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Abstract: Power lines are critical infrastructure components in power grid systems. Strand breakage
is a kind of serious defect of power lines that can directly impact the reliability and safety of power
supply. Due to the slender morphology of power lines and the difficulty in acquiring sufficient sample
data, strand breakage detection remains a challenging task. Moreover, power grid corporations prefer
to detect these defects on-site during power line inspection using unmanned aerial vehicles (UAVs),
rather than transmitting all of the inspection data to the central server for offline processing which
causes sluggish response and huge communication burden. According to the above challenges and
requirements, this paper proposes a novel method for detecting broken strands on power lines in
images captured by UAVs. The method features a multi-stage light-weight pipeline that includes
power line segmentation, power line local image patch cropping, and patch classification. A power
line segmentation network is designed to segment power lines from the background; thus, local
image patches can be cropped along the power lines which preserve the detailed features of power
lines. Subsequently, the patch classification network recognizes broken strands in the image patches.
Both the power line segmentation network and the patch classification network are designed to be
light-weight, enabling efficient online processing. Since the power line segmentation network can be
trained with normal power line images that are easy to obtain and the compact patch classification
network can be trained with relatively few positive samples using a multi-task learning strategy,
the proposed method is relatively data efficient. Experimental results show that, trained on limited
sample data, the proposed method can achieve an F1-score of 0.8, which is superior to current
state-of-the-art object detectors. The average inference speed on an embedded computer is about
11.5 images per second. Therefore, the proposed method offers a promising solution for conducting
real-time on-site power line defect detection with computing sources carried by UAVs.

Keywords: power line inspection; strand breakage detection; power line segmentation; multi-task
learning; unmanned aerial vehicle; real-time detection

1. Introduction

Electric power lines are critical infrastructure components that transport electrical
energy from power generation plants to users. Since most power lines are implemented
in an outdoor environments, they are vulnerable to various types of damage that can
impact the reliability and safety of the electricity supply. One typical type of damage is the
breakage of strands, which can lead to electrical faults and power outages if they are not
eliminated in a timely manner. Thus, detecting broken strands on power lines is essential
for ensuring uninterrupted power supply and preventing accidents.
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In recent years, due to the high maneuverability, good economic property, and capa-
bility of high-quality image acquisition of unmanned aerial vehicles (UAVs), they have
been more and more widely applied in power line inspection [1,2]. They have significantly
eased the process of capturing high-resolution images of power lines from different angles.
However, finding the defects in power lines and other components in the obtained images
still relies on manual interpretation or centralized processing on the cloud server with large
deep learning models. Due to the rise in labor costs and the rapid growth of data volume,
inefficient manual interpretation is gradually being phased out. The centralized processing
manner suffers from a huge communication and computational burden, and the delay of
offline processing [3]. Therefore, detecting the power line defects in real-time on site with
algorithms and computational resources carried by UAVs is a preferable method. There
are already many researchers developing online image processing systems for UAV-based
power line inspection [3,4]. However, the existing technology cannot meet the requirements
of practical applications in terms of accuracy and efficiency.

Furthermore, developing an accurate and robust strand breakage detection method is
challenging. On the one hand, the power lines and broken strands are thin objects; their
features become indistinct in images captured by UAVs from a distance. On the other hand,
obtaining sufficient sample data for training a deep learning model is extremely hard since
strand breakage occurs rarely and, once discovered, it is immediately eliminated to prevent
serious consequences.

In response to the above requirements and challenges, this paper proposes a novel
method for detecting broken strands on power lines within images captured by UAVs. The
proposed method features a multi-stage pipeline consisting of power line segmentation,
power line patch cropping, and patch classification. Since normal power line images are
easy to obtain, a robust power line segmentation model can be trained. As strand breakage
only occurs on power lines, image patches are cropped out along each segmented power
line and then fed to the patch classification network to recognize whether there is strand
breakage in each patch. Since the power line patches are cropped from high-resolution
power line images, they contain rich details that benefit the recognition of thin broken
strands. In addition, both the segmentation network and patch classification network are
designed to be light-weight. As a result, the proposed method can achieve high accuracy
and efficiency in detecting power line strand breakage, while it can be trained with relatively
few defect samples. It is capable of running in real-time when deployed on an embedded
computing device carried by an UAV.

The contribution of this paper can be summarized as follows.

• A multi-stage pipeline for real-time strand breakage detection in power line inspection
images is proposed, which consists of power line segmentation, power line patch
cropping, and patch classification. Compared to conventional end-to-end pipeline,
the proposed pipeline reduces the need for strand breakage samples that are hard
to obtain and makes full use of the detailed features within the power line areas in
original images.

• An efficient power line segmentation network is proposed, which exploits a shallow
and slim backbone and multi-scale feature fusion branches. The network achieves
superior segmentation accuracy and efficiency over its counterparts.

• A power line fitting method is proposed based on connected component analysis and
the least squares method to fit each power line in the power line segmentation results.
Thus, image patch cropping can be conducted to extract local image patches along
each power line.

• A light-weight classification network is devised for recognizing strand breakage in
power line image patches. Multi-task learning is applied to better train the network
with limited data.

The rest of the paper is organized as follows. Section 2 provides an overview of related
works on power line segmentation and strand breakage detection. Section 3 provides
detailed description of the proposed strand breakage method and its components. Section 4
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presents the experimental setup and results. Finally, Section 5 concludes this research and
introduces future works.

2. Related Works

As intelligent inspection and defect detection technologies show great potential to
significantly reduce the cost and risk of manual operation in power system inspection,
related research has been conducted for more than a decade. In this section, we will
present a literature review on related works which covers both traditional computer vision
methods and deep learning-based approaches for power line segmentation and detection
of broken strands.

2.1. Power Line Segmentation

In the past, power line segmentation tasks often relied on purely hand-crafted models.
These hand-crafted models were typically constructed based on low-level local features
such as gradients, brightness, texture, and other prior information from wire images. Chen
et al. [5] developed the Cluster Radon Transform to extract linear features of power lines
from remote sensing imagery and devised a set of rules to distinguish power lines from
other linear features like roads. Zhou et al. [6] developed an edge detection method for
power line detection, which selects optimal parameters for changing backgrounds and,
hence, overcomes the threshold problem in other methods. Du et al. [7] used Hough
Transform (HT) butterflies to prove that the HT is not only effective for detecting and
locating linear-shaped targets but also for curved wire objects. In the aforementioned
works, it has been demonstrated that hand-crafted models constructed using traditional
computer vision methods are feasible for power line segmentation tasks. However, these
methods still suffer from issues such as low detection accuracy and limited generalizability.

In comparison, significant progress has been made with convolutional neural networks
(CNNs) [8,9]. Building upon these advancements, CNNs have also been applied on power
line segmentation. However, power line segmentation tasks based on neural networks
often face challenges in achieving high-quality feature extraction due to the slender mor-
phology of power lines. The network architecture proposed by Chang et al. [10] suggests
fusing shallow and deep features within the neural network. They introduced a compact
neural network composed of a generator and a discriminator within the conditional gener-
ative adversarial network (cGAN) framework [11]. Additionally, skip connections were
incorporated between each encoder and decoder in the network architecture. In the work
of Zhang et al. [12], a method of multi-level feature map fusion was introduced. They
proposed a convolutional neural network based on the VGG16 architecture [13], which
is capable of obtaining hierarchical predictions from different convolutional layers. By
leveraging multiple levels of information, the network can automatically learn how to
combine them and generate satisfactory fused outputs. In recent work, Choi et al. [14]
attempted to generate the location information of power lines in input images by intro-
ducing attention into a two-stage semi-supervised learning framework. In the first stage
of their method, they utilized the information from various layers of the VGG network
to form an Attention Localization Mask (ALM); in the second stage, the mask and sub-
network were used to generate the contour information of the power lines. However, their
proposed method exhibits a significant increase in computational complexity compared to
conventional one-stage semantic segmentation networks, making it challenging to deploy
in practical applications. On the other hand, He et al. [15] explored the use of a more
powerful baseline and network light-weight design in power line segmentation tasks. They
employed a light-weight backbone structure (DFC-GhostNet [16]) for feature extraction
and combined it with contextual information features to enhance the U-Net algorithm [17].
Furthermore, they designed a hybrid feature extraction module based on convolution and
transformers to optimize deep semantic features, improving the model’s ability to locate
towers and transmission lines in complex environments.
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2.2. Strand Breakage Detection

Similar to power line segmentation tasks, early methods for detecting broken strands
in power lines often relied on handcrafted models. Researchers modeled the presence or
absence of defects in power lines by utilizing low-level local features such as gradients,
brightness, texture, and other prior information derived from power line images. These
handcrafted models were then used for defect detection tasks related to power lines.
Ishino et al. [18] constructed handcrafted models for defect-free power line images using
statistical information such as brightness, texture, and morphology. They utilized this
model to perform simple classification of broken strand power lines. On the other hand,
Mao et al. [19] employed the Histogram of Oriented Gradients (HOG) algorithm to extract
gradient features from power line images and used a hybrid classifier composed of the
Support Vector Machine (SVM) algorithm to classify normal power lines, broken strand
power lines, and obstacles. In the study conducted by Jalil et al. [20], the Canny edge
detector and HT were exploited for power line detection. Then, within the corresponding
IR image, they computed the histogram of the image, and performed Otsu’s thresholding
to identify the faults or hot spots.

In recent studies, deep learning-based object detectors have been widely applied in
industrial scenarios related to the power system [21,22]. Existing methods usually exploit
a two-stage process to locate the regions of power line strand breakage. These detectors
typically employ a sliding window approach in the first stage to capture candidate regions
that may contain faults and, in the second stage, they discriminate the regions where actual
faults occur. In the study by Wang et al. [23], a CNN-based power line fault detection
method was proposed. In the first step, a CNN is used in conjunction with the sliding
window method to predict all parts of the input image and generate an output map. In
the second step, the output map is preprocessed to enhance its localization characteristics.
Finally, the target detection is completed based on the preprocessed output map information.
On the other hand, Xu et al. [24] applied Faster R-CNN [25] to detect fracture areas in
power lines. However, what distinguishes their work is the introduction of an attention
mechanism into the feature extraction network of Faster R-CNN. This mechanism guides
the network to focus specifically on the parts of the input image directly relevant to
fractured regions, thereby enhancing the model’s training effectiveness and robustness.

2.3. The Advancement of Our Approach

It is worth mentioning that, in order to initially locate the defects in electrical com-
ponents or power lines, the methods proposed by Xu et al. [24] and Wang et al. [23]
employed a sliding window approach to capture candidate regions of defects from the
entire input image. However, their sliding window approach involves extracting local
image patches from the entire image as targets. Such a method generates a large number
of invalid candidate regions and only a few of them actually contain true defects. As a
result, the network often needs to recognize the image patches with actual defects from
a large number of candidates, which leads to inefficient defect detection. In contrast, in
our proposed method, the sliding window is applied only within the power line regions
to capture local images of the power lines. Therefore, the detector only needs to identify
defects in a small number of candidate regions. On the other hand, the method proposed
by Xu et al. [24] attempts to use Faster R-CNN to detect broken strand regions in each
sliding window’s obtained sub-image patch, which is computationally expensive and not
suitable for deployment in low-power UAVs.

Our approach has three improvements compared to previous works: (1) both the
candidate region acquisition and the following classification of candidate regions are
based on deep neural networks, which benefits the overall accuracy and generalization;
(2) the candidate regions are only extracted from the segmented power line areas so as
to screen out most of the backgrounds and significantly reduce redundant computing in
the following defect recognition procedure; (3) we proposed a novel light-weight power
line segmentation network and an image patch classification network that feature both
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high accuracy and efficiency, making the proposed method run at an inference speed of
11.5 images per second.

3. Materials and Methods

In this section, we will provide a detailed description of the architecture of the pro-
posed power line strand breakage defect detector. Additionally, we will provide a com-
prehensive explanation of the methods involved and the neural networks employed in
this detector.

3.1. Overall Pipeline

In object detection tasks, the detection and segmentation of small objects pose signif-
icant challenges due to low object resolution and small object size [26,27]. In the power
line inspection images captured by UAVs, the segmentation of power lines faces similar
challenges. Therefore, to address these challenges and achieve accurate and efficient local-
ization of power line strand breakage areas using remote sensing imagery, we propose an
advanced two-stage defect detector. This detector operates in two stages: In the first stage,
it performs power line segmentation to extract the power lines from diverse backgrounds
and conducts local image cropping of all regions containing power lines in the input image.
These cropped images are then passed to the second stage. In the second stage, the detector
performs classification of the local power line images from the first stage. It identifies the
presence of defects and visualizes the position information of the defective regions within
the original image. This two-stage defect detector aims to precisely locate and identify
strand breakage areas in power lines, enabling effective monitoring and maintenance of
power lines.

As shown in Figure 1, the diagram illustrates the specific workflow of the power line
strand breakage detector. In the first stage, the detector utilizes a semantic segmentation
network (BA-NetV2) to perform pixel-level segmentation on the power line images cap-
tured by UAVs. Subsequently, the detector utilizes the binary segmentation result to extract
essential information regarding the power lines, including the coordinates of the starting
and ending points, as well as their length and width. Finally, the detector employs a sliding
window approach along the direction of the power lines, starting from the starting point
and moving towards the ending point. It scans the power line regions encountered by the
sliding window and performs local image cropping to cover the entire length of the power
line. It is worth noting that the dimensions (length and width) of the sliding window and
the stride used during the sliding process can be adjusted. This sliding window approach
ensures comprehensive coverage of the power lines and captures detailed information
about any defective regions along the power lines.

Once the detector completes the cropping of local image patches from the power
line images, each set of image patches are passed to the second stage, where the patch
classification network filters the image patches and identifies the regions related to strand
breakage along the power lines. If the detector identifies an image patch as containing a
strand breakage, the corresponding region in the original image is recognized as a defect
area and a bounding box is generated to enclose this region. Subsequently, the bounding
box is annotated on the original image to visually indicate the detected defect area.
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Figure 1. Overview of the proposed method’s pipeline. The proposed method consists of two key
stages: power line local image generator (Stage 1) and defect recognition (Stage 2). Stage 1 takes the
entire power line image as input and utilizes a sliding window approach to capture local images of
the power lines, based on power line segmentation results. Stage 2 takes the power line local images
generated by Stage 1 as input and employs a patch classification network to classify them into normal
and defect regions. For the defect regions, Stage 2 visualizes them on the original image.

3.2. Power Line Segmentation Network

The power line segmentation task differs from common segmentation scenarios, as
traditional segmentation models struggle to accurately predict the contours of power lines
due to their slender shape characteristics. Moreover, aerial images of power lines are
often contaminated with significant amounts of background noise and pseudo-targets
that resemble the morphology of power lines, such as wires, branches, and weeds. These
sources of interference can increase the false positive rate of the segmentation network for
power lines.

3.2.1. Baseline Network

BA-Net is a light-weight segmentation network proposed in the previous work of
our team [28]. It has previously been used for image segmentation tasks in the field of
agriculture and has also demonstrated effectiveness in other scenarios. It achieves high
efficiency while maintaining good accuracy in image segmentation. In this work, we use
BA-Net as the baseline and improve it to better adapt to the power line segmentation task.

As illustrated in Figure 2, BA-Net is composed of a light-weight backbone with five
convolutional stages and five parallel branches. Each of the stages in the backbone involves
two inverted residual blocks (IRB) as used in MobileNetV2 [29], except for the first stage
which only contains a 5 × 5 convolutional layer. When the feature maps pass through each
stage, their height and width are reduced by half. The five parallel branches feature a
bi-path fusion tree structure to perform efficient multi-scale feature fusion, by building up
connections over adjacent side outputs through feature aggregation modules (FAMs). A
conventional convolutional module (CCM) is used at the beginning and the end of each
branch. Each CCM consists of a 3 × 3 convolutional layer, followed by a normalization
operation and Rectified Linear Unit (ReLU) activation. The detailed structure of FAM is
illustrated in Figure 3.
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Figure 2. Brief illustration of the structure of BA-Net. w × h × c means the image or the feature map
has a resolution of w × h and a channel number of c. For detailed structure illustration, please refer
to [28].

Figure 3. Illustration of the feature aggregation module (FAM). Xi and Xi+1 denote feature maps in
the ith and (i + 1)th branch, respectively. w × h × c means the feature map has a resolution of w × h
and a channel number of c.

The FAM concatenate feature maps from adjacent branches and dynamically assigns
different weights to different channels of the concatenated feature maps with the Squeeze
and Excitation (SE) modules [30]. Each FAM has a CCM connected to the end of the SE
module. At the end of the branches, the predictions of all the branches are fused with a
CCM to produce the final prediction. For detailed information, please refer to [28].

3.2.2. Improvement Guidelines

In order to design a network more suitable for power line segmentation, we pro-
pose three guidelines specifically tailored for power line segmentation as the primary
scene. We have redesigned BA-Net according to these guidelines and achieved significant
performance improvement in the power line segmentation scenario.

Guideline 1. Larger capacity of the network is needed to deal with diverse back-
grounds. The original BA-Net is used for crop segmentation. The input images of BA-Net
are mainly composed of plants and soil in a relatively uniform scene. However, the power
line inspection images have different scenes with diverse backgrounds containing a large
amount of information. Therefore, it is necessary to improve the network capacity. This
can be done by increasing the width or depth of the network.
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Guideline 2. Maintaining high-resolution feature map input can effectively preserve
the morphological characteristics of power lines.

As illustrated in Figure 4, we present the output results of each parallel branch (total
of five parallel branches) in BA-Net for three different scenarios. From B1 to B5, we
upsampled the final output results of the five parallel branches, whose original resolutions
have downsampling rates of 2, 4, 8, 16, and 32, respectively, to the input image size and
performed visualization.

Figure 4. Visualization of the segmentation results from different branches of BA-Net in various
scenarios.

Based on the visualization results, it can be observed that, although there are numer-
ous false positive predictions in the segmentation results of branches B1, B2, and B3, the
segmentation of power line contours is relatively accurate. Conversely, branches B4 and
B5 suffer from significant loss of detailed information related to power line morphology.
However, for larger-sized object segmentation, each branch of BA-Net is capable of achiev-
ing relatively accurate segmentation. Therefore, we believe that the contour information
of power lines is composed of fine image details, which are often better represented in
higher-resolution feature maps. Conversely, in low-resolution feature maps with higher
downsampling rates, this spatial semantic information may be compromised.

Guideline 3. The network needs long-range semantic relation capturing ability when
segmenting the elongated power lines.

Since power lines are elongated objects, there can be a long distance between different
parts of the same power line. Therefore, the power line segmentation network needs to
capture long-range semantic relations in the power line images. As shown in Figure 5,
when observing the final segmentation results of BA-Net, we can observe the phenomena
of discontinuity and misidentification in the segmentation of power lines. The regions
that should have been identified as continuous power lines appear to be disconnected
in the middle. Additionally, some pseudo-targets in the background that resemble the
morphology of power lines are mistakenly identified as power lines by BA-Net.

We believe these phenomena are partially caused by the weakness of the network in
capturing long-range semantic relations in the feature maps. When dilated convolutions
are introduced to the branches of BA-Net, the occurrence of disconnections in wire seg-
mentation results are reduced in most cases, as shown in Figure 5. As dilated convolution
can enlarge the receptive field of convolution kernels, each kernel can learn the relation
between pixels with longer distance in the feature maps. Moreover, adopting the dilated
convolution also reduces the missegmentation of interfering objects such as tree branches
and linear structures in the background.
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Figure 5. Visualization of the prediction results of BA-Net with or without dilated convolution.

3.2.3. BA-NetV2

As mentioned earlier, the first stage of the proposed strand breakage detector primarily
relies on a power line segmentation network to obtain the basic information about the
power lines and generate local images using a sliding window approach. Therefore, the
accurate cropping of relevant local images is highly dependent on the accuracy of the
power line segmentation network.

In this paper, we introduce a new light-weight power line segmentation model named
BA-NetV2, as shown in Figure 6, which is based on the BA-Net architecture and specifically
designed for the UAV-based power line inspection scenario. BA-NetV2 inherits the advan-
tages of the BA-Net architecture, which combines efficient multi-scale feature extraction
and fusion. Compared to the original design of BA-Net, the design of BA-NetV2 has the
following improvements:

Figure 6. Illustration of the network architecture of BA-NetV2. w × h × c means the image or the
feature map has a resolution of w × h and a channel number of c.

• Expansion of neural network base channels. Considering the power line segmentation
task has more diverse and complex backgrounds, we set larger channel numbers in the
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backbone and the branches for BA-NetV2 compared to BA-Net. Therefore, BA-NetV2
obtains a larger capacity for complex feature extraction and representation.

• Reduction of parallel branches. As we observed that the low-resolution branches in
BA-Net suffer from significant loss of detailed information and can have a negative
impact on the overall prediction accuracy, thus, in BA-NetV2, we reduced the fourth
and fifth branches. Such a design maintains high resolution of feature maps in the
branches, which benefits the extraction and representation of the detailed features of
power lines and reduces the computational complexity.

• Adoption of the dilated convolutions. We observed that the segmentation network
needs long-range semantic relation capturing ability when segmenting the elongated
power lines. Thus, we introduced dilated convolutions with different dilation factors
into the third branch to build a feature extraction branch with a larger receptive field
while enhancing the scale invariance of the feature maps.

The backbone network of BA-NetV2 is illustrated in Figure 6, which is a three-stage
feature extraction network. The outputs of each stage are denoted as F1, F2, and F3,
respectively. It is worth noting that each stage of the network is composed of stacked IRBs
that are used in MobileNetV2 [29]. The design of the backbone network is similar to BA-Net,
using the light-weight IRB module as the basic block and setting relatively small output
channel numbers. Since BA-NetV2 is focused on extracting semantic information from
more diverse and complex scenes while preserving the shape and spatial details relevant to
the power lines, it has two main improvements compared to BA-Net. Firstly, unlike BA-Net
with a 32-fold downsampling backbone network, BA-NetV2 adopts a three-stage backbone
feature extraction network with an 8-fold downsampling rate to avoid the loss of spatial
semantic information caused by excessive downsampling. Secondly, in BA-NetV2, the first,
second, and third stages of the backbone network consist of 1, 2, and 3 IRBs. Additionally,
to enhance the feature representation ability of the backbone network for power line images
with diverse backgrounds, the channel number settings of the backbone network have been
increased, with the channel numbers in stages 1 to 3 set to 24, 32, and 48, respectively.

The decoding head of BA-NetV2, as shown in Figure 6, consists of three parallel
branches with a base channel number of 24 for each branch. These branches correspond to
the feature maps outputted by the three stages of the backbone network, from bottom to
top. Among them, branch B1 serves as the main branch of the BA-NetV2 decoding head
and corresponds to the high-resolution feature map from the first stage of the backbone
network, to extract spatial information about small objects from high-resolution feature
maps. Simultaneously, the remaining branches (B2, B3) perform feature extraction and
upsampling on low-resolution feature maps that contain rich semantic information.

Similarly to BA-Net, the FAMs are used for feature fusion between adjacent branches,
while a CCM is used at the beginning and the end of each branch. The output channel
number of the FAMs and CCMs of each branch is 24, except for the CCM at the end of each
branch, which has an output channel number of 2. To enable the network to better extract
long-range semantic relations in feature maps, dilated convolution is adopted in the first
CCM and the two FAMs of the B3 branch. The dilation factors of the convolution kernel
in these three modules were empirically set to 2, 3, and 5, respectively. Keeping the three
dilation factors relatively prime can avoid the “gridding issue” which would be caused by
successive dilated convolution.

The outputs of the three branches are fused with a CCM with a 1 × 1 convolutional
kernel to produce the final prediction. When training the BA-NetV2, cross-entropy losses
are calculated on the prediction of each branch and the final prediction, forming the multi-
scale supervision.

3.2.4. Postprocessing Method

After segmenting the images using BA-NetV2, it is necessary to extract the position and
width information of the power lines in the images, specifically the endpoint coordinates,
for subsequent image patch cropping. While most of the power lines in the images can be
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well segmented, in some complex environments, such as when certain power line parts are
occluded or when the background is intricate, a complete power line can be fragmented
into multiple segments or pseudo-targets in the background can be misclassified as power
line segments. Moreover, when multiple power lines are present in the same image, it is
crucial to determine which line segments belong to the same power line. Therefore, we
employ a hierarchical clustering approach to identify line segments belonging to the same
power line, and subsequently obtain the position and width of the power line in the image.

Firstly, we perform connected component analysis on the segmented image, where
each connected component represents an independent line segment. Since there may be
a large number of connected components in an image, it is necessary to apply filtering
based on the area and shape (aspect ratio of the bounding rectangles) of the connected
components before clustering to speed up the clustering process. Secondly, the filtered
connected components undergo hierarchical clustering, where the clustering distance is
determined by the angles between the major axes of two different bounding rectangles
and the distance from the center point of one bounding rectangle to the major axis of
another bounding rectangle between the connected components. Subsequently, based on
the clustering results of the connected components, we employ the least squares method
to regress the slope and intercept of the center line of each power line, thus obtaining the
position information of the power lines in the image. Finally, the width of each power line
can be obtained by averaging the width values obtained by scanning along the normal
vector direction of the fitted lines at a preset interval. The output of each key step of the
postprocessing procedure is shown in Figure 7.

(a) (b)

(c) (d)

Figure 7. Output of each key step of the postprocessing procedure. (a) Segmented image. (b) Finding
and filtering the minimum bounding rectangle of the obtained connected components, indicated
by a green box. (c) Minimum bounding rectangles of connected components belonging to the same
power line after hierarchical clustering, indicated by a red box. (d) Straight lines fitted using the least
squares method for connected components belonging to the same power line, indicated by a blue
line segment.

3.3. Power Line Patch Cropping Method

As previously stated, the cropping method involves the utilization of a sliding window
approach subsequent to obtaining candidate regions along the power lines. This approach



Drones 2023, 7, 574 12 of 27

ensures comprehensive coverage of the power lines and potential defects. To align the
sliding window with each power line, adjustments are made to ensure parallelism. Ad-
ditionally, the dimensions of the sliding window are adjustable to accommodate complex
real-world scenarios effectively. The cropping process involves a two-step operation based
on analytical geometry, as shown in Figure 8. Firstly, the coordinates of the four vertices of
a specific sliding window are computed with information from the previous procedure.
Subsequently, the image is rotated to achieve parallel alignment for the cropping process.

Figure 8. Illustration of the power line image patch cropping process. The left part shows the flow
path of the cropping process. The right part visualizes the information corresponding to each block
in the left part.

3.3.1. Coordinates of the Sliding Window

As mentioned earlier, we first compute four coordinates for each sliding window. As
shown in Figure 9, the first sliding window is located at the starting point of the power
line. Based on analytical geometry knowledge, the coordinates of the four vertices are
(x0 − dx, y0 − dy), (xn − dx, yn − dy), (x0 + dx, y0 + dy), and (xn − dx, yn − dy) (clockwise).
In particular, dx is computed as dx = h × width × k ×

√
1/(1 + k2) and dy is computed as

dy = h × width ×
√

1/(1 + k2), where k and width are the slope and width of the power
line, respectively. It is worth noting that the two parameters w and h could be manually
changed to control the width and height of the image patch. Empirically, we set w and h to
6 and 24, respectively.

3.3.2. Rotation of the Image for Cropping

To crop a power line patch from the original image, a frequently used tool is the
OpenCV package. The regular cropping method can only cut an image fragment that is
parallel to the vertical and horizontal axes. Thus, we modify the method by first rotating
the image so that the power line is parallel to the horizontal axis and then cropping the
local power line patch.

The rotation of the image is achieved by a method called “perspective transformation”.
Perspective transformation is useful in aligning an image properly. After the application of
perspective transformation, the image undergoes a transformation process that rectifies
its perspective, resulting in a straightened representation. In our rotation process, we first
compute the transformation matrix using the coordinates of the four vertices of the sliding
window. The transformation matrix is then used to apply a perspective transformation to
the original image, which is then properly rotated for the cropping operation. This rotation
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process ensures that the cropping operation is along the power line, covering detailed
information and any defects along the power line in the local image cropping.

Figure 9. Illustration of the key information involved in determining the coordinates of a sliding
window. (x0, y0), (xn, yn) are the coordinates of the starting point and end point of the current sliding
window, respectively; k and width are the slope and width of the power line, respectively. w and h
are adjustable parameters to control the width and height of the image patch. Empirically, we set w
and h to 6 and 24, respectively.

3.4. Patch Classification Network

After obtaining the power line local image patches, the patch classification network
performs broken strand recognition in the image patches. Therefore, the ability of the patch
classification network directly impacts the precision of the final strand breakage detection
performance. Due to the difficulty in obtaining strand breakage samples, we exploit a
multi-task learning strategy for the patch classification network, inspired by [31], to make
the full use of the limited training data. Specifically, we use a modified MobileNetV2 as the
backbone of the classification network and construct an additional segmentation head to
achieve multi-task learning along with the classification head of the backbone, as shown in
Figure 10. In other words, the proposed patch classification network has a primary head
for classification and an auxiliary head for segmentation. The detailed design of the patch
classification network is elaborated in the following subsections.

3.4.1. Overall Architecture of the Patch Classification Network

Since the power line image patches generated with our cropping method have high
consistency, and the patch classification network only needs to predict whether an input
image patch includes a broken strand or not, a relatively small network can be competent
at this binary classification task. Furthermore, since tens of image patches can be cropped
from a single power line image, the patch classification network should be extremely
efficient so that the overall time consumption can be maintained in an acceptable range.
Based on the above considerations, we have restructured the original MobileNetV2 to make
its network structure more light-weight. This network consists of a backbone network, a
segmentation head, and a classification head. The backbone network consists of a total of
eight stages. The first stage of the network consists of a convolutional module with a kernel
size of 3 and a stride of 2. The second stage is composed of 1 IRB module, while each of the
third to eighth stages of the backbone network is composed of 2 stacked IRB modules.
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Figure 10. The architecture of the patch classification network. It consists of a modified MobileNetV2
backbone network, along with a segmentation head and a classification head. W, H, and C indicate
the width, height, and channel number of the feature maps. “×2” means stacking of two same blocks.
At the output of the classification head, “0” and “1” corresponds to the prediction of “normal” and
“defective”, respectively.

As shown in Figure 10, the segmentation head is connected to the end of the third
stage of the backbone and consists of a 3 × 3 convolutional layer, an Atrous Spatial Pyramid
Pooling (ASPP) module [32] and a 1 × 1 convolutional layer at the end. The prediction
of the segmentation head, which is a double-channel binary segmentation map, is then
concatenated back to the output feature map of the third stage of the backbone. The
classification head is composed of a 1 × 1 convolutional layer, an average pooling layer,
and a fully connected layer. It is worth noting that each convolutional layer used in
the segmentation head and the classification head is followed by a batch normalization
operation and a ReLU activation.

The benefit of such a design is two-fold: (1) the segmentation head can get supervision
from the segmentation task and facilitates the convergence of the shallow layers in the
network during training, so that it makes better use of the limited data; (2) the segmentation
head can provide richer spatial semantic information for the classification task network.

The classification head receives feature maps from both the backbone and the auxiliary
segmentation head, and outputs a binary predication for each power line image patch to
determine whether there exists a broken strand.

3.4.2. Multi-Task Loss of the Patch Classification Network

In the training of multi-task networks, it is crucial to address the issue of unifying the
losses generated by different tasks. This is particularly important when simultaneously
training the classification and segmentation heads, as the auxiliary head can only provide
guidance under such circumstances.

During the dataset creation phase, we generated image-level labels (classification
labels) and pixel-level labels (segmentation labels) corresponding to both the classification
and segmentation tasks. During training, we adopted an end-to-end learning approach to
train the classification head and segmentation head. The classification loss and segmen-
tation loss were combined to form a single loss, allowing for end-to-end learning. The
definition of the multi-task loss is as follows:

Ltotal = λ · γ1 · Lseg + γ2 · Lcls (1)

where Lseg and Lcls represent the losses for semantic segmentation and target classifica-
tion, respectively. Both the segmentation loss function and the classification loss function
are computed using cross-entropy loss. Furthermore, the contribution of semantic seg-
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mentation and target classification losses to the multi-task loss value is controlled by
hyperparameters γ1 and γ2. λ is defined as a dynamic parameter to adjust the proportion
of the segmentation loss in the overall loss value, which is calculated as

λ = 1 − n
nep

(2)

where n and nep indicate the number of the current iteration and total number of iterations.
During training, λ is initialized as 1 and linearly decays with the increase in the number of
iterations, eventually reaching 0 before the completion of training iterations.

4. Experiments and Results

In order to evaluate the accuracy and efficiency of the proposed strand breakage
detector, three parts of the experiment are conducted. Firstly, we evaluate the performance
of BA-NetV2 by comparing it with several counterparts. Also, ablation studies are carried
out to demonstrate the rationality of the design of BA-NetV2. Secondly, we compare
the patch classification network used in the second stage of the detector with a multi-
task learning based defect recognition network and some general classification networks,
thereby demonstrating the precision of the patch classification network. Subsequently, we
compare the overall strand breakage detector with state-of-the-art general object detection
networks to ensure the practicality and advancement of the detector. It is worth mentioning
that the experiments are conducted indoors on data collected in advance. However, the
hardware used for testing the proposed method and existing methods is suitable to be
carried by a UAV for power line inspection. Thus, the test results can reflect the applicability
of the tested methods to the online power line inspection scenario.

4.1. Performance Evaluation and Ablation Study of BA-NetV2

We conducted an ablation study on the modifications made to upgrade the original
BA-Net to BA-NetV2, i.e., the reduction of parallel branches, the increase in the channel
numbers, and the utilization of dilated convolution.

Then, to demonstrate the superiority of BA-NetV2, we compare it with several widely
used segmentation networks, some of which have been used as base networks for construct-
ing power line segmentation networks in previous research. The segmentation networks
used for comparison include HEDnet [33], Fast SCNN [34], U-Net [17], FastFCN [35],
DeepLabV3+ [36], and DDRNet [37]. It is worth mentioning that the power line segmenta-
tion network proposed in [12] is basically built upon HEDnet; Fast SCNN has been used as
the base network in the power line segmentation network proposed in [38]; and U-Net has
been used in [39,40] to develop power line segmentation networks.

4.1.1. Experimental Settings

Dataset. The power line segmentation dataset used in this experiment is a combination
of the following two parts:

(1) The relabeled PLDU and PLDM datasets. The PLDU and PLDM datasets created
in [12] are open-source power line detection datasets with pixel-wise annotations. PLDU
contains 573 power line images of urban scenes, while PLDM contains 287 power line
images of mountain scenes. All the images in PLDU and PLDM have the same resolution
of 512 × 384. However, both the PLDU and PLDM datasets are annotated in the boundary
detection manner, which is not suitable for our segmentation setting. Thus, we relabeled
them in the segmentation manner with power lines set to white pixels and background set
to black pixels.

(2) We created an image dataset specifically for power line segmentation tasks, named
AIRS-PLS. This dataset consists of 1442 power line images captured under different lighting
conditions, backgrounds, and perspectives, exhibiting diverse power line morphologies.
The resolution of images in AIRS-PLS varies from 640 × 480 to 1260 × 1240. For each image
in the dataset, high-quality pixel-wise segmentation labels are provided.
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In our experimental study, the above datasets are mixed together to form a dataset
of 2302 images in total, called Mixed-PLS. The Mixed-PLS dataset is then divided into
three disjoint parts of training, validation, and testing sets, with a proportion of about
70%:20%:10%. The training set comprises 1611 images, the validation set contains 460 im-
ages, and the testing set consists of 231 images. Some sample images in the dataset are
shown in Figure 11.

Figure 11. Samples of the Mixed-PLS power line segmentation dataset. This dataset is a combination
of three sub-datasets, i.e., the relabeled PLDU dataset and PLDM dataset [12], and the dataset
collected by ourselves.

Evaluation Metrics. The power line segmentation accuracy of each network in this
experiment was evaluated by calculating the Intersection over Union (IoU) of the fore-
ground (power lines) and the ground truth information, as well as the mean IoU (mIoU)
that considers both foreground and background in the networks’ segmentation output. We
also take the inference speed into consideration, which is evaluated by the average number
of images processed in a second by each network with the acceleration.

Implementation Details. We conducted our experiments using PyTorch. The MM-
Segmentation library (https://github.com/open-mmlab/mmsegmentation (accessed on
15 July 2023) was utilized for implementing the segmentation networks including BA-Net,
BA-NetV2, Fast SCNN, U-Net, FastFCN, DeepLabV3+, and DDRNet. As for HEDnet, we
used an open-source third-party PyTorch implementation (https://github.com/meteors
howers/hed (accessed on 15 July 2023)) of it. All the networks were trained on a server
equipped with four NVIDIA RTX 3090 GPUs and tested on an NVIDIA Jetson AGX Orin
(32GB version) embedded computer. The hyperparameter settings for training different
versions of BA-NetV2 in the ablation study can be found in Table 1. The hyperparameters
for training the comparative networks in the comparison experiment are tuned individually.
For all the networks, we unified the input image resolution to 512 × 512 and applied the
same data augmentation strategy, i.e., horizontal and vertical flips to the input images with
a probability of 0.5. The SGD optimizer was used for all the networks during the training.

Table 1. The hyperparameter setting for training the BA-NetV2 model.

Hyperparameters Setting

Initial learning rate 0.001
Minimum learning rate 0.00001

Momentum 0.9
Weight decay 0.0005

Input image size 512 × 512
Batch size 32

Training steps 20,000

4.1.2. Results and Discussion

The experimental results of the ablation study for BA-NetV2 are shown in Table 2.
Firstly, reduction of parallel branches enhances both the accuracy and inference speed. This

https://github.com/open-mmlab/mmsegmentation
https://github.com/meteorshowers/hed
https://github.com/meteorshowers/hed
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is probably due to the reduction of the low-resolution branches eliminates their interference
to the high-resolution branches and reduced the complexity of the network. Secondly,
expansion of the channel number of the network further benefits accuracy of the network
by enlarging the capacity of the network, which is necessary for dealing with the diverse
backgrounds in different scenes. The additional inference latency brought by the expansion
of channel number is limited. Thirdly, the application of dilated convolution branches
leads to significant accuracy improvement in the network while keeping the inference time
almost unchanged. Moreover, we found that these modifications complement each other
when combined in the network, as the network achieved significant improvements in both
IoU and mIoU when using them all.

Table 2. Results of the ablation study experiment for BA-NetV2. A check mark indicates the
modification is applied, while a X brush means the modification is not applied.

Reduction of
Parallel

Branches

Expansion of
Neural

Network
Base

Channels

Dilated
Convolution

Branches
IoU (%) mIoU (%) Speed

(Images/s)

% % % 63.6 81.4 30.5
X % % 64.0 81.6 58.3
X X % 64.6 81.9 48.7
X % X 64.4 81.8 57.8
X X X 66.8 83.0 47.9

Quantitative testing results for different segmentation networks on the power line
segmentation task are presented in Table 3. From the table, it is evident that the proposed
BA-Net obtains better scores in terms of each accuracy metric compared to all other com-
parative methods while also the third highest inference speed. These findings indicate that
the structural design of the BA-NetV2 enables more effective and efficient extraction and
representation of power line features. This is attributed to BA-Net’s compact three-branch
and multi-scale feature fusion architecture.

Table 3. Performances of different methods on the power line segmentation dataset.

Method IoU (%) mIoU (%) Speed (Images/s)

BA-NetV2 66.8 83.0 47.9
BA-Net 63.6 81.4 30.5
Fast SCNN 54.9 76.9 124.0
HEDNet 59.6 78.7 23.0
U-Net 66.0 77.7 9.7
FastFCN 53.7 76.3 11.7
DeepLabV3+ 61.0 80.0 44.9
DDRNet 59.3 79.1 51.4

Figure 12 showcases some sample images from the power line segmentation dataset
along with the corresponding segmentation results generated by the proposed BA-NetV2
and the compared methods. The results demonstrate that despite the presence of back-
ground interference such as linear structure, ground, and plants, BA-NetV2 can generate
clearer and more continuous prediction, compared with other segmentation networks.
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Figure 12. Sample images and segmentation results of BA-NetV2 and the compared networks.

4.2. Performence Evaluation of the Patch Classification Network

In this section, we compare our method with several commonly used general classifi-
cation models, such as ResNet [41], VGG16 [13], MobileNetV2 [29], and transformer-based
methods Swin-Transformer [42] (the light-weight version Swin-Tiny). On the other hand,
we also compare it with the defect recognition network proposed in [31] (we name it
SegDec) since our patch classification is partially inspired by it.

4.2.1. Experimental Settings

Dataset. To validate the effectiveness of the multi-task classification network, we
created a power line patch dataset by cropping image patches from our strand breakage
dataset, which contains power line images with strand breakage. The power line patch
dataset and the strand breakage dataset are named as AIRS-PLIP and AIRS-PLSB, respec-
tively. Specifically, we used BA-NetV2 to segment those power line images of AIRS-PLSB
dataset, and cropped out image patches both from the source images and the corresponding
segmentation labels, since our patch classification network requires both RBG image patches
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and their segmentation labels for multi-task learning. The AIRS-PLSB has 322 power line
images, with each image containing at least one broken strand. The resolution of images in
AIRS-PLSB varies from 540 × 360 to 8688 × 5792. It was randomly divided into training, val-
idation and test sets, which contain 222, 50, and 50 images, respectively. The image patches
in the training, validation, and test sets of the AIRS-PLIP dataset were cropped from the
training, validation and test sets of the AIRS-PLSB dataset, respectively. In order to obtain
as many positive samples as possible for the AIRS-PLIP dataset, we set the overlap rate
between two adjacent image patches to 0.9 when cropping image patches in the training
set of the AIRS-PLSB dataset. The overlap rate was kept 0.2 for cropping image patches
from the validation set and the test set of the AIRS-PLSB dataset. As a result, 4205 image
patches containing strand breakage were obtained. On the other hand, 9766 image patches
without stand breakage were used as negative samples in the training set. (We did not
use all the negative samples cropped from the AIRS-PLSB dataset to maintain the balance
between positive and negative samples.) Such a dense cropping manner can be regarded as
a form of data augmentation. The validation and test sets of the AIRS-PLIP dataset contain
126, and 130 defective image patches, respectively, along with double-size normal image
patches. Some samples of the AIRS-PLIP are given in Figure 13.

Figure 13. Samples of the AIRS-PLSB dataset and the AIRS-PLIP dataset. The source images of
power lines originate from the AIRS-PLSB dataset. The AIRS-PLIP dataset was cropped from the
AIRS-PLSB dataset. Each sample of the AIRS-PLIP dataset consists of a RGB image patch, along with
its corresponding image-level classification label and pixel-level classification label.

Evaluation Metrics. Regarding the performance comparison of the networks, we
use three different evaluation metrics to compare the performance of different networks:
(a) average precision for positive and negative samples, (b) precision for positive samples,
and (c) recall for positive samples. Here, positive samples refer to image patches with
broken strand defects, while negative samples refer to images without any defects (normal
power lines or background). Additionally, we assess the efficiency of the networks by
comparing their inference speed, which is measured by the number of images processed
per second by each network.

Implementation Details. We implemented the patch classification network, and
reimplemented the SegDec network using PyTorch. The TorchVision library (https://gith
ub.com/pytorch/vision (accessed on 15 July 2023)) was used for training and testing the
ResNet-50, VGG16, and MobileNetV2. The Swin-Tiny network was trained and tested with
the official implementation (https://github.com/microsoft/Swin-Transformer (accessed
on 15 July 2023)) of Swin-Transformer. All the models were trained on a server with
8 NVIDIA GeForce RTX 2080TI GPUs and tested on the Jetson AGX Orin embedded
computer. Common data augmentation techniques were employed, including random
flipping, random scaling, and random cropping.

https://github.com/pytorch/vision
https://github.com/pytorch/vision
https://github.com/microsoft/Swin-Transformer
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For the proposed patch classification network, we used the hyperparameters presented
in Table 4. We utilized the Adam optimizer to train the involved networks. For the
compared methods, the hyperparameters were tuned individually. For all the compared
methods, except the SegDec network, pretrained models are used.

Table 4. The hyperparameter setting for training the proposed patch classification network and the
compared networks.

Hyperparameters Setting

Initial learning rate 0.001
Minimum learning rate weight decay 0.0001

Input image size 3 × 224 × 224
Batch size 32

Training steps 9000

4.2.2. Results and Discussion

As shown in Table 5, our model achieves a precision for positive samples that is only
0.01 lower than the highest precision achieved by SegDec. However, compared to SegDec,
our model has a much higher average precision by 0.09 and a higher recall rate by 0.03. On
the other hand, when compared to ResNet-50, which has the highest average precision, our
model still outperforms it by over 0.03 in average precision and has a faster detection speed.
It can be observed that our model obtains high scores in all three metrics of precision for
positive sample detection, average precision, and recall rate, with recall rate and average
precision being the highest among all models. Additionally, the analysis of inference speed
further confirms that our proposed model exhibits superior efficiency.

Table 5. Performance of different classification methods on AIRS-PLIP dataset.

Method Precision Recall Average Precision Speed (Images/s)

Ours 0.96 0.90 0.95 257.9
SegDec 0.97 0.87 0.86 45.5

ResNet-50 0.893 0.838 0.914 143.7
VGG16 0.811 0.792 0.863 118.1

MobileNetV2 0.857 0.785 0.855 287.3
Swin-Tiny 0.857 0.877 0.899 125.5

4.3. Overall Performance of the Proposed Strand Breakage Detector

In this section, we evaluate the overall performance of the proposed strand breakage
detector, and conduct comparisons between the proposed method and the state-of-the-art
object detectors, YOLOv5 [43], YOLOv7 [44], ATSS [45], and EfficientDet [46]. Specifically,
we select the smallest model as well as the medium-size model in both YOLOv5 and
YOLOv7 series, i.e., the YOLOv5m, YOLOv5s, YOLOv7, and YOLOv7-tiny, as the compared
methods. For EfficientDet, we choose the EfficientDet-D3, which is a relatively small model
in the EfficientDet series. All the compared models as well as our proposed method were
deployed on an NVIDIA Jetson AGX Orin embedded computer to test their inference
speed. All the neural networks were converted to ONNX format for on-board inference.
Since the embedded computers of the NVIDIA Jetson series are widely used in UAV-based
applications, this speed test can help to evaluate the performance of the proposed method
and the compared methods in the UAV-based power line inspection scenario.

Considering that strand breakage samples are hard to obtain in real-world scenarios,
we further carry out experiments to see the sensitivity of the proposed method to the
amount of sample data by reducing the training data by a half.



Drones 2023, 7, 574 21 of 27

4.3.1. Experimental Settings

Dataset. The power line strand breakage dataset AIRS-PLSB, as mentioned in Section 4.2.1,
was used to train and test the proposed strand breakage detector and the compared detectors.
The AIRS-PLSB dataset was annotated both pixel-wise for power line segmentation and with
bounding box indicating each strand breakage. Since the proposed strand breakage detector is
not an end-to-end method, the power line segmentation network and the patch classification
network need to be trained separately. The Mixed-PLS dataset and the AIRS-PLIP dataset
were also used for training the power line segmentation network BA-NetV2 and the patch
segmentation network.

When conducting the experiments for evaluating the models with reduced training
data, the image patch classification model of the proposed strand breakage detector was
trained with image patches cropped from half of the training set in the AIRS-PLSB dataset.
Note that the power line segmentation network was trained with the whole training set of
the Mixed-PLS dataset, since it does not contain images from the test set of the AIRS-PLSB
dataset. The compared end-to-end object detectors were trained with half of the training
set in the AIRS-PLSB dataset.

Evaluation Metrics. The strand breakage detection accuracy of the proposed method
and the compared methods were evaluated by precision, recall, and F1-score. Since the
output form of the proposed method has no confidence score and the bounding boxes have
a unified aspect ratio, which is different from those of the compared models, the commonly
used evaluation metrics average precision (AP) with confidence or IoU thresholds like AP50,
AP75, etc., are not suitable for this experiment. For calculating the precision, recall, and
F1-score, we visualized the prediction results and manually counted the correct detections
and false detections, and converted them to scores of the three evaluation metrics. The
inference speed on the embedded computer of each method was also evaluated by the
average number of images processed in a second by each method.

Implementation Details. The proposed strand breakage detector was trained part by
part. The power line segmentation network BA-NetV2 was firstly trained on the Mixed-
PLS dataset, using the hyperparameter setting listed in Table 1. The patch classification
network was trained using the AIRS-PLIP dataset, using the setting listed in Table 4.
When conducting inference, the local image patches along the segmented power lines
were cropped with an overlap rate of 0.2 between two adjacent image patches. Such
an overlap setting reduces the redundancy while guaranteeing the full coverage of each
power line. It is worth mentioning that we resized the original input image to 1024 × 1024
when its resolution exceeded 1024 × 1024; otherwise, the resolution would be unchanged.
The compared methods, i.e., YOLOv5, YOLOv7, ATSS, and EfficientDet, were trained
in the end-to-end manner with the source image and strand breakage bounding box
labels of the training set of the AIRS-PLSB dataset. The input image resolution for all
YOLO models was set to 1024 × 1024. The images in the validation set of the AIRS-PLSB
dataset were used for tuning the hyperparameters. The official open-source code of both
YOLOv5 (https://github.com/ultralytics/yolov5 (accessed on 15 July 2023)) and YOLOv7
(https://github.com/WongKinYiu/yolov7 (accessed on 15 July 2023)) were used in the
experiments. The MMDetection library (https://github.com/open-mmlab/mmdetection
(accessed on 15 July 2023)) was used for implementing ATSS and EfficientDet.

4.3.2. Results and Discussion

Detection accuracy. The quantitative experimental results of the proposed method and
the compared methods are listed in Table 6. As can be seen, the proposed method achieved
significantly higher scores in all the evaluation metrics related to prediction accuracy.
Among the compared methods, YOLOv7 reached the best performance. However, in
terms of precision, recall, and F1-score, our method outperformed YOLOv7 by 0.050, 0.077,
and 0.065, which are considerable margins. The results demonstrate that our multi-stage
pipeline can better make use of the limited broken strand data to learn accurate detection.
The sliding window strategy of cropping local image patches also benefits the network in

https://github.com/ultralytics/yolov5
https://github.com/WongKinYiu/yolov7
https://github.com/open-mmlab/mmdetection
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achieving a high precision score by focusing the patch classification network on the local
area of each power line.

Table 6. Performance of different detection methods on the test set of the AIRS-PLSB dataset.

Method Precision Recall F1-Score Speed (Images/s)

Ours 0.833 0.769 0.800 11.5
YOLOv5m 0.769 0.577 0.659 15.4
YOLOv5s 0.775 0.596 0.674 23.4
YOLOv7 0.783 0.692 0.735 9.2

YOLOv7-tiny 0.660 0.596 0.626 24.3
ATSS 0.638 0.712 0.673 9.2

EfficientDet-D3 0.756 0.569 0.667 9.6

Some visualized prediction results of the proposed methods are shown in Figure 14.
In those samples, all the power line image patches generated in the first stage of the
proposed method are visualized as colored rectangles. The image patches classified as
defective by the patch classification network in the second stage of the proposed method are
colored blue, while the image patches classified as normal are colored green. The number
1 or 0 on the right of each patch also indicates the categorical prediction of the proposed
method, with 1 for defective and 0 for normal. It can be seen that the image patches are
correctly and evenly cropped along each power line with an overlapped area between two
adjacent patches. Despite the complex background, varied illumination, and the slender
morphological characteristic of broken strands in the images, the proposed method can
accurately identify each broken strand.

Figure 14. Samples of visualized prediction results of the proposed method. Better viewed in enlarged
electronic edition.

Missed detection and false detection are mainly caused by extremely thin broken
strands, complex background, and interference of towers and fittings. Figure 15 shows
some failure detection cases. The upper left shows the missed detection of an extremely
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thin strand breakage. This can be improved by further enhancing the resolution of input
images but the cost is an increase in inference latency. The upper right shows that, in the
extremely complex background, even the power line was not extracted. The lower left and
right show the fittings connected to the power lines and the towers causing false detection.
In fact, towers have many steel structures that also have linear shape that can interfere
with power line segmentation, and the fittings and other components connected to the
power lines can affect the image patch classification. To deal with the extremely complex
backgrounds and the near tower scenarios, in future work, we will try to collect more data
that contain towers and complex backgrounds in urban areas, and further improve the
design of our method especially for these challenging scenarios.

Figure 15. Examples of missed detection and false detection caused by the extremely thin strand
breakage (upper left), the extremely complex background (upper right), and the fittings connected
to the power lines and towers. Better viewed in enlarged electronic edition.

Detection efficiency. Due to the multi-stage serial workflow, the inference speed of
the proposed method is lower than most of the compared end-to-end detectors. Its speed
is about 1/2 of the speed of YOLOv5s or YOLOv5s. According to our test, on the Jetson
Orin, the average time consumption of the BA-NetV2 for segmenting a 512 × 512 power
line image is 20.9 ms. The patch classification network takes an average of 3.9 ms to process
an image patch; the remaining time is consumed in power line fitting and image patch
cropping. When there are multiple power lines in an image, the time consumption will
increase in the power line fitting, image patch cropping, and patch classification. The
inference speed of the proposed method is 11.5 images per second on average, which is
still capable of on-site real-time processing in most cases. However, we have to point out
that such a speed brings limitations of the speed of UAV flight and image capturing during
the inspection process. To further enhance the efficiency of the proposed method in the
future, we plan to reimplement the inference stream with C++, improve the parallelism of
computation, and conduct compression on the weights of the networks, etc.
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It is worth noting that in some cases the broken strand would interfere with the
extraction of a power line. Specifically, when the broken strand is thin and long, it may be
recognized as a power line and thus lead to image patch cropping along it. This is mainly
because such long thin broken strands would be segmented as line segments some of which
are long but disconnected to the power line. These long line segments can pass the filtering
based on the area and aspect ratio in the postprocessing after power line segmentation
and would be would be misrecognized as a power line. In such a case, it brings redundant
computation and risks of generating false positive detection. A typical example is shown
in Figure 16.

Figure 16. A power line with a thin long broken strand and the processing results of power line
segmentation, center line extraction and final strand breakage detection. (a) A sample image with a
thin long broken stand snipped from a power line inspection image. (b) Power line segmentation
result. (c) Center line extraction result (the blue lines). (d) Final strand breakage detection result.

Sensitivity to the amount of training data. Table 7 shows the performance of different
classification methods trained with half of the training set in the AIRS-PLIP dataset. It
can be seen that, when the training set is reduced by a half, the proposed method has a
relatively slight drop in its precision while the recall remains unchanged and finally it has a
significantly slighter drop in the F1-score compared to the other detectors. The superiority
of the proposed method is further enlarged in terms of the F1-score when the training
set is reduced. The F1-scores of the proposed method are 0.065 and 0.168 higher than the
best values in the compared methods when trained with the full training set and the half
training set, respectively. Therefore, the proposed method shows less sensitivity to the
decrease in defect samples, which supports our claim that the proposed strand breakage
detection pipeline reduces the need for strand breakage samples.
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Table 7. Performance of different classification methods trained with half of the training set in the
AIRS-PLIP dataset and the performance drop compared with full data training. “Full” indicates the
models were trained with the full training set in the AIRS-PLSB dataset; “Half” indicates the models
were trained with the half training set in the AIRS-PLSB dataset; “Drop” indicates the performance
decrease from “Full” to “Half”. The best performance in each column is highlighted in bold.

Method Precision Recall F1-Score

Full Half Drop Full Half Drop Full Half Drop

Ours 0.833 0.784 0.049 0.769 0.769 0 0.800 0.777 0.023
YOLOv5m 0.769 0.722 0.047 0.577 0.500 0.077 0.659 0.591 0.068
YOLOv5s 0.775 0.630 0.145 0.596 0.558 0.038 0.674 0.592 0.082
YOLOv7 0.783 0.730 0.053 0.692 0.519 0.173 0.735 0.607 0.128
YOLOv7-tiny 0.660 0.542 0.118 0.596 0.500 0.096 0.626 0.520 0.106
ATSS 0.638 0.579 0.059 0.712 0.423 0.289 0.673 0.489 0.184
EfficientDet-D3 0.756 0.700 0.056 0.596 0.538 0.058 0.667 0.609 0.058

5. Conclusions

This paper proposes a real-time broken strand detection method oriented to the UAV-
based power line inspection scenario. A multi-stage pipeline is devised, consisting of power
line segmentation, image patch cropping, and patch classification. Such a pipeline can make
better use of easily obtained normal power line images and the detailed feature information
in the local areas of power lines, thus to deal with the challenges caused by the slender
morphology of power lines and rareness of strand breakage samples. The key components
in the pipeline, i.e., the segmentation network and the patch classification network, are both
designed to be light-weight; thus, the overall pipeline is suitable for executing real-time
processing on the edge computing resource carried by UAVs. Experimental results show
that: (1) The proposed strand breakage method can achieve superior accuracy over state-of-
the-art object detection methods and real-time processing on embedded edge computing
device. (2) By maintaining high-resolution feature maps, enlarging the network capacity,
and enhancing the long-range semantic relation capturing ability, the proposed power
line segmentation network BA-NetV2 is better adapted to the elongated feature of power
lines and outperforms its counterparts. (3) The patch classification network can reach high
accuracy benefiting from the multi-task learning strategy benefits. The proposed strand
breakage method provides a promising solution for UAV-based on-site power line defect
detection.

Our future works include three aspects: (1) To further enhance the inference efficiency
of the proposed method, we plan to reimplement the code in C++, improve the parallelism
of computation, and apply model compression techniques. (2) To deal with the extremely
complex backgrounds and the near tower scenarios, we will try to collect more data
containing towers and complex backgrounds in urban areas, and further improve the design
of the proposed method especially for these challenging scenarios. (3) We plan to deploy
the proposed strand breakage detection method onto a power line inspection hardware
system that we are developing and conduct real-world experiments. We will improve the
proposed method based on the experimental results and promote its application in practical
power line inspection.
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