectivity to all the regions of the world. The low

orbital altitude of LEO satellites results in reduced signal latency, making it suitable for rela-

tively low-delay communication. The constellation’s global coverage allows it to reach even

remote and sparsely populated areas, providing Internet access to a wider population.

LEO satellite networks typically use mesh-like topology, in which there are several paths

between every satellite and another satellite. The main advantages of this topology are flexi-

bility and fault tolerance: data can be transmitted through different paths, ensuring system

reliability and continuity even if a satellite fails. Figure 1 illustrates a typical edge-computing

scenario in an LEO satellite network. UAVs or user terminals offload inference tasks to the

LEO network via a user link, and these tasks are distributed among several satellites within

the LEO network. The satellites are interconnected in full-mesh topology, which provides path

redundancy and seamless coverage. For the sake of visual clarity, not all inter-satellite links

are shown in the figure.

Orbit 1

Orbit 2

Inter-Orbit ISL

In-Orbit ISL

User Terminal

Feeder linkUser link

Satellite
Gateway

LEO

constellation

Edge
Computing

Platform

Edge
Computing

Platform

Edge
Computing

Platform

Edge
Computing

Platform

Edge
Computing

Platform

Edge
Computing

Platform

Cloud

UAV

User link

Figure 1. Edge computing in the LEO satellite network.

Due to the satellites being distributed around the Earth’s orbit, there may be sig-
nificant differences in communication delay between different satellites. The commu-
nication delay between satellites depends on the hop count, ISL bandwidth and signal
propagation distance.

Drones 2023, 7, 575 6 of 21

In order to provide a global edge-computing service, an important idea is to integrate
edge computing into the LEO network [22]. Specifically, the edge-computing platform
should be deployed on the LEO satellite. Additionally, the edge-computing platforms on
every satellite should work collaboratively to form a distributed satellite-based edge cloud
with abundant computing resources.

DNN inference is an important type of algorithm that will be run on the LEO satellite-
based edge-computing platform. However, the computing power of an LEO satellite is less
than that of an edge-computing node in the terrestrial network, so it is necessary to use
multiple satellites’ computing resources in order to complete massive inference tasks in a
short time.

3.2. System Architecture

In order to implement multi-satellite collaborative inference, we adopt a simple col-
laborative inference system architecture consisting of a controller and several worker
nodes [23].

As shown in Figure 2, the controller plays a crucial role in the collaborative inference
system. It is a software runtime that can be deployed on a specific satellite, which is
responsible for coordinating and managing the system’s operations. It has a global view and
can monitor the status and workload of each worker node, assigning tasks and allocating
resources accordingly. The controller collects information, such as CPU and memory
occupation from each worker node and based on this information, it intelligently schedules
and distributes tasks to achieve faster inference and load balance.

Drones 2023, 7, x FOR PEER REVIEW 6 of 22

Figure 1. Edge computing in the LEO satellite network.

Due to the satellites being distributed around the Earth’s orbit, there may be signifi-
cant differences in communication delay between different satellites. The communication
delay between satellites depends on the hop count, ISL bandwidth and signal propagation
distance.

In order to provide a global edge-computing service, an important idea is to integrate
edge computing into the LEO network [22]. Specifically, the edge-computing platform
should be deployed on the LEO satellite. Additionally, the edge-computing platforms on
every satellite should work collaboratively to form a distributed satellite-based edge cloud
with abundant computing resources.

DNN inference is an important type of algorithm that will be run on the LEO satellite-
based edge-computing platform. However, the computing power of an LEO satellite is
less than that of an edge-computing node in the terrestrial network, so it is necessary to
use multiple satellites’ computing resources in order to complete massive inference tasks
in a short time.

3.2. System Architecture
In order to implement multi-satellite collaborative inference, we adopt a simple col-

laborative inference system architecture consisting of a controller and several worker
nodes [23].

As shown in Figure 2, the controller plays a crucial role in the collaborative inference
system. It is a software runtime that can be deployed on a specific satellite, which is re-
sponsible for coordinating and managing the system’s operations. It has a global view and
can monitor the status and workload of each worker node, assigning tasks and allocating
resources accordingly. The controller collects information, such as CPU and memory oc-
cupation from each worker node and based on this information, it intelligently schedules
and distributes tasks to achieve faster inference and load balance.

Figure 2. Collaborative inference system architecture.

Figure 2. Collaborative inference system architecture.

The worker node is the LEO satellite-based edge-computing platform that carries out
specific computing tasks, e.g., submodel inference. Each worker node has CPU and memory
capacity. They can communicate and collaborate with each other to jointly accomplish
complex DL inference tasks. The worker nodes are connected through high-speed satellite
ISLs and switches, enabling intermediate result data transfer and DNN model parameter
sharing. Such a distributed computing architecture can fully leverage the resources of
multiple LEO satellites, improving overall computational efficiency and inference speed.

Before inference tasks begin, the controller intelligently splits the model into sub-
models suitable for different worker nodes based on their resource occupation and the
submodel inference task requirements. These submodels are then assigned to the cor-
responding worker nodes for inference as shown in Figure 3. By well-designed model

Drones 2023, 7, 575 7 of 21

partitioning and task assigning, we can balance the load of each worker node and enhance
the overall performance and efficiency of the system.

Drones 2023, 7, x FOR PEER REVIEW 7 of 22

The worker node is the LEO satellite-based edge-computing platform that carries out
specific computing tasks, e.g., submodel inference. Each worker node has CPU and
memory capacity. They can communicate and collaborate with each other to jointly ac-
complish complex DL inference tasks. The worker nodes are connected through high-
speed satellite ISLs and switches, enabling intermediate result data transfer and DNN
model parameter sharing. Such a distributed computing architecture can fully leverage
the resources of multiple LEO satellites, improving overall computational efficiency and
inference speed.

Before inference tasks begin, the controller intelligently splits the model into sub-
models suitable for different worker nodes based on their resource occupation and the
submodel inference task requirements. These submodels are then assigned to the corre-
sponding worker nodes for inference as shown in Figure 3. By well-designed model par-
titioning and task assigning, we can balance the load of each worker node and enhance
the overall performance and efficiency of the system.

Figure 3. A collaborative inference example.

Our model’s operational process can be summarized in the following steps:
1. Traverse the directed acyclic graph (DAG) structure of the NN model to find all pos-

sible splitting points. These points usually represent branches or parallel computa-
tion nodes in the NN model that can be independently computed;

2. Based on the results from the found possible splitting point, perform the finest-
grained splitting of the model and save the divided parts. This divides the model into
multiple smallest parts, each of which can be independently computed on different
computing nodes;

3. The controller collects information about the current CPU and memory occupation
of each worker node. This information helps evaluate the availability and workload
of each worker node;

4. Based on the collected information, use our algorithm to calculate the optimal NN
model-splitting method. This algorithm takes into account factors such as resource
occupation, load balancing and transmission delay to determine the most efficient
way to split the NN model;

5. Based on the NN model-splitting result from the above step, perform the model split-
ting and assign submodels to worker nodes sequentially, in which each computing
node is responsible for processing its assigned part of the model;

6. Send the submodels to the respective worker nodes and start the computation
threads. Each worker node can independently carry out its own computation tasks

Figure 3. A collaborative inference example.

Our model’s operational process can be summarized in the following steps:

1. Traverse the directed acyclic graph (DAG) structure of the NN model to find all possi-
ble splitting points. These points usually represent branches or parallel computation
nodes in the NN model that can be independently computed;

2. Based on the results from the found possible splitting point, perform the finest-
grained splitting of the model and save the divided parts. This divides the model into
multiple smallest parts, each of which can be independently computed on different
computing nodes;

3. The controller collects information about the current CPU and memory occupation of
each worker node. This information helps evaluate the availability and workload of
each worker node;

4. Based on the collected information, use our algorithm to calculate the optimal NN
model-splitting method. This algorithm takes into account factors such as resource
occupation, load balancing and transmission delay to determine the most efficient
way to split the NN model;

5. Based on the NN model-splitting result from the above step, perform the model
splitting and assign submodels to worker nodes sequentially, in which each computing
node is responsible for processing its assigned part of the model;

6. Send the submodels to the respective worker nodes and start the computation threads.
Each worker node can independently carry out its own computation tasks using the
original data or intermediate inference result output by another worker node;

7. The central controller sends data to the worker node that runs the inference of the
first submodel. Intermediate/final result data flows between worker nodes, and each
node performs computations in the specified order, thereby accomplishing the NN
model’s inference task in a pipelined fashion.

Through these steps, our collaborative inference system achieves efficient distributed
DL inference tasks. By dividing the model and utilizing parallel and pipelined computa-
tions, we fully leverage the resources of multiple satellites, thereby improving the speed of
model inference.

3.3. Analysis of Inference Process

Next, we explain how to split complex DNN models whose structures are not
strictly linear.

Drones 2023, 7, 575 8 of 21

Modern DNNs are not simple linear structures but rather DAGs. A DAG is a repre-
sentation of a graph composed of a set of vertices and directed edges, with no cycles. In a
DAG, each directed edge has a direction, pointing from one vertex to another, and there are
no paths that start at a vertex, traverse through several edges and return to the same vertex.
The structure of a DNN model can be modeled as a DAG. In a DNN, each node represents a
neuron or computing units, and directed edges represent the connections between neurons.

To achieve model partitioning and parallel computation, we first use DAG traversal
to find nodes that can be split. DAG traversal involves sequentially traversing nodes in a
computational graph to determine the execution order and the dependency relationships of
the computations. In DL, DAG traversal is commonly used in the forward- and backward-
propagation processes of the model to compute the output values and gradients of each
node. As shown in Figure 4, we adopt the current mainstream and intuitive approach,
using traversal to find model split points and treating the layers between two split points as
a logical layer. This approach works well for models with residual blocks, such as ResNet
or PANet.

Drones 2023, 7, x FOR PEER REVIEW 9 of 22

Figure 4. Merge branches into logical sub-layers.

4. COIN-LEO Algorithm
Each satellite can be viewed as an independent worker node. We aim to design an

algorithm that can split the model into several submodels and deploy different submodels
to different worker nodes. These submodels are deployed to several worker nodes for dis-
tributed inference, forming a pipelined inference cluster.

The proposed COIN-LEO algorithm mainly consists of two parts. The first part is to
select appropriate satellites to participate in collaborative inference. The second part is to
determine the specific model-splitting positions in order to deploy submodels to the
above-selected satellites. To predict the inference time for different submodels of varying
sizes under different resource-occupation conditions of each satellite, we design a DNN
that can make accurate predictions based on the satellite’s resource occupation.

4.1. Selecting Satellite for Collaborative Inference
As mentioned above, the LEO satellite network adopts a mesh-like structure. The

one-way propagation delay for each hop of LEO satellites is approximately 7–15 ms. As
for DNN inference tasks, the inference time can vary from tens of milliseconds to several
seconds, depending on the model’s size. For some relatively simple inference tasks, this
propagation delay cannot be ignored [25]. Therefore, our method of selecting satellites
tends to reduce the propagation delay in the collaborative inference, specifically the num-
ber of satellites that data/intermediate results have to travel through.

Figure 4. Merge branches into logical sub-layers.

Currently, some researchers consider not transforming the DAG into a chain but
decomposing it into a set of execution units [24]. In that way, edge-computing nodes are
responsible only for executing specific operations, and results are sent to the corresponding
targets through forwarding tables. However, this scheduling method would introduce
significant network overhead, and for our LEO satellite network scenario, such network
overhead may even exceed the DNN inference time, which is unacceptable. Therefore,
we did not use this method and instead opted for partitioning based on logical layers.

Drones 2023, 7, 575 9 of 21

Moreover, this logical layer-based partitioning method simplifies the complexity of our
subsequent algorithms.

4. COIN-LEO Algorithm

Each satellite can be viewed as an independent worker node. We aim to design an
algorithm that can split the model into several submodels and deploy different submodels
to different worker nodes. These submodels are deployed to several worker nodes for
distributed inference, forming a pipelined inference cluster.

The proposed COIN-LEO algorithm mainly consists of two parts. The first part is to
select appropriate satellites to participate in collaborative inference. The second part is
to determine the specific model-splitting positions in order to deploy submodels to the
above-selected satellites. To predict the inference time for different submodels of varying
sizes under different resource-occupation conditions of each satellite, we design a DNN
that can make accurate predictions based on the satellite’s resource occupation.

4.1. Selecting Satellite for Collaborative Inference

As mentioned above, the LEO satellite network adopts a mesh-like structure. The
one-way propagation delay for each hop of LEO satellites is approximately 7–15 ms. As
for DNN inference tasks, the inference time can vary from tens of milliseconds to several
seconds, depending on the model’s size. For some relatively simple inference tasks, this
propagation delay cannot be ignored [25]. Therefore, our method of selecting satellites
tends to reduce the propagation delay in the collaborative inference, specifically the number
of satellites that data/intermediate results have to travel through.

To achieve the desired inference delay and throughput performance, we can choose
a structure in which multiple satellites are sequentially connected. By forming a circular
structure in which satellites are connected end-to-end, the sum of all ISL propagation
delays is reduced, as shown in Figure 5. When one satellite completes a part of an inference
task, the intermediate result can be directly transmitted to the next satellite node without
requiring additional transmission paths. This effectively controls the transmission delay of
intermediate results and model parameters, improving the system’s response speed and
inference efficiency. Additionally, this circular structure can better adapt to the dynamic
changes in the satellite network. When new satellite nodes join or leave the system, the
topology structure can be adjusted and adapted relatively flexibly.

Drones 2023, 7, x FOR PEER REVIEW 10 of 22

To achieve the desired inference delay and throughput performance, we can choose
a structure in which multiple satellites are sequentially connected. By forming a circular
structure in which satellites are connected end-to-end, the sum of all ISL propagation de-
lays is reduced, as shown in Figure 5. When one satellite completes a part of an inference
task, the intermediate result can be directly transmitted to the next satellite node without
requiring additional transmission paths. This effectively controls the transmission delay
of intermediate results and model parameters, improving the system’s response speed
and inference efficiency. Additionally, this circular structure can better adapt to the dy-
namic changes in the satellite network. When new satellite nodes join or leave the system,
the topology structure can be adjusted and adapted relatively flexibly.

Figure 5. Examples of selecting satellites for collaborative inference.

We choose to connect four satellites end-to-end as our structure. This decision was
made considering that as the number of satellite nodes increases, the corresponding trans-
mission delays also increase. Considering the model size and inference speed, using too
many satellite nodes may have a negative impact on throughput and other performance
metrics. To strike a balance, we opt to use four satellites for distributed deep-learning in-
ference. On one hand, the one-way propagation delay of the ISL ranges from 7 to 15 ms
and the transmission delay increases linearly as the number of satellites increases. In the
scenario with four satellites, the transmission delay for intermediate results to traverse
each satellite and return to the initial satellite is approximately 28–60 ms, which is within
an acceptable range. On the other hand, if the number of satellites is too low, it would
hinder the advantages of collaborative inference and make it challenging to improve the
system’s throughput. If the number of satellites is even fewer than four, it would not
achieve the expected benefits of collaborative inference. Considering these factors collec-
tively, this configuration allows us to maintain a reasonable trade-off between the number
of nodes and the overall performance of the system.

4.2. Deep Reinforcement Learning Using the PPO Algorithm
Reinforcement learning (RL) is an important branch of machine learning, whose goal

is to enable an agent to learn how to make decisions in a specific environment through
interaction with the environment in order to maximize cumulative rewards. Reinforce-
ment learning is a method of learning the optimal strategy through trial and error, similar
to how humans try different actions during the learning process to achieve the best results.
In reinforcement learning, the agent interacts with the environment, observes the current
state and takes actions based on the current state. After taking an action, the agent receives

Figure 5. Examples of selecting satellites for collaborative inference.

We choose to connect four satellites end-to-end as our structure. This decision was
made considering that as the number of satellite nodes increases, the corresponding trans-
mission delays also increase. Considering the model size and inference speed, using too

Drones 2023, 7, 575 10 of 21

many satellite nodes may have a negative impact on throughput and other performance
metrics. To strike a balance, we opt to use four satellites for distributed deep-learning
inference. On one hand, the one-way propagation delay of the ISL ranges from 7 to 15 ms
and the transmission delay increases linearly as the number of satellites increases. In the
scenario with four satellites, the transmission delay for intermediate results to traverse each
satellite and return to the initial satellite is approximately 28–60 ms, which is within an
acceptable range. On the other hand, if the number of satellites is too low, it would hinder
the advantages of collaborative inference and make it challenging to improve the system’s
throughput. If the number of satellites is even fewer than four, it would not achieve the
expected benefits of collaborative inference. Considering these factors collectively, this
configuration allows us to maintain a reasonable trade-off between the number of nodes
and the overall performance of the system.

4.2. Deep Reinforcement Learning Using the PPO Algorithm

Reinforcement learning (RL) is an important branch of machine learning, whose goal
is to enable an agent to learn how to make decisions in a specific environment through
interaction with the environment in order to maximize cumulative rewards. Reinforcement
learning is a method of learning the optimal strategy through trial and error, similar to
how humans try different actions during the learning process to achieve the best results. In
reinforcement learning, the agent interacts with the environment, observes the current state
and takes actions based on the current state. After taking an action, the agent receives an
immediate reward or punishment to evaluate the goodness of that action. The goal of the
agent is to learn the policy that maximizes the cumulative reward, which means selecting
the optimal action in each state to achieve the best decision-making outcome.

Deep reinforcement learning (DRL) is a specific subset of reinforcement learning (RL).
It involves using deep neural networks as function approximators to learn complex policies
or value functions from high-dimensional state spaces. The use of deep neural networks
allows DRL to handle large and complex environments, making it suitable for tasks that
involve raw sensory input.

The key components of deep reinforcement learning include:

1. Environment: The environment is the context in which the agent operates. It can be a
simulated environment, a real-world scenario, or even a virtual game environment;

2. State: The state represents the current condition of the environment, which the agent
observes to make decisions;

3. Action: The action is the decision made by the agent based on the observed state. It
determines the agent’s interaction with the environment;

4. Reward: The reward is a scalar value that provides feedback to the agent after taking
an action. It serves as a measure of how well the agent is performing and guides its
learning process;

5. Policy: The policy is the strategy or behavior that the agent uses to select actions based
on the observed state;

6. Value Function: The value function estimates the expected long-term return or reward
from a particular state.

For the modeling of this problem, we provide the following symbol interpretations:

S: The set of states in the reinforcement learning model. S : {→c ,
→
m,
→
ll ,
→
b , p, i};

→
c : The remaining CPU resources of each satellite in the cluster;
→
m: The remaining memory resources of each satellite in the cluster;
→
ll : The signal propagation delay of each inter-satellite link in the cluster;
→
b : The remaining link rate of each inter-satellite link;
p: The layer number before the last splitting point (the last action) in the neural

network model;
i: The step number (also the satellite number to place the model);

Drones 2023, 7, 575 11 of 21

A: The set of actions in the reinforcement learning model. A: {a ∈ [p + 1, L]};
a: Splitting the model after layer a;
L: The total number of layers in the neural network model;
dpi

p+1,a: Putting the layer from p + 1 to a on the i th satellite, the processing latency of
the section;

dti,a: Latency of transmitting the intermediate results of layer a from the i th satellite
to the next satellite;

dstream: Time for the entire inference process;
dstream

max : Configurable upper time limit for the reasoning process.

4.2.1. State

In the reinforcement learning model, the state set S is composed of multiple state
variables, which are used to describe the current situation of the environment. Specifically,

the state set S contains the following state variables: S : {→c ,
→
m,
→
ll ,
→
b , p, i}. Among these state

variables,
→
c and

→
m describe the resource status of each satellite in the cluster, specifically;

→
c and

→
m represent the remaining CPU and memory resources on each satellite;

→
ll and

→
b describe the transmission status of inter-satellite links; and p and i are used to track
information about the previous splitting point and the current step, respectively. These
state variables together form the state set S of the environment. In reinforcement learning,
the agent observes the current state S to make decisions and choose the optimal action.

4.2.2. Action

The action set A is used to describe all possible actions that the agent can take in a
specific state. Specifically, the action set A is composed of an integer set, representing the
action of splitting the neural network model at layer a to partition it into different parts.
Here, a represents the action of splitting the model after layer a, where a ∈ [p + 1, L], and
p is the layer number before the last splitting point (the last action), while L is the total
number of layers in the neural network model.

This designed action set A allows the agent to decide at which layer to perform the
splitting in each state in order to further partition the model into appropriate submodels.
The choice of actions directly impacts the model’s structure and inference performance.
During the training process of reinforcement learning, the agent will select an action a
from the action set A based on the current state S, thus generating a sequence of actions to
complete the model partitioning.

4.2.3. Reward

The reward function R(S, A) is used to evaluate the actions A and the state S taken by
the agent in reinforcement learning and provide corresponding rewards or penalties. This
reward function considers two factors: data flow delay and model inference time.

Specifically, the reward function R(S, A) is defined as follows:

R(S, A) =

1

dpi
p+1,a+dti,a

i f i < 3
1

dpi
p+1,a+dti,a+dpi

a+1,L
i f i = 3 and dstream ≤ dstream

max

−dstreami f i = 3 and dstream > dstream
max

(1)

In the first case (i < 3), the reward function considers a combination of data flow
delay and model inference time to encourage early completion of the inference task and
reduce latency. In the last splitting case (i = 3), two submodels are generated, and the
second case takes this scenario into account. In the third case (i = 3), if dstream > dstream

max ,
the reward function provides a negative reward, i.e., a penalty, to avoid exceeding the
maximum allowable data flow delay and ensure the effectiveness and real-time nature of
the inference task.

Drones 2023, 7, 575 12 of 21

Through the design of the reward function, the agent can choose the optimal actions in
different states to efficiently complete the inference task and maximize cumulative rewards,
which aims to optimize inference performance and latency effects. In this way, the agent
can gradually learn and optimize strategies during the training process of reinforcement
learning to adapt to different environments and task requirements.

4.2.4. Proximal Policy Optimization (PPO) Algorithm

We use the proximal policy optimization (PPO) algorithm for reinforcement learn-
ing [26]. PPO is a commonly used reinforcement learning algorithm designed to address
the policy optimization problem. The main feature of the PPO algorithm is to update the
policy through proximal clipping, ensuring that policy improvements are not too drastic
and avoiding instability. The goal of the PPO algorithm is to improve the performance of
the current policy as much as possible while maintaining the similarity of the policy and
avoiding significant changes during policy updates.

The objective of PPO is to maximize the expected cumulative reward, denoted by J(θ),
where θ represents the policy parameters. This can be formulated as follows:

J(θ) = E[R(t)], (2)

where R(t) represents the cumulative reward from time step 0 to time step t.
To optimize the objective function J(θ), we use the PPO algorithm for policy updates.

The core idea of PPO is to constrain the policy updates using proximal clipping to enhance
algorithm stability.

Specifically, the PPO algorithm uses two different objective functions for policy up-
dates, namely the clipped surrogate objective and PPO-clip objective.

1. Clipped Surrogate Objective

The Clipped Surrogate Objective is the core objective function of the PPO algorithm,
used for computing the policy gradient. When updating the policy, the PPO algorithm
calculates the policy gradient by comparing the probability ratio between the new policy
and the old policy, then constrains it within a certain range, which is called proximal
clipping. The purpose of this is to ensure that the improvement of the new policy relative
to the old policy is not too large, thereby enhancing the stability of the algorithm.

The clipped surrogate objective is used to calculate the policy gradient and is
defined as:

Lθ(s, a) = min

(
π
′
(a|s)

π(a|s) · A
π(s, a), clip

(
π
′
(a|s)

π(a|s) , 1− ε, 1 + ε

)
· Aπ(s, a)

)
(3)

where π’(a|s) represents the probability of selecting action a under the old policy in state
s, π(a|s) represents the probability of selecting action a under the new policy in state s
and Aπ(s, a) represents the advantage of selecting action a in state s. “clip” refers to the
operation of bounding or limiting a value within a specified range. The purpose of using
clipping in the PPO algorithm is to control the magnitude of policy updates to enhance the
stability of the learning process.

2. PPO-Clip Objective

The PPO-clip objective is a variant of the clipped surrogate objective, used to compute
the optimization objective for policy updates. The PPO-clip objective is the minimum
value between the clipped surrogate objective and the KL divergence. It constrains the
policy update using proximal clipping and KL divergence to ensure that the magnitude of
policy updates remains within a reasonable range, thereby preventing the algorithm from
over-optimizing.

Lθ(s) =

[
min

(
Lθ(s, a), clip

(
π
′
(a|s)

π(a|s) , 1− ε, 1 + ε

))]
(4)

Drones 2023, 7, 575 13 of 21

where Lθ(s) represents the PPO-clip objective in state s, π’(a|s) represents the probability
of selecting action a under the old policy in state s and π(a|s) represents the probability of
selecting action a under the new policy in state s.

With the policy updates using proximal clipping, the PPO algorithm can achieve good
performance and stability in large-scale and complex reinforcement learning tasks. This
makes PPO one of the widely used algorithms in the field of reinforcement learning.

Due to the policy update method of proximal clipping, the PPO algorithm exhibits
good stability and is suitable for large-scale and complex reinforcement learning tasks. The
PPO algorithm performs well in tasks with discrete action spaces, which aligns with the
discrete action space in our training scenario. The PPO algorithm also has a relatively fast
training speed and can achieve good performance in a fewer number of sample iterations.

Overall, the PPO algorithm is a very practical and effective reinforcement learning
algorithm that has made significant progress in various application domains. Its excellent
performance and stability make it a favorable choice for our reinforcement learning training.
Indeed, the algorithm has shown promising results in our context.

4.3. DNN Model Used to Predict Submodel Inference Times

Traditional time prediction methods simply use the data size divided by the theoretical
CPU computing power. However, this method is overly idealized and fails to reflect
the complex impact of real-world scenarios and CPU task scheduling on inference time,
making it difficult to estimate accurately. Therefore, we trained a deep neural network
to obtain more accurate inference time predictions. The DNN model takes into account
various factors and features related to the hardware and environment, enabling us to
achieve more precise and reliable inference time estimates compared to the simplistic
traditional approach.

We built a deep neural network model to predict the time required for inference
tasks on low-Earth-orbit satellites. The model is based on Keras and is a sequential model
composed of multiple dense layers. Firstly, the model includes an input layer with a
feature dimension of 4, representing the CPU occupation, memory occupation, starting
layer for model partitioning and ending layer for model partitioning on the satellite. Next,
as shown in Figure 6, we have four hidden layers, each containing 256 neurons with the
rectified linear unit (ReLU) activation function, which increases the depth of the model and
helps extract higher-level feature representations. Finally, the model outputs the predicted
inference time based on the regression problem being solved.

Drones 2023, 7, x FOR PEER REVIEW 14 of 22

the complex impact of real-world scenarios and CPU task scheduling on inference time,
making it difficult to estimate accurately. Therefore, we trained a deep neural network to
obtain more accurate inference time predictions. The DNN model takes into account var-
ious factors and features related to the hardware and environment, enabling us to achieve
more precise and reliable inference time estimates compared to the simplistic traditional
approach.

We built a deep neural network model to predict the time required for inference tasks
on low-Earth-orbit satellites. The model is based on Keras and is a sequential model com-
posed of multiple dense layers. Firstly, the model includes an input layer with a feature
dimension of 4, representing the CPU occupation, memory occupation, starting layer for
model partitioning and ending layer for model partitioning on the satellite. Next, as
shown in figure 6, we have four hidden layers, each containing 256 neurons with the rec-
tified linear unit (ReLU) activation function, which increases the depth of the model and
helps extract higher-level feature representations. Finally, the model outputs the pre-
dicted inference time based on the regression problem being solved.

Figure 6. DNN model used to predict submodel inference times. (FC Layer: fully connected layer).

We used our collected data as the training data for the deep neural network model.
We designed an algorithm that can occupy the machine’s CPU and memory. We parti-
tioned the model into the smallest units and then combined them into different-sized
models to perform inference under different CPU and memory occupation rates, collect-
ing actual execution time data for training purposes.

We observed that when the CPU occupation increases by more than 20%, there is a
significant increase in the inference execution time, which gradually returns to normal
afterward. This may be caused by system scheduling. However, when our model is in the
pipeline, this one-time increase can be averaged over a large amount of data flow, so it
can be considered to have a relatively small impact on the actual inference process. But
this kind of anomalous data can affect our model training results, so we remove such data
before training.

During the model training process, we used mean-squared Error (MSE) as the loss
function to measure the difference between the model’s predicted values and the true val-
ues. After training, the model’s MSE on the validation set was around 50. This MSE value
indicates the average squared error between the model’s predicted results and the true
inference time, which means the actual error is within ±50 milliseconds. Although there is
still some error, considering the special environment of the low-Earth-orbit satellite Inter-
net, with limited resources and communication delays, our model has achieved good pre-
diction results, which are sufficient for reinforcement learning training.

Figure 6. DNN model used to predict submodel inference times. (FC Layer: fully connected layer).

We used our collected data as the training data for the deep neural network model.
We designed an algorithm that can occupy the machine’s CPU and memory. We partitioned
the model into the smallest units and then combined them into different-sized models to

Drones 2023, 7, 575 14 of 21

perform inference under different CPU and memory occupation rates, collecting actual
execution time data for training purposes.

We observed that when the CPU occupation increases by more than 20%, there is a
significant increase in the inference execution time, which gradually returns to normal
afterward. This may be caused by system scheduling. However, when our model is in the
pipeline, this one-time increase can be averaged over a large amount of data flow, so it
can be considered to have a relatively small impact on the actual inference process. But
this kind of anomalous data can affect our model training results, so we remove such data
before training.

During the model training process, we used mean-squared Error (MSE) as the loss
function to measure the difference between the model’s predicted values and the true
values. After training, the model’s MSE on the validation set was around 50. This MSE
value indicates the average squared error between the model’s predicted results and the
true inference time, which means the actual error is within ±50 milliseconds. Although
there is still some error, considering the special environment of the low-Earth-orbit satellite
Internet, with limited resources and communication delays, our model has achieved good
prediction results, which are sufficient for reinforcement learning training.

5. Performance Evaluation
5.1. Experiment Setup

In this section, we set up the experimental test environment to evaluate our approach.
We built a small-scale cluster with four nodes on a cloud platform to simulate the scenario of
four satellites. Our cloud platform is a self-developed satellite network simulation platform
based on cloud computing. It is highly efficient and capable of simulating link connectivity,
latency and bandwidth variations. With this platform, we can create realistic scenarios
and accurately evaluate the performance of satellite networks under various conditions,
allowing us to make informed decisions and optimize the network design and operations.
To simulate a realistic low-Earth-orbit satellite environment, we set the inter-satellite link
delay to 15 ms, and the inter-satellite link rate is 50 MB/s. The software environment
includes Python 3.10, TensorFlow 2.10.0, Keras 2.10.0 and Gymnasium 0.28.1. With this
cluster in place, we varied the CPU and memory occupation rates of the environment to
create different scenarios.

Because there are no other algorithms of collaborative inference for LEO edge comput-
ing in the literature, we choose two baseline algorithms for comparison. The first baseline
algorithm is called the equally splitting strategy, in which the complete model is split
into four submodels that have the same number of layers. The second baseline algorithm
is called the randomly splitting strategy, in which the layers of the complete model are
randomly split. The strategy for selecting satellites for collaborative inference is the same as
COIN-LEO. Through these comparisons, we sought to evaluate the robustness and adapt-
ability of our approach in varying resource-occupation conditions. The goal was to identify
how well our model could handle fluctuations in CPU and memory usage and whether it
could consistently make efficient decisions for model partitioning in diverse settings.

We conducted tests in four different scenarios. In the first scenario, each node’s CPU
occupation was around 1%, representing an idle state, while the memory occupation was
approximately 34%. In the second scenario, the CPU occupation was about 25%, and the
memory occupation was around 45%. Moving on to the third scenario, the CPU occupation
increased to approximately 50%, while the memory occupation remained at 45%.

The fourth scenario was unique; we kept two nodes idle, and for the other two nodes,
we increased the CPU occupation to 50% and the memory occupation to 45%. This setup
allowed us to form a meaningful comparison against the equal distribution strategy.

5.2. Results

Firstly, we compare the inference throughput of collaborative inference and inference
by a single node. The inference throughput is calculated as the ratio between the data

Drones 2023, 7, 575 15 of 21

size of all the images inferred and the total time consumed. It is measured by completing
1000 inference tasks continuously and recording the total time. Furthermore, the inference
performance by a single satellite (not collaborative inference) is presented. The inference
throughput of every strategy is shown in Figure 7. As shown in Figure 7, the inference
throughput was only 0.6423 MB/s when all inference was performed on a single node.
In contrast, when using the random distribution strategy for collaborative inference, the
throughput reached 0.7506 MB/s. When using the equally splitting strategy for collab-
orative inference, the inference throughput reached 0.9738 MB/s. And when using our
COIN-LEO for collaborative inference, the inference throughput reached 1.1935 MB/s,
which is the highest among all the model-splitting strategies. Compared to the single-node
inference performance, the improvement in inference throughput is as high as 85.80% with
our COIN-LEO strategy. This indicates a significant improvement in inference throughput
using distributed collaborative DNN inference, which is because collaborative inference
can utilize several satellites’ computing resources.

Drones 2023, 7, x FOR PEER REVIEW 16 of 22

Figure 7. Throughput of different strategy.

Figure 8 illustrates the evolution of rewards during the training process of our algo-
rithm. We conducted 100,000 training iterations with sampling performed every 10 itera-
tions. We used a ‘done’ return value of true in DRL as an indicator of the end of an episode
step. As depicted in Figure 8, the blue line represents the rewards, while the orange line
represents the smoothed reward with a window size of 10. From Figure 8, it is evident
that COIN-LEO’s reward exhibits impressive increase and convergence.

Figure 8. Rewards and smoothed rewards when training COIN-LEO.

Figure 7. Throughput of different strategy.

Figure 8 illustrates the evolution of rewards during the training process of our
algorithm. We conducted 100,000 training iterations with sampling performed every
10 iterations. We used a ‘done’ return value of true in DRL as an indicator of the end of
an episode step. As depicted in Figure 8, the blue line represents the rewards, while the
orange line represents the smoothed reward with a window size of 10. From Figure 8, it is
evident that COIN-LEO’s reward exhibits impressive increase and convergence.

Then, we compare the performance of COIN-LEO with the other baseline strategies.
The inference throughput and time of every strategy are shown in Figure 9a,b, respectively.
As shown in Figure 9a, the inference throughput of COIN-LEO is the highest among all the
strategies in every scenario, which clearly demonstrates the effectiveness of our strategy in
improving throughput. Compared to the equally splitting algorithm, our proposed COIN-
LEO showed an average improvement of 17.285% in inference time. Furthermore, compared
to the random allocation algorithm, our improvement was even higher, with an average
increase of 35.787%. In the special scenario we set, the algorithm’s improvement was
most pronounced, showing a 35.665% increase compared to the equal allocation algorithm.
These results highlight the superior performance of our algorithm in relatively complex
operational environments. Our approach outperformed the equal distribution strategy,

Drones 2023, 7, 575 16 of 21

showcasing the benefits of our optimized resource allocation and model-partitioning
techniques. With these improvements, we achieved higher throughput, indicating more
efficient and faster model inference in the distributed environment.

Drones 2023, 7, x FOR PEER REVIEW 16 of 22

Figure 7. Throughput of different strategy.

Figure 8 illustrates the evolution of rewards during the training process of our algo-
rithm. We conducted 100,000 training iterations with sampling performed every 10 itera-
tions. We used a ‘done’ return value of true in DRL as an indicator of the end of an episode
step. As depicted in Figure 8, the blue line represents the rewards, while the orange line
represents the smoothed reward with a window size of 10. From Figure 8, it is evident
that COIN-LEO’s reward exhibits impressive increase and convergence.

Figure 8. Rewards and smoothed rewards when training COIN-LEO.

Figure 8. Rewards and smoothed rewards when training COIN-LEO.

Drones 2023, 7, x FOR PEER REVIEW 17 of 22

Then, we compare the performance of COIN-LEO with the other baseline strategies.
The inference throughput and time of every strategy are shown in Figure 9a,b, respec-
tively. As shown in Figure 9a, the inference throughput of COIN-LEO is the highest
among all the strategies in every scenario, which clearly demonstrates the effectiveness of
our strategy in improving throughput. Compared to the equally splitting algorithm, our
proposed COIN-LEO showed an average improvement of 17.285% in inference time. Fur-
thermore, compared to the random allocation algorithm, our improvement was even
higher, with an average increase of 35.787%. In the special scenario we set, the algorithm’s
improvement was most pronounced, showing a 35.665% increase compared to the equal
allocation algorithm. These results highlight the superior performance of our algorithm in
relatively complex operational environments. Our approach outperformed the equal dis-
tribution strategy, showcasing the benefits of our optimized resource allocation and
model-partitioning techniques. With these improvements, we achieved higher through-
put, indicating more efficient and faster model inference in the distributed environment.

(a)

(b)

Figure 9. Throughput and inference time for different scenarios. (a) Throughput for different
scenarios; (b) inference time for different scenarios.

Drones 2023, 7, 575 17 of 21

We believe that one of the reasons for such a performance is that COIN-LEO can
allocate tasks more efficiently based on the remaining resources on each satellite, as shown
in Table 1. By considering the CPU and memory occupation of each satellite, COIN-LEO
intelligently distributes the inference tasks to maximize the utilization of available resources.
This allows for a more balanced and optimized workload distribution among the satellites,
leading to improved inference efficiency and overall system performance. In Table 1, we
show the average and median durations for each satellite to perform submodel inference
in scenarios with CPU and memory occupation rates of 12–38, 50–45, 2–32 and 50–43,
respectively. In the last column, we calculate the percentages relative to the results using
the random distribution strategy as the baseline for other strategies. Since the second
and fourth satellites in our scenarios have relatively high CPU and memory occupancy
rates, logically they should be assigned relatively lighter inference tasks. The COIN-LEO
algorithm indeed met our expectations. As observed, the COIN-LEO algorithm assigned
the heaviest inference task to the most resource-abundant satellite, which was the third
one, while the other satellites were responsible for inference tasks on the scale of tens of
milliseconds. This allocation strategy fully utilized the remaining resources. In contrast, the
equal distribution strategy performed poorly in this case. The random distribution strategy
even assigned the heaviest task to the heavily loaded fourth satellite, which undoubtedly
affected the final inference speed.

Table 1. Time statistics under different strategies on different satellites.

Scenarios Satellite Strategy Mean Value Median Value Percentage

CPU-memory
occupation: 12–38,
50–45, 2–32, 50–43

1

COIN-LEO 63.524 59.0 49.58%

Equally splitting 252.695 251.0 210.92%

Randomly splitting 123.876 119.0 100%

2

COIN-LEO 41.512 33.0 9.40%

Equally splitting 1585.0 1600.0 455.84%

Randomly splitting 417.2 351.0 100%

3

COIN-LEO 1939.063 1940.0 715.86%

Equally splitting 1408.962 1557.0 574.53%

Randomly splitting 279.388 271.0 100%

4

COIN-LEO 49.706 49.0 2.97%

Equally splitting 366.084 363.0 22.04%

Randomly splitting 1644.699 1647.0 100%

Next, Figure 10 shows the cumulative distribution function (CDF) of time consumed
for every task plot for different strategies under various scenarios. These CDF plots provide
a visual representation of how the strategies perform in terms of inference time distribution
across different satellites. By comparing the CDF plots for each strategy, we can clearly
observe the differences in their performance and assess the effectiveness of COIN-LEO in
improving inference efficiency across different resource-occupation scenarios.

From the CDF plot, we can observe that when using our COIN-LEO strategy, the infer-
ence process of every task is faster compared to other strategies. The curve representing our
strategy generally starts at a higher point on the x-axis, indicating that a larger proportion
of inference times are lower compared to the other strategies.

This means that our approach efficiently distributes the inference workload, resulting
in more instances of faster inference times. We believe that these results can be attributed to
our algorithm for two main reasons. Firstly, our algorithm performs reasonable allocation
by deploying heavier tasks on satellites with more available resources, thus reducing the
frequency of CPU thread switches and ultimately improving inference speed. Secondly,

Drones 2023, 7, 575 18 of 21

our algorithm generates relatively smaller traffic sizes. This also reduces data-transmission
time requirements, enhancing system throughput. As a result, the CDF plot confirms that
our strategy is more effective in minimizing the overall inference time and improving the
performance of the distributed deep-learning inference system.

Drones 2023, 7, x FOR PEER REVIEW 19 of 22

(a)

(b)

Figure 10. CDF diagrams for different scenarios. (a) CPU memory occupation: 36–46, 26–45, 25–46,
26–46; (b) CPU memory occupation: 12–38, 50–45, 2–32, 50–43.

Figure 10. CDF diagrams for different scenarios. (a) CPU memory occupation: 36–46, 26–45, 25–46,
26–46; (b) CPU memory occupation: 12–38, 50–45, 2–32, 50–43.

As shown in Figure 11, we also conduct a comprehensive comparison of traffic sizes
under different strategies. The flow of data in our experimental scenarios is derived from
the intermediate results of inference generated by each satellite. We carefully analyzed
and recorded the traffic sizes for each strategy in all four scenarios. Our COIN-LEO
strategy demonstrated its advantage in optimizing traffic size by efficiently distributing

Drones 2023, 7, 575 19 of 21

computational tasks across the satellite network. This is because our designed reward
function tries to reduce the time for complete collaborative inference, which leads to
reduced transmission delay and traffic size. These results underscore the effectiveness of
our proposed algorithm in minimizing the overall traffic burden and enhancing the overall
performance of the distributed deep-learning system.

Drones 2023, 7, x FOR PEER REVIEW 20 of 22

From the CDF plot, we can observe that when using our COIN-LEO strategy, the
inference process of every task is faster compared to other strategies. The curve represent-
ing our strategy generally starts at a higher point on the x-axis, indicating that a larger
proportion of inference times are lower compared to the other strategies.

This means that our approach efficiently distributes the inference workload, resulting
in more instances of faster inference times. We believe that these results can be attributed
to our algorithm for two main reasons. Firstly, our algorithm performs reasonable alloca-
tion by deploying heavier tasks on satellites with more available resources, thus reducing
the frequency of CPU thread switches and ultimately improving inference speed. Sec-
ondly, our algorithm generates relatively smaller traffic sizes. This also reduces data-
transmission time requirements, enhancing system throughput. As a result, the CDF plot
confirms that our strategy is more effective in minimizing the overall inference time and
improving the performance of the distributed deep-learning inference system.

As shown in Figure 11, we also conduct a comprehensive comparison of traffic sizes
under different strategies. The flow of data in our experimental scenarios is derived from
the intermediate results of inference generated by each satellite. We carefully analyzed
and recorded the traffic sizes for each strategy in all four scenarios. Our COIN-LEO strat-
egy demonstrated its advantage in optimizing traffic size by efficiently distributing com-
putational tasks across the satellite network. This is because our designed reward function
tries to reduce the time for complete collaborative inference, which leads to reduced trans-
mission delay and traffic size. These results underscore the effectiveness of our proposed
algorithm in minimizing the overall traffic burden and enhancing the overall performance
of the distributed deep-learning system.

Figure 11. Network overhead of different strategy.

6. Conclusions
This paper focuses on addressing the problem of collaborative DL inference in LEO

satellite edge computing. We propose the COIN-LEO algorithm, specifically designed for
efficient model partitioning and task assigning among satellites. To achieve this, we
trained a five-layer fully connected NN to accurately predict inference time based on the
remaining resources of each satellite. Through a series of experiments, we evaluate the

Figure 11. Network overhead of different strategy.

6. Conclusions

This paper focuses on addressing the problem of collaborative DL inference in LEO
satellite edge computing. We propose the COIN-LEO algorithm, specifically designed
for efficient model partitioning and task assigning among satellites. To achieve this, we
trained a five-layer fully connected NN to accurately predict inference time based on
the remaining resources of each satellite. Through a series of experiments, we evaluate
the performance of our proposed COIN-LEO algorithm in different resource-occupation
scenarios. The results demonstrate that COIN-LEO effectively improves inference efficiency
by intelligently assigning tasks based on resource-occupation rate.

In future research, we plan to further enhance our approach by incorporating a broader
range of DL models and diverse datasets. This expansion aims to explore the strategy’s
adaptability and generalization across various real-world scenarios, ensuring robustness
and effectiveness in different satellite constellations and dynamic environments.

Author Contributions: Formal analysis, H.Z.; Methodology, P.Z., C.L., G.X. and C.S.; Software, Z.X.
All authors have read and agreed to the published version of the manuscript.

Funding: This work is partially supported by the Natural Science Foundation of Shandong Province
under Grant ZR2022LZH015 and ZR2020MF006, partially supported by the Industry-university
Research Innovation Foundation of Ministry of Education of China under Grant 2021FNA01001,
partially supported by the Open Foundation of State Key Laboratory of Integrated Services Networks
(Xidian University) under Grant ISN23-09, partially supported by the Key Funding from National
Natural Science Foundation of China under Grant 92067206.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Drones 2023, 7, 575 20 of 21

References
1. Zhu, X.; Jiang, C. Integrated Satellite-Terrestrial Networks Toward 6G: Architectures, Applications, and Challenges. IEEE Internet

Things J. 2022, 9, 437–461. [CrossRef]
2. Xiao, Z.; Yang, J.; Mao, T.; Xu, C.; Zhang, R.; Han, Z.; Xia, X.-G. LEO Satellite Access Network (LEO-SAN) towards 6G: Challenges

and Approaches. IEEE Wirel. Commun. 2022, 1–8. [CrossRef]
3. Zhou, D.; Sheng, M.; Li, J.; Han, Z. Aerospace Integrated Networks Innovation for Empowering 6G: A Survey and Future

Challenges. IEEE Commun. Surv. Tutor. 2023, 25, 975–1019. [CrossRef]
4. Del Portillo, I.; Cameron, B.G.; Crawley, E.F. A Technical Comparison of Three Low Earth Orbit Satellite Constellation Systems to

Provide Global Broadband. Acta Astronaut. 2019, 159, 123–135. [CrossRef]
5. Zhao, L.; Zhang, Q.; Li, Y.; Qi, Y.; Yuan, X.; Liu, J.; Li, H. China’s Gaofen-3 Satellite System and Its Application and Prospect. IEEE

J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11019–11028. [CrossRef]
6. Singh, P.; Diwakar, M.; Shankar, A.; Shree, R.; Kumar, M. A Review on SAR Image and Its Despeckling. Arch. Comput. Methods

Eng. 2021, 28, 4633–4653. [CrossRef]
7. Li, C.; Zhang, Y.; Xie, R.; Hao, X.; Huang, T. Integrating Edge Computing into Low Earth Orbit Satellite Networks: Architecture

and Prototype. IEEE Access 2021, 9, 39126–39137. [CrossRef]
8. Kim, T.; Choi, J.P. Performance Analysis of Satellite Server Mobile Edge Computing Architecture. In Proceedings of the 2020 IEEE

92nd Vehicular Technology Conference (VTC2020-Fall), Virtual, 18 November–16 December 2020; IEEE: Victoria, BC, Canada,
2020; pp. 1–6.

9. Zhang, P.; Chen, N.; Shen, S.; Yu, S.; Kumar, N.; Hsu, C.-H. AI-Enabled Space-Air-Ground Integrated Networks: Management
and Optimization. IEEE Netw. 2023, 1–7. [CrossRef]

10. Wu, G.; Xu, Z.; Zhang, H.; Shen, S.; Yu, S. Multi-Agent DRL for Joint Completion Delay and Energy Consumption with Queuing
Theory in MEC-Based IIoT. J. Parallel Distrib. Comput. 2023, 176, 80–94. [CrossRef]

11. Shao, J.; Zhang, J. Communication-Computation Trade-off in Resource-Constrained Edge Inference. IEEE Commun. Mag. 2020, 58,
20–26. [CrossRef]

12. Lin, C.-Y.; Wang, T.-C.; Chen, K.-C.; Lee, B.-Y.; Kuo, J.-J. Distributed Deep Neural Network Deployment for Smart Devices from
the Edge to the Cloud. In Proceedings of the ACM MobiHoc Workshop on Pervasive Systems in the IoT Era, Catania, Italy, 2 July
2019; ACM: Catania, Italy, 2019; pp. 43–48.

13. Khan, M.A.; Hamila, R.; Erbad, A.; Gabbouj, M. Distributed Inference in Resource-Constrained IoT for Real-Time Video
Surveillance. IEEE Syst. J. 2023, 17, 1512–1523. [CrossRef]

14. Kim, G.-Y.; Kim, R.; Kim, S.; Nam, K.-D.; Rha, S.-U.; Yoon, J.-H. DNN Inference Offloading for Object Detection in 5G Multi-
Access Edge Computing. In Proceedings of the 2021 International Conference on Information and Communication Technology
Convergence (ICTC), Jeju Island, Republic of Korea, 20 October 2021; IEEE: Jeju Island, Republic of Korea, 2021; pp. 389–392.

15. Yu, M.; Jiang, Z.; Ng, H.C.; Wang, W.; Chen, R.; Li, B. Gillis: Serving Large Neural Networks in Serverless Functions with
Automatic Model Partitioning. In Proceedings of the 2021 IEEE 41st International Conference on Distributed Computing Systems
(ICDCS), Washington, DC, USA, 7–10 July 2021; IEEE: Washington, DC, USA, 2021; pp. 138–148.

16. Wang, Y.; Zhang, J.; Zhang, X.; Wang, P.; Liu, L. A Computation Offloading Strategy in Satellite Terrestrial Networks with Double
Edge Computing. In Proceedings of the 2018 IEEE International Conference on Communication Systems (ICCS), Chengdu, China,
19–21 December 2018; IEEE: Chengdu, China, 2018; pp. 450–455.

17. Wang, Y.; Yang, J.; Guo, X.; Qu, Z. A Game-Theoretic Approach to Computation Offloading in Satellite Edge Computing. IEEE
Access 2020, 8, 12510–12520. [CrossRef]

18. Zhang, Y.; Chen, C.; Liu, L.; Lan, D.; Jiang, H.; Wan, S. Aerial Edge Computing on Orbit: A Task Offloading and Allocation
Scheme. IEEE Trans. Netw. Sci. Eng. 2023, 10, 275–285. [CrossRef]

19. Cheng, L.; Feng, G.; Sun, Y.; Liu, M.; Qin, S. Dynamic Computation Offloading in Satellite Edge Computing. In Proceedings of
the ICC 2022-IEEE International Conference on Communications, Seoul, Republic of Korea, 16 May 2022; IEEE: Seoul, Republic of
Korea, 2022; pp. 4721–4726.

20. Leyva-Mayorga, I.; Martinez-Gost, M.; Moretti, M.; Peŕez-Neira, A.; Vázquez, M.Á.; Popovski, P.; Soret, B. Satellite Edge
Computing for Real-Time and Very-High Resolution Earth Observation. IEEE Trans. Commun. 2023, 1. [CrossRef]

21. Zhu, D.; Liu, H.; Li, T.; Sun, J.; Liang, J.; Zhang, H.; Geng, L.; Liu, Y. Deep Reinforcement Learning-Based Task Offloading in
Satellite-Terrestrial Edge Computing Networks. In Proceedings of the 2021 IEEE Wireless Communications and Networking
Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–7.

22. Li, C.; Zhang, Y.; Hao, X.; Huang, T. Jointly Optimized Request Dispatching and Service Placement for MEC in LEO Network.
China Commun. 2020, 17, 199–208. [CrossRef]

23. Parthasarathy, A.; Krishnamachari, B. DEFER: Distributed Edge Inference for Deep Neural Networks. In Proceedings of the 2022
14th International Conference on COMmunication Systems & NETworkS (COMSNETS), Bangalore, India, 4 January 2022; IEEE:
Bangalore, India, 2022; pp. 749–753.

24. Hu, C.; Li, B. Distributed Inference with Deep Learning Models across Heterogeneous Edge Devices. In Proceedings of the
IEEE INFOCOM 2022—IEEE Conference on Computer Communications, London, UK, 2 May 2022; IEEE: London, UK, 2022;
pp. 330–339.

https://doi.org/10.1109/JIOT.2021.3126825
https://doi.org/10.1109/MWC.011.2200310
https://doi.org/10.1109/COMST.2023.3245614
https://doi.org/10.1016/j.actaastro.2019.03.040
https://doi.org/10.1109/JSTARS.2021.3122304
https://doi.org/10.1007/s11831-021-09548-z
https://doi.org/10.1109/ACCESS.2021.3064397
https://doi.org/10.1109/MNET.131.2200477
https://doi.org/10.1016/j.jpdc.2023.02.008
https://doi.org/10.1109/MCOM.001.2000373
https://doi.org/10.1109/JSYST.2022.3198711
https://doi.org/10.1109/ACCESS.2019.2963068
https://doi.org/10.1109/TNSE.2022.3207214
https://doi.org/10.1109/TCOMM.2023.3296584
https://doi.org/10.23919/JCC.2020.08.016

Drones 2023, 7, 575 21 of 21

25. Wu, G.; Wang, H.; Zhang, H.; Zhao, Y.; Yu, S.; Shen, S. Computation Offloading Method Using Stochastic Games for Software
Defined Network-Based Multi-Agent Mobile Edge Computing. IEEE Internet Things J. 2023, 1. [CrossRef]

26. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JIOT.2023.3277541

	Introduction
	Related Work
	Collborative Inference
	Satellite-Based Edge Computing

	System Model
	LEO Edge Computing
	System Architecture
	Analysis of Inference Process

	COIN-LEO Algorithm
	Selecting Satellite for Collaborative Inference
	Deep Reinforcement Learning Using the PPO Algorithm
	State
	Action
	Reward
	Proximal Policy Optimization (PPO) Algorithm

	DNN Model Used to Predict Submodel Inference Times

	Performance Evaluation
	Experiment Setup
	Results

	Conclusions
	References

